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Abstract 

This paper explores innovations in index-based risk transfer products (IBRTPs) as a means to 

address important insurance market imperfections that have precluded the emergence and 

sustainability of formal insurance markets in developing countries, where uninsured natural 

disaster risk remains a leading impediment of economic development. Using a combination of 

disaggregated nationwide weather, remote sensing and household livelihood data commonly 

available in developing countries, the paper provides analytical framework and empirical 

illustrations on how to design nationwide and scalable IBRTP contracts, to analyse hedging 

effectiveness and welfare impacts at the micro level and to explore cost effective risk-financing 

options. Thai rice production is used in our analysis with the goal of extending the methodology 

and implications so as to enhance the development of national and regional disaster risk 

management in Asia. 
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1. Introduction 

There is growing evidence that the frequency and intensity of natural disasters continue to rise 

over the past decades (Swiss Re 2011). This trend is likely to continue as the impact of climate 

change drives greater volatility in weather-related hazards (IPCC 2007). The low-income and 

developing countries suffered an increase of disaster incidence at almost twice the global rate as 

large proportion of population still rely on agriculture and live in vulnerable environments 

(IFRCRCS 2011). Overall, costs per disaster as a share of GDP are considerably higher in 

developing countries (Gaiha and Thapa 2006). Over the past decade, Asia has been the most 

frequently and significantly hit region occupying 80% of the major natural disasters worldwide.1  

Less than 10% of natural disaster losses in developing countries are insured as several 

markets imperfections have served to impede development of markets for transferring natural 

disaster risks. Adverse selection and moral hazard are inherent to any form of conventional 

insurance products when insured have total control of and private information on the indemnified 

probability. Transaction costs of financial contracts necessary for controlling these information 

asymmetries and for verifying claimed losses are extremely high relative to the insured value 

especially for smallholders. Limited spatial risk-pooling potential resulted from covariate nature 

of natural disaster losses further impedes the development of domestic insurance market, unless 

local insurers can transfer the risks to international markets.  

Without effective insurance market, public disaster assistance and highly subsidised public 

insurance programs have been the key supports for affected population in developing countries. 

The increasing frequency and intensity of these covariate shocks, however, could jeopardise the 

adequacy, timeliness and sustainability of these programs (Cummins and Mahul 2009). These 

public programs are largely prone to moral hazard, which could easily alleviate the program 

costs through induced risk taking incentives or underinvestment in risk mitigating activities 

among vulnerable populations. Without proper targeting, these programs could further crowd out 

private insurance demand impeding the development of healthy domestic insurance market.  

Households in developing countries, thus, are disproportionally affected by disasters due to 

larger exposures but limited access to effective risk management strategies. While literatures 

analyse the wide array of informal social arrangements and financial strategies that households 

employ to manage risk, in nearly all cases these mechanisms are highly imperfect especially with 

respect to covariate shocks and in many cases carry very high implicit insurance premia. The 

                                                 
1 The major disasters of the decade leading to large number killed in Asia include the 2004 Indian Ocean tsunami 

(226,408 deaths), the 2008 Cyclone Nargis in Myanmar (138,375), the 2008 Sichuan earthquake in China (87,476), 

the 2005 Kashmir earthquake (74,648) and the 2001 major earthquakes in Gujarat, India (20,017). The recent major 

disasters leading to widespread affected populations in Asia include the 2010 floods in China (134 million people), 

the 2009 droughts in China (60 million people), the 2010 Indus river basin flood in Pakistan (more than 20 million 

people) and the 2011 river flood in Thailand (13.6 million people). The three costliest natural disasters in 2011 are 

all in Asia: earthquake and tsunami in Japan (US$ 281 billion), river flood in Thailand (US$ 45.7 billion) and 

earthquake in New Zealand (US$ 20 billion).  



 3 

resulting long-term impacts of catastrophic shocks on their economic development thus have 

been widely evidenced in the literatures (see Dercon (2015), Barrett et al. (2007) for review).  

This paper explores the potentials of the increasingly used index-based risk transfer products 

(IBRTPs) in resolving the key market imperfections that impede the development and financing 

of sustainable natural disaster insurance programs in developing countries. Unlike conventional 

insurance that compensates individual losses, IBRTPs are financial instruments, e.g., insurance, 

insurance linked security, that make payments based on an underlying index that is transparently 

and objectively measured, available at low cost and not manipulable by contract parties, and 

more importantly highly correlated with exposures to be transferred. By design, IBRTPs thus can 

obviate asymmetric information and incentive problems that plague individual-loss based 

products, as the index and so the contractual payouts are exogenous to policyholders. 

Transaction costs are also much lower, since financial service providers will only need to acquire 

index data for pricing and calculating contractual payments. There will be no need for costly 

individual loss estimations. Properly securitising natural disaster risk into a well defined, 

transparently and objectively measured index could further open up possibilities to transfer 

covariate risks to international reinsurance and financial markets at competitive rates.  

As natural disaster losses are covariate, it would be possible to design IBRTPs based on a 

suitable aggregated index. These opportunities, however, come at the cost of basis risk resulting 

from imperfect correlation between an insured’s actual loss and the behaviour of the underlying 

index on which the contractual payment is based. IBRTPs will be effective only when basis risk 

is minimised. The contracts need to also be simple enough to hold informed demand among 

clients with limited literacy in developing countries, and to be scalable to larger geographical 

settings to ensure efficient market scale. Trade-offs among basis risk, simplicity and scalability 

thus constitute the key challenges in designing appropriate IBRTPs for developing countries. 

