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Abstract

The recent IMF World Economic Outlook (2013) investigates how real and financial
shocks can cause a sharp increase in cross country output co-movements. This pa-
per looks at the reverse issue by asking how macro regimes of extreme low and high
inflation or productivity growth are conducive to spillover of financial market shocks
between major open economies. Using a non-parametric measure we study the largest
movements in the US and German equity index returns conditional on a specific macro
regime in one or both of the countries. It is known that the unconditional proba-
bility of different stock markets crashing jointly is non-negligible, see e.g. Hartmann
et al. (2004) and Poon et al. (2004). The results suggest that the factor related to
real economy, i.e. industrial production growth, is a major driver behind the extreme
loss linkage, but inflation is not. One explanation is that monetary policy shocks are
absorbed by the exchange rate, whereas technology shocks do spillover.
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1 Introduction

Stock markets move together for various reasons. The recent credit crisis depressed
stock markets worldwide. Since then, much heed has been paid to studying rare events
and their co-movements in financial markets. It is known that stock returns and stock
index returns are asymptotically dependent, meaning that even in the limit the inter-
dependency does not vanish, like in the case of a multivariate Student-t distribution.
Per contrast the interdependency between correlated normal distributions eventually
vanishes deep in the tail area, see De Vries (2005).

The conventional correlation measure is frequently used to characterise such interde-
pendency. For example, Lin, Engle and Ito (1994) investigate correlations and spillovers
between the Tokyo and New York equity markets using a GARCH-based model. Cor-
relation analysis puts a strong assumption of normality on the underlying distribution
which is prone to the underestimation of tail risks (Poon et al., 2004). To model the rare
events, extreme statistics (i.e. extreme value theory - EVT) may be preferable since
only extreme data are considered and hence the estimation will not be contaminated by
the data from the central. Some literature regarding the use of EVT approach is Hart-
mann, Straetmans, and de Vries (2008) in which they apply EVT to examine heavy
tails and currency crises. Hartmaan et al. (2004) also measure asset market linkages
between and across equity and bond markets in crisis periods using a non-parametric
EVT method.

To our knowledge, EVT has not been employed much in macro study. One main rea-
son is due to the nature of its low frequency data. Nevertheless, this paper exploits
a way to make use of it. In this paper we ask which macro regimes are conducive to
the observed asymptotic dependency between stock markets of major open economies.
We mainly consider the largest movements in the US and German equity index re-
turns conditional on specific regimes of inflation and total factor productivity growth,
representing demand side and supply side regimes respectively.

The monetary model of the exchange rate holds that exchange rate returns ∆s absorb
the changes in (country-) relative money supply ∆m, relative real income shocks ∆y
and shocks to the interest differential ∆i. Specifically, in its crudest form the monetary
model reads

∆s = ∆m− γ∆y + λ∆i

where λ is the semi-interest elasticity of money demand and γ is the income elasticity
of money demand. As presented, monetary shocks and hence regimes of high or low
inflation (deflation) are fully absorbed in the exchange rate changes. Typical regres-
sions do reject monetary neutrality and hence monetary shocks in one country may be
transmitted to the other country and be partly reflected in ∆y, at least in the short
run. This would be a case of international demand side externalities that may spillover
into foreign stock market indices.

On the real side, standard macro models nowadays start from a representative consumer
who faces choices between consuming a competitive good Z, differentiated goods Qi
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and supplying labor L. The archetypical utility function reads

U = Z1−θ

[
1

n

n∑
i=1

Qρ
i

]θ/ρ
− 1

1 + γ
L1+γ,

where ρ is constrained to ρ ∈ (0, 1).

On the supply side Ricardian production functions

Z = BLz and Qi = ALi

generate output, where A and B are the labor productivity coefficients. Solving for
the profit of the differentiated goods sector, one finds that

Π(Q) = c (θ, ρ)wL (A,B; θ, γ, ρ)

and where w is the nominal wage rate, which might capture monetary spillover (see full
derivation in Appendix A). Factor productivity coefficients A and B drive the profit
levels and presumably the stock indices. In the case that productivity growth is more
or less entirely a domestic development, like extreme weather conditions influencing
crop size, supply side factors would not generate the tail interdependency between
stock markets. In the case of productivity spillover, however, stock markets are more
susceptible to joint crashes or jubilation. Novel computer technology typically spreads
rapidly around the globe.

We test for the presence or absence of spillover by conditioning the extreme downward
movements in the US S&P index and the German based DAX index returns on macro
regimes of high and low inflation and productivity growth.

The remainder of the paper is organised as follows. Section 2 introduces the concept of
heavy tails and the measure of extreme dependency. The equity returns and macro data
are described in Section 3. In Section 4, the empirical results of estimating extreme
loss linkages are discussed. Section 5 concludes. Appendix A provides the theoretical
investigation for the fat-tailed distribution of macro factors using a standard closed
economy macro model.