Over the past decade, IBRTPs have emerged as potentially market viable approaches for 

managing natural disaster risk in developing countries. The growing interests among academics, 

and development communities have resulted in at least 36 projects in 21 countries worldwide 

covering risks of droughts, floods, hurricanes, typhoons and earthquakes based on objectively 

measured area-aggregated losses, weather and satellite imagery products.2 Contracts have been 

designed to enhance risk management at various levels ranging from farmers and homeowners as 

target users to macro level, allowing governments and humanitarian organisations to transfer 

their budget exposures in provision of disaster relief programs to the international markets.  

                                                 
2 Table A1 summarises the existing IBRTP projects piloted in Asia to date. Growing numbers of literature has also 

depicted opportunities and challenges of implementing IBRTPs. See IFAD and WFP (2010), Barnett et al. (2008), 

for example, for review. See Chantarat et al. (2013, 2011, 2008, 2007), Clarke et al. (2012) and Mahul and Skees 

(2007) for examples related to IBRTP designs in the developing world, and Mahul (2000) for examples related to 

agriculture in high-income countries.  
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The consensus, however, has not been reached if and how IBRTPs could work in developing 

country settings for several reasons. First, current literatures3 tend to either lack rigorous analysis 

of basis risk and welfare impacts or use aggregated data to perform such analysis. Hence, less 

could be learnt ex ante about the value of the contracts to the targeted population. Second, 

contract designs to date are context specific, making it very difficult to be scaled up in other 

heterogeneous settings. Finally, as most of the current studies are small in scale, less has been 

explored on the potentials for portfolio risk diversifications, transfers and financing.  

This paper complements existing literatures, especially on the rigorous analysis and 

applications of IBRTPs in Asia. We provide analytical framework and show empirically how to 

use a combination of disaggregated and spatiotemporal rich sets of household and disaster data, 

commonly available in developing countries, to design nationwide and scalable IBRTP contracts, 

to analyse hedging effectiveness and welfare impacts at a disaggregated level and to explore cost 

effective disaster risk-financing options. Our empirical illustration explores the potentials for 

development of nationwide index insurance program for rice farmers in Thailand. We analyse 

contract design based on three forms of indices: (i) government collected provincial-averaged 

rice yield, (ii) estimated area yield constructed from scientific crop-climate modelling and (iii) 

various constructed parametric weather variables. These indices differ in risk coverage, exposure 

to basis risk, level of simplicity and scalability. Disaggregated welfare dynamic data obtained 

from the multi-year repeated cross sectional household survey are then used to estimate basis risk 

and to evaluate the relative hedging effectiveness of these indices given the above trade-offs.  

The nationwide design coupled with spatiotemporal rich indices data further allow us to 

explore portfolio risk diversification and transfers through reinsurance and securitisation of 

insurance-linked security in the form of catastrophe bond. And through simulations based on 

disaggregated nationwide household dynamic data, we finally explore potential impacts of the 

optimally designed index insurance program under various public-private integrated risk 

financing arrangements. Except for the existing literatures in Mongolia (Mahul and Skees 2007) 

and India (Clarke et al. 2012), the paper is among the very first to study IBRTPs using a 

countrywide analysis. Using commonly available data sets further enhance scalability of our 

analysis to other settings in the region. 

The rest of the paper is structured as following. Section 2 provides analytical framework on 

the design, pricing and applications of IBRTPs. Section 3 presents the main empirical results 

illustrating the potentials of IBRTPs for rice farmers in Thailand. Section 4 concludes with 

discussions on challenges and opportunities in implementing IBRTPs and implications of our 

studies for the rest of Asia. 

                                                 
3 With the exception of some on-going new projects, see for example, Chantarat et al (2013) and various piloted 

projects funded by USAID-I4 Index Insurance Innovation Initiative at http://i4.ucdavis.edu/projects/. These ongoing 

pilot projects undertake rigorous contract design and ex-ante evaluation using high-quality household welfare data in 

addition to their proposed ex-post evaluation through multi-year household-level impact assessment (Mobarak and 

Rosenzweig 2012, Cole et al. 2014, Kalan et a. 2014, McIntosh et al. 2014, Cai et al 2015, Janzen et al 2015).  

http://i4.ucdavis.edu/projects/
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2. Managing Natural Disaster Risks using Index-Based Risk Transfer Products  

Consider a setting where household’s stochastic livelihood outcomes, 𝑦𝑖𝑡, are exposed to natural 

disasters. In our case of Thai rice farmer, 𝑦𝑖𝑡 represents rice production4 realised by household 𝑖 

in province 𝑙 at year 𝑡. 5 Household’s production can be orthogonally decomposed into the 

systemic component explained by a location aggregated index 𝑧𝑡 – capturing location-aggregated 

risks – and the idiosyncratic variation unrelated with the index, 𝜀𝑖𝑡, according to: 

𝑦𝑖𝑡 = �̅�𝑖 + 𝛽𝑖(𝑧𝑡 − 𝑧̅) + 𝜀𝑖𝑡                                                       (1) 

where �̅�𝑖  and 𝑧̅ denote expected or long-term average of the household’s production and the 

aggregated index respectively. 𝛽𝑖 = 𝜎(𝑦𝑖𝑡, 𝑧𝑡)/𝜎2(𝑧𝑡) measures the sensitivity of household’s 

production to the systemic risk captured by the location aggregated index.  