2 Estimation

In this section, the concept of heavy tails is first presented. Then, we introduce the
tail index estimator and extreme dependency measure.

2.1 Fundamentals of Heavy Tails

Suppose that F (x) is a distribution function of a random variable x. F (x) exhibits
heavy tails if it varies regularly at infinity. Specifically, for the upper tail, we have

lim
t→∞

=
1− F (tx)

1− F (t)
= x−α, x > 0, α > 0, (1)
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where α is a tail index.

Furthermore, random variables whose tails are regularly varying also have an additivity
property, i.e. Feller’s Convolution Theorem (1971, VIII.8). More precisely, assume that

P{X > x} = 1− F (x) = Ax−α + o(x−α), as x→∞. (2)

Then, if X1 and X2 are i.i.d. with c.d.f. F (x) in (2),

P{X1 +X2 > s} ∼ 2As−α, as s→∞. (3)

If X and Y are two random variables such that P{X > x} ∼ A1x
−α and P{Y > x} ∼

A2x
−γ, where γ > α, it can be shown that

P{X + Y > s} ∼ As−α, as s→∞. (4)

In other words, the convolution is dominated by the heavier tail.

2.2 Tail Index Estimator

To estimate the tail index α, Hill (1975) estimator is frequently proposed. Suppose
that X1 ≤ X2 ≤ . . . ≤ Xn is the order statistics. Thus, the Hill estimator is the inverse
tail index

γ̂ =
1̂

α
=

1

k

k∑
i=1

log
Xn+1−i

Xn−k
, (5)

where Xn−k is an appropriate threshold. In this case, there will be k observations
above the threshold. For k(n) → ∞ and k(n)/n → 0, γ̂ is asymptotically normally
distributed with zero mean and variance 1/α2.

A suitable threshold or cutoff point can be chosen using the eye-balling technique
(Embrechts et al., 1997). Specifically, the cutoff point is decided where the plot of the
estimated tail indices against descending threshold values (the so-called Hill plot) is
first relatively stable.

Alternatively, the Dekkers-Einmahl-de Haan (1989) (DEdH) estimator may also be
used to obtain the tail index. The DEdH tail index is defined as

γ̂ =
1̂

α
= 1 +H +

1

2

K/H

H −K/H
, (6)

where

H =
1

k

k∑
i=1

log
Xn+1−i

Xn−k
, K =

1

k

k∑
i=1

(log
Xn+1−i

Xn−k
)2.

Note that H is the Hill estimator and if the distribution varies regularly at infinity,
K/2H is an alternative to the Hill estimator.
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2.3 Extreme Dependence Measure

One may use correlation analysis to measure the conditional dependence. The correla-
tion concept is, however, closely connected to the multivariate normal distribution and
hence it may not be a reliable dependency measure for data from the tails, see Ang and
Chen (2002). More importantly, the amount of correlation, for example, is not very
informative regarding the probability of tail spillover. The pitfalls of using correlation
based measure are discussed in Embrechts et al. (1999).

Given the shortcomings of correlation measure, we directly quantify the extreme de-
pendence in terms of probability by employing a non-parametric count estimator that
does not require any distributional assumption regarding the data. Suppose that X
and Y are two random variables whose failure regions are defined by X > s and Y > s,
where s is the loss level, say. Then the probability of markets crashing jointly given that
at least one market crashes is

P (X > s, Y > s)

1− P (X ≤ s, Y ≤ s)
=

P (X > s) + P (Y > s)

1− P (X ≤ s, Y ≤ s)
− 1

=
P (min[X,Y ] > s)

P (max[X,Y ] > s)

≈ #min[X,Y ] > s

#max[X,Y ] > s
. (7)

Note that the conditional probability of market crashes in (7) is in fact the summation of the
marginal probabilities divided by their joint probability. The joint distribution typically can
be estimated by a number of approaches such as Copula (a parametric approach), Stable Tail
Dependence Function (a non-parametric multivariate approach) and so on. We here utilise
the count estimator in which the probability of a joint crash given a crash in at least one
of the markets is estimated by simply counting the joint minima and maxima over a high
threshold s; see Slijkerman et al. (2013). Subsequently we condition the probabilities in the
numerator and denominator on certain macro regimes.

Consider the following simplified example. Suppose that the losses X and Y are driven by
the shocks ε, u and w as follows

X = ε+ u and Y = ε+ w

and where the three shocks are independently Pareto distributed. Then one shows that

lim
s→∞

P (X > s, Y > s)

1− P (X ≤ s, Y ≤ s)
=

1

3

Per contrast, if the shocks are normally distributed, this limit is zero! Conditioning on the
joint factor ε gives

lim
s→∞

P (X > s, Y > s|ε > s)

1− P (X ≤ s, Y ≤ s|ε > s)
= 1,
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while if one conditions one of the other two factors, say u,

lim
s→∞

P (X > s, Y > s|u > s)

1− P (X ≤ s, Y ≤ s|u > s)
= 0

Conditioning on the common factor raises the asymptotic dependence.