Underlying index  

The key to designing effective IBRTP contract is to find a high quality aggregate index 𝑧𝑡 that 

can explain most of the variations in 𝑦𝑖𝑡 so that contractual payments based on 𝑧𝑡 can protect 

households from the major systemic production shortfalls. The imperfect relationship between 

the index 𝑧𝑡 and  𝑦𝑖𝑡, however, implies that 𝛽𝑖 and 𝜀𝑖𝑡 will jointly determine basis risk associated 

with the contract. Low and insignificant 𝛽𝑖 and high variations in 𝜀𝑖𝑡 could imply large basis risk.  

 The pre-requisites for appropriate index include (i) index being measured objectively and 

reliably by non-contractual party (to reduce the potential incentive problems), (ii) index being 

measured at low cost, in near-real time (to enhance the timeliness of indemnity payout), (iii) 

index has extended high-quality historical profiles of at least 20-30 years (to allow for proper 

actuarial analysis) and (iv) index can explain great variations in insurable loss (to minimise basis 

risk). Three general forms of index are currently used in the design of IBRTPs worldwide.  

First is the direct measures of production �̅�𝑡 = 𝐸𝑡(𝑦𝑖𝑡) for an aggregate location. Because �̅�𝑡 

captures all the systemic risks that cause variations in the location-averaged outcomes, IBRTPs 

based on �̅�𝑡 could offer multi-peril protection to household’s production losses. The key is the 

spatiotemporal availability of �̅�𝑡 that can be measured accurately and efficiently at low cost and 

in timely manner by parties independent to the IBRTP contract.6 �̅�𝑡 should also be representative 

at the micro level to minimise basis risk. The current commercialised contracts that rely on �̅�𝑡 

are, for example, the group risk plan in North America based on county-level yield (Knight and 

Coble 1997), the index-based livestock insurance in Mongolia based on area-aggregated census 

                                                 
4 In other cases, this measure might be household’s income, asset or consumption. Note that consumption reflects its 

various income streams as well as net flows of informal social insurance and perhaps other stochastic payments. 
5 For simplicity, we drop location subscript 𝑙 throughout the paper. 
6 High-quality data of �̅�𝑡, however, might not be readily available in most of the developing countries. 
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of livestock loss (Mahul and Skees 2007) and the recently piloted area yield insurance for rice 

farmers in Vietnam (Swiss Re, 2011).  

 Alternatively, an estimated location average production can be established from scientific 

earth observation, agro-meteorological or disaster models or econometric approaches such that 

�̅�𝑡 = 𝑦(𝑤𝑡) + 𝜂𝑡,                                                                 (2) 

where 𝑤𝑡 represents some representations of weather or natural disaster events that can explain 

most of the variations in �̅�𝑡 and are available with spatiotemporal rice historical profiles. 𝑤𝑡 can 

be in some forms of accumulations or deviations from normal condition of station or gridded 

weather data, satellite imagery or other objectively measured magnitude and intensity of natural 

disasters, e.g., wind speed, scale of earthquake, etc. Depending on the chosen 𝑤𝑡, contract can be 

designed to cover single or multiple perils. From (2), an underlying index 𝑧𝑡 that triggers 

contractual payments thus can be constructed either from an estimated location-averaged 

production, 𝑦(𝑤𝑡), or directly from a simple measure of 𝑤𝑡.   

From (1) and (2), these estimated index 𝑦(𝑤𝑡) or 𝑤𝑡 could be subjected to at least two 

additional sources of basis risk, relative to �̅�𝑡. First, 𝜂𝑡  represents additional variations in 

location-averaged production that could not be explained by either 𝑦(𝑤𝑡) or 𝑤𝑡. In the case of 

rice production, the index might not capture some non-weather related variations of production, 

e.g., pest or disease outbreaks, that could affect most of the insured. How well 𝑤𝑡 represents 

weather or natural disaster events experienced by the insured would further contribute to an 

additional source of basis risk.7 The keys are that 𝑤𝑡 should be measured at the most micro level, 

and that (2) should be established at the most micro level using disaggregated data to minimise 

basis risk. Carter et al. (2007) shows that contract triggered by econometrically estimated 𝑦(𝑤𝑡) 

has poorer hedging performance relative to the area-yield insurance for cotton farmers in Peru. 

The two forms of weather index, 𝑦(𝑤𝑡) or 𝑤𝑡, could differ slightly on the potential basis 

risk, simplicity and so scalability. The working assumption in favour of 𝑦(𝑤𝑡) is that by using 

complex scientific or econometric modelling potentially with exogenous controls, the established 

𝑦(𝑤𝑡) could explain household production with higher accuracy and hence with lower basis risk 

relative to the simple 𝑤𝑡. The key potential shortfall is the potential for index 𝑦(𝑤𝑡) to be 

complex for targeted clients to understand and for scaling up to larger settings. For simple 𝑤𝑡, on 

the other hand, contract design can also minimise basis risk by incorporating exogenous controls 

– e.g., geographical information system (GIS), agronomic data, etc. – in the construction of 𝑤𝑡 or 

payout function. This would also involve trading simplicity with basis risk reduction. The 

transparency in the direct observation of 𝑤𝑡 might further enhance risk transfer potential into 

                                                 
7 For example, station weather with relatively lower spatial distribution might be subjected to higher basis risk 

especially in areas with large microclimate. The increasingly available gridded weather data combining satellite and 

station weather data using GIS and distance weighting techniques are increasingly used as alternative indices. 
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international market (Skees 2008). The relative performance of the two forms of index has been 

mixed empirically, and has not been explored formally. 