2.3.1 The Impact of Marginal Distributions

To measure the dependency of random variables, it is conventional to eliminate the impact
of individual marginal distributions using data transformation. One may transform the raw
data to common unit Pareto marginals (Hartmann et al., 2006). More precisely, suppose that
we have the random variables Xi for i = 1, . . . ,M . Then, Xi can be transformed to X̃i such
that

X̃i =
1

1− FX(Xi)
, for i = 1, · · · ,M,

where FXi(Xi) denotes the marginal cumulative distribution function for Xi. Once trans-
formed, each X̃i will obtain the common marginal distribution in which the dependence
structure remains the same as before. Nonetheless, since the marginal distributions are un-
known, it is suggested to use their empirical counterparts. Eventually, we achieve

X̃i =
n+ 1

n+ 1−RXi
,

where RXi = rank(xik, k = 1, · · · , n). Alternatively, other transformation methods such as
unit Frétchet marginals (see Poon et al., 2004) may be employed.

3 Data

This section describes the data of equity returns and macro fundamentals that will be used
for the estimation.

3.1 Equity Index Returns

Figure 1 illustrates the scatter plot of S&P500 and DAX daily index returns from January
1973 to June 2012 (10,304 days). From the plot, it can be observed that several extremes
occurred over the period. For instance, the pair of most extreme returns in the left below
quadrant represents the well-known Black Monday co-crash in October 1987. During the
credit crisis in 2008, there exists a dramatic slump in both markets simultaneously, following
a sharp rebound after a while. Moreover, there was also the event that the German market
realised the biggest loss in 40 years, whereas the US market slightly moved. Such event is
pertaining to the German unification. In the next section, we will particularly consider the
dependency of large losses in the left below quadrant.

6



Figure 1: Scatter plot of S&P500 and DAX daily index returns from January 1977 to
June 2012 (10,304 days).

3.2 Macro Fundamentals

Regarding macro data, we consider the following four main macro factors:

1. Inflation (Consumer Price Index; CPI)

2. Industrial production growth

3. Unemployment rate

4. Money supply (M2) growth.

The data were obtained from DataStream inc. at a monthly frequency ranging from January
1970 to December 2012.1 All are seasonally adjusted. In Figure 2, we can notice that US
inflation is relatively higher for the first 15 years while German inflation appears relatively
less volatile over the period considered. An immediate question arises how we determine
stressed levels for inflation regimes.

3.2.1 Stressed Thresholds

It is natural to specify stressed thresholds for the regimes of macro factors as follows.

• First and the simplest way is to compute constant lower and upper (i.e. 5% and 95%)
quantiles. The plots of US and German inflations with the constant thresholds are
demonstrated in Figure 3 (top row). Typically, the policy related to inflation tends
to change over time. Those extremely high levels, like in the 1970s, are unlikely to

1the data of all four macro factors except unemployment rate are in year-on-year percentage change.
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Figure 2: US inflation with S&P500 daily index returns (left) and German inflation
with daily DAX index returns (right) from January 1970 to December 2011. Inflations
are seasonally adjusted.

be repeated since the central banks of both countries are now adhering to inflation
targets. In that sense, using the constant thresholds may be not suitable. It would be
reasonable if the thresholds are allowed to vary over time.

• Secondly, the stressed levels may be determined by employing N -year moving average
5% and 95% quantiles. Figure 3 (bottom row) presents the US and German inflations
with 10-year moving average thresholds. With the moving average, the thresholds turn
to be more realistic comparing to the constant thresholds.

• Figures 4, 5 and 6 plot the remaining three macroeconomic fundamentals (industrial
production growth, unemployment rate and money supply growth respectively) with
constant and 10-year moving average 5% and 95% quantile thresholds.

To this end, two observations are made as below. We would emphasise that public announce-
ment dates of macro data should not have a significant effect to our study since we are not
investigating the impact of an announcement date to extreme events but merely employing
thresholds to specify the regimes of macro factors. Note that the official macro data of the
US and Germany are generally released around two weeks after the end of every month and
the date is not predetermined.

8



Figure 3: US (left) and German (right) seasonally adjusted inflation (year-on-year)
from January 1970 to December 2011 with constant (top) and 10-year moving average
(bottom) 5% and 95% quantile thresholds.

Figure 4: US (left) and German (right) monthly seasonally adjusted industrial produc-
tion growth (year-on-year) from January 1970 to December 2011 with constant (top)
and 10-year moving average (bottom) 5% and 95% quantile thresholds.
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Figure 5: US (left) and German (right) monthly seasonally adjusted unemployment
rate from January 1970 to December 2011 with constant (top) and 10-year moving
average (bottom) 5% and 95% quantile thresholds.

Figure 6: US (left) and German (right) monthly seasonally adjusted money supply
(M2) growth (year-on-year) from January 1970 to December 2011 with constant (top)
and 10-year moving average (bottom) 5% and 95% quantile thresholds.
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4 Empirical Results

This section discusses main empirical results. To begin with, we carry out the estimates
of tail index for macro fundamentals. Consequently, we the count estimator is employed to
measure the extreme loss linkages between the US and German equity markets unconditional
and conditional on the regimes of stressed macro fundamentals.

4.1 Tail Index of Macro Fundamentals

We investigate the right-tailed heaviness for macro fundamentals by computing the tail index
α̂ of monthly US and German macro data (inflation, industrial production growth, unem-
ployment rate and money supply growth) from January 1973 to June 2012 (474 months). The
results are illustrated in Figures 7 and 8 respectively. An appropriate threshold is selected
where the plot first stabilises. (eye-balling technique).

For the US, it can be found that inflation has the heaviest tail with α̂ ≈ 2.0, whereas
industrial production growth achieves the thinnest tail (with a short stable region in the Hill
plot) α̂ ≈ 7.5. For the German indicators, the results are slightly different, particularly for
the money supply growth which clearly has a fatter tail than that of the US.

Figure 7: Hill plots for the right tails of four US macro fundamentals: inflation, indus-
trial production growth, unemployment rate and money supply growth. The monthly
data ranges from January 1973 to June 2012 (474 months).
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Figure 8: Hill plots for the right tails of four German macro fundamentals: inflation,
industrial production growth, unemployment rate and money supply growth. The
monthly data ranges from January 1973 to June 2012 (474 months).

4.2 Extreme Linkages: Equity Index Returns

We measure the conditional extreme loss linkages between S&P500 and DAX daily index
returns from January 1973 to June 2012 (10,304 days) using the count measure. To eliminate
the effect of individual marginal distributions, we transform the raw data to common unit
Pareto marginals as discussed in the earlier section. After this transformation, each series
exhibits the common marginal distribution in which the dependence structure is still embed-
ded and unaltered. Two cases of the extreme dependency are investigated: unconditional
and conditional on the stressed macro regimes. The macro fundamentals are monthly infla-
tion, industrial production growth, unemployment rate and money supply (M2) growth. The
stress levels for these data are said to occur if these are outside the 5% - 95% quantile ranges
of their 10-year moving average of the historical data.

4.2.1 Unconditional on the Stressed Macro Regimes

Figure 9 gives the extreme loss linkage estimates for the full sample, i.e. without conditioning
on the stressed macro regimes. Eventually, if s is sufficiently low, all data are included and
the plot reaches 1 (this would be on the right hand side and outside the frame of Figure 9).
At high threshold levels s, however, the plot either lingers in the neighborhood of zero in
the case that there is no asymptotic dependence (as in the case of correlated normals), or
almost immediately jumps to the level of asymptotic dependence that is in the data. From
the Figure 9, it can be seen that the linkage probability quickly stabilizes (reading from the
left to the right) around 0.2. This means that “approximately in one per five market crashes,
there is one co-crash” between the two indices.
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Figure 9: Co-crash probability between S&P500 and DAX daily index returns from
January 1973 to June 2012.

4.2.2 Conditional on the Stressed Macro Regimes

To estimate the extreme loss linkages conditional on a stressed macro fundamental, we extract
the return data from the full sample using four cases of severe macroeconomic regimes: a)
above the 95% quantile threshold in both countries, b) above the 95% quantile threshold in
at least one country, c) below the 5% quantile threshold in both countries, and d) below the
5% quantile threshold in at least one country.

In other words, we investigate the extreme linkages between the two markets during periods of
high and low levels of macro fundamentals, either when the severe macro situation occurs in
both countries simultaneously, or when it happens in at least one country. Due to the nature
of the macro variables, the macro data are lagged by one month. For instance, if the value
of a macro fundamental of the current month exceeds the specified threshold value, daily
returns of the whole next month are used for estimating the extreme linkage probabilities.

Figures 11 presents the estimates of the extreme linkage probabilities conditional on stressed
inflation levels. The number of observations of the four regimes are 152, 1,861, 523 and 782
respectively (as shown in Figure 10). Surprisingly perhaps, the results indicate that in almost
all cases the extreme linkages between US and German equity markets during severe low and
high inflations are close to that of the full sample data. The linkage probability when inflation
is extremely low in at least in one country turns out to be slightly higher than in the other
three cases. It appears that the monetary or demand side factor does not contribute towards
explaining the tail spillover between the two stock markets.