With 𝑦(𝑤𝑡), World Food Programme’s Ethiopian drought insurance triggered payouts to 

protect farmers based on estimated livelihood losses measured by a scientific water requirement 

crop model (WFP 2005), and the index-based livestock insurance uses estimated livestock loss 

established econometrically from remote sensing Normalised Difference Vegetation Index 

(NDVI) to compensate Kenyan’s herd losses from drought (Chantarat et al. 2013). Both risks 

have also been transferred to international market. With 𝑤𝑡, the rainfall and temperature index 

insurance contracts (designed relative to crop growth cycles) have been expanding in India since 

2003 and sold to more than 700,000 smallholder farmers today with risks transferred into 

international markets (Gine et al. 2007, Manuamorn 2007). Contracts have also been expanding 

in many developing counties. Using simple correlations, Clarke et al. (2012), however, finds that 

basis risk of the Indian contracts could be very high and heterogeneous across settings. 

Parametric indicators of natural disasters have also been used in the design of catastrophe 

insurance, e.g., for earthquake in Mexico and the Caribbean (World Bank 2007).  

Index insurance 

With the three general forms of underlying index, 𝑧𝑡 = �̅�𝑡, 𝑦(𝑤𝑡), 𝑤𝑡, a standard index insurance 

contract can be designed to compensate for production shortfall according to  

    𝜋(𝑧𝑡, 𝑧∗) = 𝑚𝑎𝑥{𝑧∗ − 𝑧𝑡, 0}.                                                  (3) 

This standard payoff function thus specifies contract’s coverage area 𝑙 and period 𝑡 when the 

index will be measured and a strike  𝑧∗ that triggers payout once the realisation of 𝑧𝑡 falls below 

it.8 An optimal contract will involve insured households scaling up or down this standard 

contract to meet their risk profiles and compensation needed when 𝑧𝑡 falls below 𝑧∗.  

  An actuarial fair rate of this standard contract depends on strike level and can be calculated 

for each coverage location based on an empirical distribution of the underlying index:  

𝐸𝜋(𝑧𝑡, 𝑧∗) = ∫ 𝜋(𝑧𝑡, 𝑧∗) 𝑓(𝑧𝑡)𝑑𝑧𝑡.                                             (4) 

𝑓(𝑧𝑡): 𝑆𝑧 → ℜ can be obtained from the historical data or can be estimated parametrically or non-

parametrically using historical index data.  

 

 

                                                 
8 This standard payoff function is equivalent to a put option on underlying index. Deviation from this standard 

payoff function includes a call option that triggers payout when index realisation is above strike level.  
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Optimal contract and hedging effectiveness 

An optimal insurance design defines a combination of a standard contract and a coverage scale 

that maximises the insured’s welfare. For simplicity, we consider a risk averse household with 

preference over consumption represented by a class of mean variance utility function with 𝜃 > 0 

representing an Arrow-Pratt coefficient of absolute risk aversion.9 With stochastic net income 

from production 𝑦𝑖𝑡 under assumed deterministic price, insured household’s income available for 

consumption can thus be written as 

𝑐𝑖𝑡 = 𝑦𝑖𝑡 + 𝛼𝑖(𝜋(𝑧𝑡, 𝑧∗) − 𝛿𝐸𝜋(𝑧𝑡, 𝑧∗))                                          (5) 

where 𝛼𝑖 is a coverage choice that scales liability of the standard contract to meet household’s 

risk profile.10 𝛿 > 1 is a market premium loading factor. Subjected to (3), (4) and (5), an optimal 

coverage scale for 𝜋(𝑧𝑡, 𝑧∗) can thus be derived as  

max
𝛼𝑖

∗(𝜃,𝑧∗,𝛿)
𝐸(𝑐𝑖𝑡) −

𝜃

2
𝜎2(𝑐𝑖𝑡)                                                          (6) 

This simple mean variance utility representation allows us to derive an optimal insurance design 

{𝜋(𝑧𝑡, 𝑧∗), 𝛼𝑖
∗(𝜃, 𝑧∗, 𝛿)} for insured household in each coverage location with 

𝛼𝑖
∗(𝜃, 𝑧∗, 𝛿) = |𝜌𝑦𝑖𝑡,𝜋(𝑧𝑡,𝑧∗)|  

𝜎(𝑦𝑖𝑡)

𝜎(𝜋(𝑧𝑡, 𝑧∗))
−

(𝛿 − 1)𝐸𝜋(𝑧𝑡, 𝑧∗)

𝜃𝜎2(𝜋(𝑧𝑡, 𝑧∗))
 .                        (7) 

Household’s optimal insurance coverage is thus increasing in the magnitude of the correlation 

between their production and the contractual payment, variations in their production and risk 

aversion. The optimal coverage is also decreasing in the premium loading. If the contract is 

actuarial fair, this optimal coverage scale will be equivalent to a typical financial hedge ratio.  