Figures 13 gives the estimated extreme linkages conditional on stressed industrial production
growth, based on respectively 236, 1,178, 303 and 782 observations for the four cases (see
Figure 12). The two graphs on the right stand out as the estimated limit probability is
around 0.4. During periods of dramatic contraction of the industrial production the co-crash
probabilities are clearly above the unconditional full sample estimate. When the industrial
production growth is extremely high in both countries, the extreme linkage estimate is also
elevated above the unconditional estimate. There appears to be real or supply side spillovers
that drive the joint dowturns of the two markets.
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The estimated extreme linkages conditional on stressed levels of two additional macro funda-
mentals (unemployment rate and money supply growth) are illustrated in Figures 15 and 17
respectively. During periods of dramatic unemployment rate, we can observe that the most
impact on the extreme linkage is when at least one country encounters very high unemploy-
ment. For money supply growth, it can be found that we achieve a very low extreme linkage
probability when conditioning the returns on money supply growth below 5% quantile in
both countries,.

Table 1 ranks the impact of stressed macro regimes on the extreme loss linkages between
S&P500 and DAX daily index returns. We here have not reported the results numerically
since it appears to have high variation in the plots due to few conditional data obtained.
Nevertheless, the results still can be differentiated which cases are more influential. From the
table, the results are generally mixed up but it is obvious that industrial production growth
has the most impact in almost all cases.

10-year Moving Average Ranking of Stressed Macro Regimes
Thresholds by the Impact on Extreme Loss Linkages

In Both 1. Industrial Production Growth

Countries 2. Inflation, Unconditional*

Above 95% 3. Unemployment Rate

Quantile Threshold In at Least 1. Unemployment Rate, Money Supply Growth

One Country 2. Industrial Production Growth

3. Inflation, Unconditional*

1. Industrial Production Growth

In Both 2. Inflation

Below 5% Countries 3. Unconditional*

Quantile Threshold 4. Money Supply Growth

In at Least 1. Industrial Production Growth

One Country 2. Unemployment Rate, Money Supply Growth

3. Inflation, Unconditional*

*Unconditional on stressed macro regimes, i.e. using full sample data.

Table 1: Ranking of stressed macro regimes by the impact on extreme loss linkages
between US and German daily index returns from from January 1973 to June 2012.
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Figure 10: S&P500 and DAX daily index returns from January 1973 to June 2012
conditional on four cases of stressed inflation.

Figure 11: Co-crash probabilities between S&P500 and DAX daily index returns from
January 1973 to June 2012 conditional on four cases of stressed inflation.
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Figure 12: S&P500 and DAX daily index returns from January 1973 to June 2012
conditional on four cases of stressed industrial production growth.

Figure 13: Co-crash probabilities between S&P500 and DAX daily index returns from
January 1973 to June 2012 conditional on four cases of stressed industrial production
growth.
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Figure 14: S&P500 and DAX daily index returns from January 1973 to June 2012
conditional on four cases o f stressed unemployment rate.

Figure 15: Co-crash probabilities between S&P500 and DAX daily index returns from
January 1973 to June 2012 conditional on four cases of stressed unemployment rate.
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Figure 16: S&P500 and DAX daily index returns from January 1973 to June 2012
conditional on four cases of stressed money supply growth.

Figure 17: Co-crash probabilities between S&P500 and DAX daily index returns from
January 1973 to June 2012 conditional on four cases of stressed money supply growth.
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4.3 Extreme Linkages: Sectorial Index Returns

Instead of the index, we also examine the extreme loss linkage of US and German equity
markets in the sectorial level. Eight sectors considered are financials, industrials, materi-
als, consumer goods, consumer services, utilities, health care and telecom. The results are
concluded as follows.

• Comparing the extreme linkages unconditional on stressed macro regimes among all
sectors, we can categorise the results as three main groups as demonstrated in Table 2.
From the table, we can observe that three sectors in the first group (financials, industrial
and materials) achieve the highest co-crash probabilities at around 0.20 which is close
to that of the index returns. The second and third groups obtain the linkage probability
lower respectively.

Sector Co-Crash Probability

1. Financials, Industrials, Materials ≈ 0.20

2. Consumer Services, Consumer Goods, Telecom ≈ 0.15

3. Utility, Health Care ≈ 0.12

Table 2: Co-crash probabilities for the US and German sectorial index returns from
January 1973 to June 2012.

• Once the sectorial index returns are conditioned on the regimes of stressed macro funda-
mentals, it reveals that industrial production growth is still the most influential macro
factor on the extreme linkage for almost all sectors, except for the health care in which
the impact by all four stressed macro fundamentals are rather similar1. Furthermore,
we also notice that given the regime of high stressed inflation, the co-crash probabilities
between US and German index returns in materials, industrials, telecom and health
care sectors are higher than that of the index.

• Table 3 summarises which sectors are affected most and least for each stressed macro
regime. In general, we can see that three sectors: industrials, financials and materials
(the first group in Table 2) are most affected during severe macro conditions. The least
affected sectors are mixed up but all belong to the second and third groups.

5 Conclusion

This paper attempts to associate multivariate extreme value theory with macro study. The
main contribution is the analysis and investigation of the extreme loss linkages in the financial
markets conditional on stressed macro regimes. The count measure is deliberately opted for
the estimation as it is convenient to implement and does not rely on any strong assumption
of the underlying distribution.

1To save the space, the figures are not shown here but available upon request.
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Above 95% Below 5%
Macro Factors Quantile Thresholds Quantile Thresholds

Most Impact Least Impact Most Impact Least Impact
Industrials Consumer Services Industrials Health Care

Inflation Materials Consumer Goods Materials Telecom

Consumer Services

Industrials Telecom Industrials Telecom

IP growth Financials Health Care Financials Health Care

Materials Consumer Services Materials Utilities

Industrials Health Care Industrials Consumer Services

Unemployment rate Materials Telecom Financials Telecom

Financials Consumer Services Materials Utilities

Materials Telecom Industrials Utilities

Money supply growth Industrials Utilities Materials Health Care

Financials Health Care Consumer Services Consumer Services

Table 3: The impacts of stressed macro regimes on the extreme loss linkages between
US and German sectorial index returns (from January 1973 to June 2012).

We investigate the co-crash probabilities between US and German equity markets both un-
conditional and conditional on four regimes of stressed macro fundamentals. Productivity
growth represents the supply side, while inflation plays the part on the demand side. In-
terestingly, the results suggest that real macro factor is more influential than the monetary
factor. Monetary policy shocks between the two economies are not transmitted to the stock
indices if these are absorbed by the exchange rate, for example. Supply side based tech-
nology spillovers may drive both stock markets. Apparently these are not purely domestic
innovations (or retardations), but affect both markets simultaneously.

There is a plenty of room for further research. Other macro factors might be considered
and the analysis is not limited to the linkages between major economies. The spillovers from
developed to emerging market countries would be worth investigating. Perhaps that demand
side factors play a larger role in this case.
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A Macroeconomics with Shocks

In this appendix, we use a standard closed economy macro model to study how shocks propel
through the macro economy in equilibrium. Both supply and demand shocks are studied. It
is shown how standard assumptions on the shock distribution lead to a power law distribution
explaining the bouts of severe changes and asymptotic dependency between the various macro
factors.
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A.1 Demand Side

Current macro models typically entertain a two sector model. One sector is competitive and
the other sector produces differentiated products. The pricing power in the latter sector
determines price setting behavior.

The macro literature has focussed almost exclusively on the Dixit and Stiglitz (1977) spec-
ification for the differentiated goods demand, see e.g. Walsh (2010, ch.8). The familiar
Dixit-Stiglitz (DS) specification with endogenous labor supply is derived from the following
utility function.

U = Z1−θ

[
1

n

n∑
i=1

Qρi

]θ/ρ
− 1

1 + γ
L1+γ , (8)

where Z is the composite good, the Qi are the differentiated goods and L is labor. To
guarantee concavity and allow for zero demand, the parameter ρ is constrained to ρε(0, 1).
Macro literature, see e.g. Walsh (2010, ch.8), mostly uses a continuum of differentiated
goods, here we use a specification with a discrete number n, to facilitate the computation of
the distribution of the various macro factors in equilibrium. We envision the Z good to be
a staple good like agricultural produce, while the Qi goods capture the production of other
goods and services.

The budget constraint reads

wL+ Π(Q) = qZ +
1

n

n∑
i=1

piQi, (9)

where w is the wage rate and q, pi are the goods prices, while Π(Q) are the profits received
from the differentiated goods sector.

The first order conditions for optimality conditions entail

(1− θ)Z−θn−θ/ρ
[

n∑
i=1

Qρi

]θ/ρ
− λq = 0,

θ

(
Z

[
∑n

i=1Q
ρ
i ]
1/ρ

)1−θ

n−θ/ρ

[
n∑
i=1

Qρi

] 1
ρ
−1

Qρ−1i − λ 1

n
pi = 0,

−Lγ + λw = 0

and

wL+ Π(Q) = qZ +
1

n

n∑
i=1

piQi.

The first order conditions imply the familiar price and wage ratios

pi
pj

=
Qρ−1i

Qρ−1j

,
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pi
q

=
θ

1− θ
Z

Qj

p
ρ/(ρ−1)
j

1
n

∑n
i=1 p

ρ/(ρ−1)
i

,

and
w

q
=
(
q−1P

)θ Lγ

(1− θ)1−θ θθ
,

where the price index for differentiated goods is defined as

P =

(
1

n

n∑
i=1

p
ρ/(ρ−1)
i

) ρ−1
ρ

.

Then the labor supply can be written as

L =

(
(1− θ)1−θ θθ w

q1−θP θ

)1/γ

. (10)

The goods demanded can be expressed as

Z = (1− θ) wL+ Π(Q)

q
(11)

the goods demanded and

Qi = θ
wL+ Π(Q)

pi

(pi
P

)ρ/(ρ−1)
. (12)

A.2 Supply Side

Assume Ricardian technologies for all the goods, where

Z = BN

and
Qi = ANi.