 By comparing expected utility of consumption with (𝑐𝑖𝑡
𝜋) and without contract (𝑐𝑖𝑡

𝑛𝑜𝜋), we 

can quantify the magnitude of household’s welfare gain from an optimal insurance contract as 

𝐸𝑈(𝑐𝑖𝑡
𝜋) − 𝐸𝑈(𝑐𝑖𝑡

𝑛𝑜𝜋) =
𝜃

2
[𝜎2(𝑐𝑖𝑡

𝑛𝑜𝜋) − 𝜎2(𝑐𝑖𝑡
𝜋)] − [𝐸(𝑐𝑖𝑡

𝑛𝑜𝜋) − 𝐸(𝑐𝑖𝑡
𝜋)].                 (8) 

This implies that for a risk-averse household, welfare gain from insurance contract will be 

proportional to the variance reduction relative to the mean reduction in the insured consumption 

stream. Welfare gain thus increases in risk aversion and decreases in premium loading. The gain 

decreases with basis risk (𝛽𝑖, 𝜀𝑖𝑡, 𝜂𝑡) through its effects on variance reduction. 

                                                 
9 In specific, we consider CARA utility function 𝑈(𝑐𝑖𝑙𝑡) = −𝑒−𝜃𝑐𝑖𝑙𝑡  so that 𝐸𝑈(𝑐𝑖𝑙𝑡) = 𝐸(−𝑒−𝜃𝑐𝑖𝑙𝑡) = 𝐸(𝑐𝑖𝑙𝑡) −
𝜃

2
𝜎2(𝑐𝑖𝑙𝑡) under normally distributed consumption (Ljungqvist and Sargent 2004).  

10 This scaling factor has been used widely in the literatures, e.g., Skees et al. (1997). 
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With 𝑈′(∙) > 0, the welfare measure in (8) can be translated into comparison of certainty 

equivalence, 𝑐�̅�𝑡, with and without insurance. 𝑐�̅�𝑡 of stochastic production income streams is 

defined as the value of consumption that, if received with certainty, would yield the same level 

of welfare as the expected utility of the stochastic consumption stream. Hence, 𝑈(𝑐�̅�𝑡) =

𝐸𝑈(𝑐𝑖𝑡). The welfare improvement impact, 𝐸𝑈(𝑐𝑖𝑡
𝜋) − 𝐸𝑈(𝑐𝑖𝑡

𝑛𝑜𝜋) > 0, can thus be translated into 

𝑐�̅�𝑡
𝜋−𝑐�̅�𝑡

𝑛𝑜𝜋 > 0, which reflects risk-reduction value of insurance and so the insured’s willingness 

to pay in excess of the current price in order to obtain the insurance. This utility-based welfare 

measure thus allows us to formally compare hedging effectiveness across contract designs, 

households and locations with heterogeneous settings.11  

Portfolio pricing and risk diversification  

With catastrophic natures of natural disaster risks, pricing a stand-alone contract in (4) – relying 

on marginal distribution of an index in one coverage location – will likely result in high market 

premium rate especially due to catastrophe load. Capacity to pool these covariate risks across 

larger geographical or temporal coverage, or with tradable securities (with potentially less 

correlated returns) might enhance cost effective pricing as part of a well-diversified portfolio.  

In specific, the market premium rate of a standard index insurance contract priced as part of 

a portfolio 𝑃 can be disaggregated into  

                                          𝛿𝐸𝜋(𝑧𝑡, 𝑧∗) = (𝐸𝜋(𝑧𝑡, 𝑧∗) + 𝑐(Ρ𝑚)) ∙ 𝑘                                              (9) 

where administrative load 𝑘 reflects some constant factor to cover all the transaction costs and an 

increasing function 𝑐(Ρ𝑚) representing a catastrophe load to cover the total cost associated with 

securing the risk capital and obtaining reinsurance coverage to finance the catastrophic risk 

represented by probable maximum loss (PML), Ρ𝑚. Typically, PML can be established using 

Value at Risk (VaR) of the insurer’s portfolio payouts net premium received at some ruin 

probability 1 − 𝑚, 𝑚 ∈ (0,1). Specifically, consider an insurer’s diversified portfolio consisting 

of index insurance contracts covering geographical locations (each with portfolio weight 𝜌 =

∑ 𝛼𝑖
∗

𝑖 ) in the region. 

Ρ𝑚(Ρ) = VaR𝑚(𝑃) = −inf{𝑝 ∈ ℜ: 𝐹𝑃(𝑝) > 𝑚},   Ρ =  ∑ ρ (𝜋(𝑧𝑡, 𝑧∗) − 𝐸𝜋(𝑧𝑡, 𝑧∗))      (10)  

where Ρ represent the portfolio’s stochastic net payout position with cumulative density 𝐹𝑃. 

Thus, for any better diversified portfolio Ρ𝑎 with respect to Ρ𝑏, Ρ𝑚(Ρ𝑎) <  Ρ𝑚(Ρ𝑏) implying 

𝑐(Ρ𝑎) <  𝑐(Ρ𝑏). And so by (9), the risk reduction benefit of insurer’s portfolio diversification 

will result in lower market insurance premium through reduction of required catastrophe load. 

                                                 
11 Parallel hedging effectiveness measures have been used in Cummins et al. (2004). 
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For portfolio pricing,12 an empirical multivariate distribution of the underlying indices in the 

portfolio: 𝑓(𝑧1𝑡, 𝑧2𝑡, … , 𝑧𝑁𝑡): 𝑆𝑧 → ℜ, needs to be established from observed historical data or 

estimated empirically by fitting a standard parametric distribution (e.g., multivariate normal 

distribution) or by using a non-parametric approaches taking into account the correlation 

structure of the indices (e.g. copulas).   