Here A and B are the productivity coefficients while N and Ni are the respective labor inputs.
Both A and B are random variables. These TFP shocks are the familiar supply side total
factor productivity shocks due to innovation and nature.

Suppose that the market for Z is perfectly competitive

Π(Z) = qZ − wN =
(
q − w

B

)
Z = 0,

so that
q = w/B. (13)
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A.2.1 DS Differentiated Goods

In the DS specification the differentiated goods profit function reads

Π(Qi) = piQi − wNi =
(
pi −

w

A

)
Qi

=
(
pi −

w

A

)
θ
wL+ Π(Q)

pi

(pi
P

)ρ/(ρ−1)
.

The producer exploits his pricing power, but ignores his pricing effect on the price index P
of the differentiated goods and the consumer income wL+ Π(Q).2 Differentiation gives

∂Π(Qi)

∂pi
=

1

ρ− 1
Qi

{
ρ− 1

A

w

pi

}
.

Exploiting the pricing power therefore implies setting prices

pi =
w

ρA
. (14)

Hence, P = w/ρA as all prices are identical. Total profits in the differentiated goods sector
are

Π(Q) =
1

n

n∑
i=1

Π(Qi) =
1

n

n∑
i=1

(
1− w/pi

A

)
θ [wL+ Π(Q)]

(pi
P

)ρ/(ρ−1)
= (1− ρ) θ [wL+ Π(Q)] .

Solve for the total sectorial profits as

Π(Q) =
(1− ρ) θ

1− (1− ρ) θ
wL. (15)

A.3 Macro Equilibrium

It follows that in equilibrium after substituting the price levels into the labor supply equation
(10)

L =
(
θθ (1− θ)1−θ AθB1−θ

)1/γ
ρθ/γ = ϕρθ/γ , (16)

say, and where

ϕ =
(
θθ (1− θ)1−θ AθB1−θ

)1/γ
.

Furthermore, from (11), (15) and (16)

Z = (1− θ) B

1− (1− ρ) θ
ϕρθ/γ . (17)

2One can easily incorporate this effect as well if desired, see Heijdra and Yang (1993). But for
two reasons we do not follow this route. One may doubt that producers take this macro effect of
their pricing behavior into account. Moreover, it adds little to the insights derived form specifying
the differentiated goods sector.
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Similarly, using (12), (15) and (16)

Qj = θ
A

1− (1− ρ) θ
ρϕρθ/γ .

Hence
1

n

n∑
j=1

Qj = θ
A

1− (1− ρ) θ
ϕρθ/γ+1. (18)

To determine the price level, we also assume a simple quantity type relation for the money
supply process

M = wL. (19)

A.4 Equilibrium Price Distribution

With the above preparations, we can now derive the implications for the equilibrium prices,
quantities and macro factors. Most macro models consider supply shocks originating from
total factor productivity A and B and demand shocks originating from the money supply
process M or from the markup elasticity ρ, see Smets and Wouters (2003). We will first look
at the implication of such shocks for the prices pi of industrial production.

From the above (13) combined with (19) and (16), we get that

q =
w

B
=
M

B

1

L
= M

1/ρθ/γ

B
(
θθ (1− θ)1−θ AθB1−θ

)1/γ .
Similarly, using (14) combined with (19) and (16) yields

pi = p =
w

ρA
=
M

ρA

1

L
= M

1/ρθ/γ+1

A
(
θθ (1− θ)1−θ AθB1−θ

)1/γ .
Consider a supply shock A such that A follows a beta distribution:

Pr {A ≤ t} = tβ

on [0, 1] and β > 0. Consider the implication for the distribution of the differentiated goods
Qi. Some calculation reveals

Pr {pi ≤ s} = Pr

M 1/ρθ/γ+1

A
(
θθ (1− θ)1−θ AθB1−θ

)1/γ ≤ s


= Pr

 M/ρθ/γ+1(
θθ (1− θ)1−θ B1−θ

)1/γA−(1+θ/γ) ≤ s


= Pr
{
cA−(1+θ/γ) ≤ s

}

25



say, where c = M/

[
ρθ/γ+1

(
θθ (1− θ)1−θ B1−θ

)1/γ]
. So that

Pr {pi ≤ s} = Pr
{
cA−(1+θ/γ) ≤ s

}
= Pr

{
c/s ≤ A(1+θ/γ)

}
= Pr

{
(c/s)1/(1+θ/γ) ≤ A

}
= 1− Pr

{
A ≤ (c/s)1/(1+θ/γ)

}
= 1− cβ/(1+θ/γ)s−β/(1+θ/γ)

with support on [c,∞). The distribution of equilibrium prices is heavy tailed.