Various national and regional catastrophe insurance pools have been created to enhance 

spatial diversifications of natural disaster insurance programs, e.g., earthquake insurance 

program for homeowners in Turkish (Gurenko et al. 2006), the area-yield based livestock 

insurance program in Mongolia (Mahul and Skees 2007) and various private and public weather 

index insurance programs in India (Clarke et al. 2012). At the regional level, the Caribbean 

Catastrophe Risk Insurance Facility has been established as an insurance captive special purpose 

vehicle to provide 15 participating countries with catastrophe index insurance for hurricanes and 

earthquakes. The facility acts as risk aggregator allowing countries to pool their country-specific 

risks into a better-diversified portfolio. This resulted in a reduction in premium cost of up to 40% 

of the $17 million premium in 2007 (World Bank 2007). Similar regional risk pooling 

arrangement has been initiated for the Pacific islands (Cummins and Mahul 2009).  

Index-based reinsurance 

Achieving cost effective pricing of a well-diversified insurance program relies on ability of risk 

aggregator to minimise cost of financing portfolio risk, especially the catastrophic layer, 𝑐(Ρ𝑚). 

Typically, insurer first spreads the covariate risk inter-temporally by building up reserve over 

time at the cost of foregone investment return on capital.13 The reserve, however, can be 

exhausted and would not be sufficient when catastrophic events strike. Reinsurance is the most 

common mechanism of transferring covariate risk from primary insurers to international markets. 

Index-based reinsurance contracts have been increasingly used, as they could resolve market 

imperfections and thus result in lower reinsurance rates (Skees et al. 2008). The common form is 

a stop-loss contract, which provides reinsurance payout when the insurer’s portfolio payout 

exceeds some percentage of the fair premium received. For an insurer holding index insurance 

portfolio P, a 𝑛% stop-loss reinsurance payoff function with 𝑛 ≥ 100% can be written as 

𝜋(P𝑡, 𝑛) = max{∑ ρ 𝜋(𝑧𝑡, 𝑧∗) − 𝑛 ∑ ρ 𝐸𝜋(𝑧𝑡, 𝑧∗), 0}.                              (11)   

As in (9), market reinsurance rates will include administrative load as well as catastrophe load.  

                                                 
12 Another advantage of portfolio pricing that can incorporate larger spatiotemporal distribution of data series into 

statistical analysis is the potential efficiency gain from the reduction in sensitivity to outliers and hence low-quality 

data for some small contract areas. Buhlmann’s empirical Bayes Credibility Theory (1967) has been widely used in 

the insurance industry for portfolio pricing. This has been used as the basis for ratemaking of the Indian Agriculture 

Insurance Company’s modified National Agricultural Insurance Scheme since 2010 (Clarke et al. 2012). 
13 In some setting, contingent debt is also used to spread covariate natural disaster risk inter-temporally.  
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Cummins and Mahul (2009) found that catastrophe reinsurance capacity is available for 

developing countries as long as their risk portfolio is properly structured and priced. Reinsurance 

prices also tend to be lower in developing countries than in some developed countries because of 

the added diversification benefit to the reinsurers and investors.14 However, reinsurance pricing 

is also very volatile with premiums rising dramatically following major loss events.15 

Reinsurance thus might not be suitable for the highly catastrophic risk especially of extreme 

impacts but very rare frequency, as substantial catastrophe loads will be added to take into 

account extreme maximum probable losses and rare historical statistics to allow for proper 

actuarial analysis (Cummins and Mahul 2009, Froot 1999). 

Securitisation of index insurance-linked security  

While there will always be an important role for reinsurance in transferring disaster risks, 

catastrophe bond (cat bonds)16 are evolving into a cost-effective means of transferring highly 

catastrophic risks (Skees et al. 2008, Cummins and Mahul 2009). Cat bonds involve the creation 

of a high-yield security that is tied to a pre-specified catastrophic event, and is financed by 

premiums flowing from a linked (re) insurance contract. If the event does not occur, the investor 

receives a rate of return that is generally a few hundred basis points higher than the LIBOR. If 

the event does occur, the investor loses the interest and some pre-defined portion (up to 100%) of 

the principal, so that funds are then used for insurance indemnity payments. The use of cat bonds 

linked with index (re) insurance has been growing and becoming more attractive to investors. 

Consider a multi-year cat bond linked with a reinsurance contract. The price of cat bond 

issued with face value 𝐹, annual coupon payment 𝑐 and time to maturity of 𝑇 years, at which the 

bondholder agrees to forfeit a fraction of the principal payment 𝐹 by the total reinsurance 

indemnity ∑ 𝜋(P𝑡, 𝛾) 𝑡𝜖𝑇 up to a cap Π̅ < 𝐹 can be written as  

𝐵(∑ 𝜋(P𝑡, 𝑛),𝑡𝜖𝑇 Π,̅  𝑇) = 𝑒−𝑟𝑇𝐸[𝐹 − 𝑚𝑖𝑛(∑ 𝜋(P𝑡, 𝑛),𝑡𝜖𝑇 Π̅)] +
𝑐

𝑟
(1 − 𝑒−𝑟𝑇).           (12) 

Like a typical bond, cat bonds are valued by taking the discounted expectation of the coupon and 

principal payments under the underlying multivariate distribution of the indices in the 

reinsurance portfolio 𝑓(𝑧1𝑡, 𝑧2𝑡, … , 𝑧𝑁𝑡) and the required rate of return on investment 𝑟.  