Also note that one can then easily obtain that the price changes are also fat tailed distributed
as ratios of random variables that have fat tails are also fat tailed distributed. Interestingly,
if we look at the implication for nominal output of the sector or profits, we do not get the
fat tail implication since

piQi = M
1/ρθ/γ+1

Aϕ
∗ θ A

1− (1− ρ) θ
ρϕρθ/γ

= M
θ

1− (1− ρ) θ

and

Π(Q) =
(1− ρ) θ

1− (1− ρ) θ
wL =

(1− ρ) θ

1− (1− ρ) θ
M.

But if we have demand shocks of the sorts discussed in Smets and Wouters (2003) regarding
ρ, assuming that (recalling that by assumption ρε(0, 1))

Pr {1− ρ ≤ t} = tβ

then

Pr {Π(Q) ≤ s} = Pr

{
(1− ρ) θ

1− (1− ρ) θ
M ≤ s

}
= Pr

{
(1− ρ) θ ≤ s

M
− s

M
(1− ρ) θ

}
= Pr

{[
1 +

s

M

]
(1− ρ) θ ≤ s

M

}
= Pr

{
(1− ρ) ≤ s

θ

1

M + s

}
=

(
s

θ

1

M + s

)β
=

1

θβ

(
1− M

M + s

)β
with support [0, θM1−θ ]. If θ = 1, only differentiated goods, we have again a heavy upper tail.
The ratio of profits in the change of profits, though, is certainly heavy tailed. To see this,
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note that

Pr

{
1

Π(Q)
≤ x

}
= Pr

{
1

x
≤ Π(Q)

}
= 1− Pr

{
Π(Q) ≤ 1

x

}
= 1− 1

θβ

(
1− M

M + 1/x

)β
= 1− 1

θβ

(
1

Mx+ 1

)β
on [1−θθM ,∞). The inverses has tail index β.

Looking at nominal GDP, we get

qZ +
1

n

n∑
i=1

piQi = wL+ Π(Q)

=

[
1 +

(1− ρ) θ

1− (1− ρ) θ

]
wL

=
1

1− (1− ρ) θ
M.

So if we assume again that Pr {1− ρ ≤ t} = tβ, then due to θ in the denominator 1 −
(1− ρ) θε[1− θ, 1] and there are no fat tails. But if we assume that for example that M is
exponentially distributed, then the ratio of the money supply and time t divided by the time
t-1 supply is fat tailed, since if

Pr{M ≤ t} = 1− e−t,

then

Pr{ 1

M
≤ s} = Pr{1

s
≤M} = exp(−1/s),

which is a Frechet extreme value distribution with a tail index of one. Note that we can
obtain the distribution of the change as follows (use the last result in the third step and the
exponential distribution for the numerator in the fourth step)

Pr

{
M(t)

M(t− 1)
− 1 ≤ x

}
= EM(t)

[
Pr

{
m(t)

M(t− 1)
− 1 ≤ x

∣∣∣∣M(t) = m(t)

}]

= EM(t)

[
Pr

{
1

M(t− 1)
≤ x+ 1

m(t)

∣∣∣∣M(t) = m(t)

}]

= EM(t)

[
e−

m(t)
1+x

]
=

∫ ∞
0

e−
m

1+x e−mdm

=

∫ ∞
0

e−
2+x
1+x

mdm

=
1 + x

2 + x

= 1− 1

2 + x

which is a Burr distribution with tail index 1 and support [−1,∞).
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A.5 Implication for Systemic Risk

As for a start, consider the asymptotic dependence between the GDP measure

qZ +
1

n

n∑
i=1

piQi = wL+ Π(Q) =
1

1− (1− ρ) θ
M

and industrial output in nominal terms

piQi = M
θ

1− (1− ρ) θ,

where M itself follows a Pareto law

Pr{M ≤ t} = 1− t−α.

This example may be less interesting as M is directly assumed to be fat tailed but we can
use the above ideas to derive the fat tail property endogenously. Given the assumption on
M , we get immediately that

Pr{ 1

1− (1− ρ) θ
M > t} = Pr{M > [1− (1− ρ) θ] t} = [1− (1− ρ) θ]−α t−α

and

Pr{ θ

1− (1− ρ) θ
M > t} = θα [1− (1− ρ) θ]−α t−α.

Since θε(0, 1) we find that

Pr{ 1

1− (1− ρ) θ
M > t,

θ

1− (1− ρ) θ
M > t} = Pr{ θ

1− (1− ρ) θ
M > t}

= θα [1− (1− ρ) θ]−α t−α,

while

1− Pr{ 1

1− (1− ρ) θ
M ≤ t, θ

1− (1− ρ) θ
M ≤ t} = Pr{ 1

1− (1− ρ) θ
M > t}

= [1− (1− ρ) θ]−α t−α.

Hence, the measure for asymptotic dependence gives

1 +
Pr{ 1

1−(1−ρ)θM > t, θ
1−(1−ρ)θM > t}

1− Pr{ 1
1−(1−ρ)θM ≤ t,

θ
1−(1−ρ)θM ≤ t}

= 1 + θα > 1.
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