                                                 
14 This can be evidenced from existing insurance programs in Mexico, the Caribbean, etc. In other settings, 

reinsurance is not in the form of stop-loss contract but rather in quota sharing to the domestic insurance pool. In 

Thailand, for example, reinsurer occupied 90% of the pooled risk portfolio of agricultural insurance. 
15 Guy Carpenter (2010) found that following very active hurricane seasons in 2004 and 2005, reinsurance prices 

increased dramatically for 2006 in the U.S. (76%) and Mexican (129%) markets comparing to ROW (2%).  
16 The market for cat bonds in the United States, Western Europe, and Japan, has been growing since the first 

transactions in the mid-1990s with more than 240 transactions in 1997-2007 (Swiss Re 2007). Following the record 

losses from Hurricane Katrina, reinsurance premiums increased dramatically leading to greater interest in the use of 

cat bonds to transfer hurricane risk. This led to higher yield, which, in turn, generated more interest from investors. 
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The main advantage of securitising cat bond is the potential to avoid default or credit risk 

with respect to catastrophe reinsurance, as the catastrophic losses imposes a significant 

insolvency for reinsurers. In contrast, cat bonds permit diffusion of highly catastrophic risk 

among many investors in the capital market, the volume of which is many times that of the entire 

reinsurance industry.17 Cat bond pricing has now been comparable to reinsurance and similarly 

rated corporate bonds, due to added market diversification, and as market and investors have 

gained experience with these securities.18 Since the average cat bond term is 3 years, the prices 

of the contract are stable for multiple years. Cat bond prices are also found to be lower in 

developing countries as investors seek to diversify their portfolios with different exposures and 

geographical areas (Guy Carpenter 2008, Swiss Re 2007 and Cummins and Mahul 2009).  

Since 2006, the Mexican government has issued cat bonds to provide financing for the most 

catastrophic layer of the government-owned nationwide disaster insurance fund, FONDEN. At 

issue, the cat bonds were competitively offered at 235 basis points above LIBOR. If earthquakes 

of at least 8.0 Richter occur in a defined zone, investors will lose their entire principal, and so up 

to $160 million is then transferred to the government for disaster relief (FONDEN 2006).  

Public-private partnership in natural disaster risk financing  

Viability of market for natural disaster insurance relies on cost effective risk financing. Risk 

layering offers novel approach in disaggregating insurable risk, so that the least expensive 

instrument can be chosen for each specific layer (Hofman and Brukoff 2006) in an integrated 

risk financing. In developing countries, disaster risk financing involves combinations of national 

insurance pool, reinsurance and various forms of public support (financed by government budget 

or securitisation). An insurance indemnity pool can be created to allow local insurers to diversify 

their risks and contribute capital to the reserve pool, from where indemnity payments for higher 

frequency but lower impact losses can be drawn. Reinsurance could potentially be acquired for 

the relatively lower frequency but higher impact layer, when indemnity payments exceed the 

pool. And public supports prove to be important especially for the low frequency but 

catastrophic layer, where reinsurance costs could be prohibitive and private demand could be low 

(due to cognitive failure or the crowding out effect of the public disaster relief19).  

 Experiences in developing countries have shown that public supports in financing the tailed 

risk could have critical role in the development of market viable natural disaster insurance 

program. Existing programs include governments acting as reinsurers (where it is cost 

                                                 
17 Additionally, there is little credit risk. Just as is done when securitising credit risks, funds are secured in a Special 

Purpose Vehicle (SPV) so payment upon a triggering event is assured. The key limitations, however, is that there are 

significant transaction costs to establishing cat bonds. These costs include risk analysis, product design, legal fees, 

the establishment of SPVs and the special regulatory considerations that are needed to protect investors.  
18 Returns on cat bonds are about 1% above the return on comparable BB corporate bonds. Because of the increasing 

diversification since 2006 with bonds issued for Mexico, Australia and the Mediterranean countries, the three-year 

parametric cat bonds have been issued at the lower than 2 times expected loss (Guy Carpenter 2008). 
19 See, for example, Carter (2013), Mahul and Stutley (2010), Kunreuther and Pauly (2004). 
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prohibitive or impossible to access international reinsurance market), providing financial support 

directly to local insurers for obtaining international reinsurance or other risk transfer instruments, 

or providing catastrophic insurance coverage for the tailed risk directly to targeted clients to 

complement the market product. They can then used IBRTPs designed and targeted at the tailed 

risk as cost effective risk transfer instruments to protect their budget exposures. 

In the on-going nationwide index-based livestock insurance in Mongolia, a complementary 

combination of commercialised insurance product for the smaller losses and public disaster 

insurance for the catastrophic losses are available nationwide. Government also provides 105% 

stop-loss reinsurance for the national indemnity pool using their budget and contingent loans 

(Mahul and Skees 2007). The Mexican state-owned reinsurance company, Agroasemex, has been 

offering unlimited stop-loss reinsurance for more than 240 self-insured fund, Fondos, which 

provide insurance against disaster affected agricultural production losses to households in 50% 

of the country’s total insured agricultural area (Ibarra and Mahul 2004). Since 1999, the Turkish 

government has implemented compulsory earthquake insurance by establishing the Turkish 

catastrophe insurance pool and transfer extreme risk to reinsurance market (Gurenko et al. 2006).  

3. Index-based Disaster Insurance Program for Rice Farmers in Thailand  

Rice is the country and region’s most important food and cash crop. In Thailand, rice production 

occupies the majority of arable land with the largest proportion of farmers (18% of the 

population) relying their livelihoods on. Improving and stabilising rice productivity is thus one of 

the core prerequisites for the country’s economic development. Thai rice production, however, 

has been increasingly threatened by natural disasters, especially droughts and floods. 

Thai farmers typically take out input loans and expect to pay back with income raised 

through the harvested crop. Production shocks thus usually bring about increasing level of 

accumulated debt, as farmers could face difficulties in repaying their loans and in smoothing 

their consumption. These translate directly to high default risk facing rural lenders, especially the 

Bank of Agriculture and Agricultural Cooperatives (BAAC) holding the majority of agricultural 

loan portfolios in the country. While instruments that allow rice farmers to hedge other key risks 

are largely available – e.g., public rice mortgage program for hedging price risk – sustainable 

insurance that could insure farmers’ production risks without distorting their incentives to 

improve productivity are still largely absent.  

Rice production, exposures to natural disasters and the current programs 

There are about 9.1 million hectares of rice growing areas in Thailand in 2010.20 Figure 1 

presents variations in rice paddy areas and production systems across the country’s 76 

                                                 
20 Data are obtained from the Office of Agricultural Extension, Ministry of Agriculture and Cooperatives, Thailand. 

There is no significant trend from the annual areas since 1980. 



 14 

provinces.21 The key growing provinces, where rice paddy occupies at least 50% of the total 

arable areas, are clustered mainly in the central plain especially around Chao Phraya River basin 

and the lowland Northeast. Small numbers of rice growing provinces are also scattered around 

the upland North and the South.  

Production regions vary in cropping patterns due to heterogeneous irrigation systems, 

ecology, soil and weather patterns. Irrigations are available in less than 25% of the total growing 

areas. These occupy most of the central provinces and some areas in the North and the South, 

allowing farmers to cultivate two crops a year. Yields thus tend to be higher in these regions. The 

majority of rainfed production occupies almost the entire key growing areas in the lowland 

Northeast, relies extensively on rainfall and so harvests lower yields. The main crop cycles 

typically start with the onset of annual rain, which usually comes during mid May-November 

and varies slightly across regions. The second crop can then be grown throughout the rest of the 

year depending on water availability. As the key growing areas around Chao Phraya River basin 

are flood prone, crop cycles deviate slightly in order to avoid extended flood periods. 

Rice cropping cycle spans about 120 days from seeding to harvesting (Siamwalla and Na 

Ranong 1980). Long dry spells and extended flood periods appear as the two key shocks 

affecting productions with increasing frequency. Sensitivity to these key disasters varies across 

different stages of crop growth. Figure A1 presents growth stages of rice crop and stage-specific 

vulnerability. According to World Bank (2006)’s collective scientific findings,22 the first 105-

day period from seeding to grain filing critically requires enough water (25-30 mm of rainfall per 

10-day period), and thus is vulnerable to long dry spells that could result from late or 

discontinued rain. Farmers are also already well adapted to small dry spells by adjusting their 

planting periods or re-planting when loss occurs early in the cycle. As cycle progresses to 

maturity and harvesting (during the 105-120 day period that typically fall into the peak of 

seasonal rain), plants become vulnerable to extended flood that could come about at least when 

4-day cumulative rainfall exceeds 250 mm. These drought and flood conditions established by 

World Bank (2006), however, depend critically on drainage and other geographical variables.  

Catastrophic crop losses from dry spells typically occur in the rainfed areas during the onset 

of rain in July-August, whereas, losses from extended floods occur in the peak of rain during 

September-October. Exposures differ across regions. The northeastern rainfed production are 

especially vulnerable to long dry spell, while most of the irrigated production in the central plain 

are subject to long periods of deep flooding annually. Productions in the South are vulnerable to 

floods caused by thunderstorms (Siamwalla and Na Ranong 1980). Pest also serves as one of the 

key covariate risks for rice production. Figure 2 presents government records of incidences and 

                                                 
21 The number of provinces has just recently increased to 77 with one additional province added in the Northeast 

2011. Our spatiotemporal data are extracted using the un-updated 76-province GIS information. 
22 These results are obtained from PASCO, Co.’s study using a combination of scientific literature reviews, agro-

meteorological model (DSSAT) with detailed geographical information and ground checking with the local experts 

in the key-growing province, Phetchabun, and flood plain modelling.  
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spatial variations of actual rice crop losses from these three main shocks in 2005-2011. Flood 

losses occur with the highest frequency and significance relative to others.  

 Over the past decade, the Thai government has been providing disaster relief program for 

farmers when disaster strikes. The program compensates about 30% of total input costs for 

farmers, who live in the government declared disaster provinces and are verified by local 

authorities to experience total farm losses. Government spends about 3,350 million baht23 on 

average per year for rice farmers affected by droughts, floods and pests. And the program cost 

could increase up to 40% in some extreme years. Despite these tremendous spending, results 

from randomised farmer survey imply that the compensations are largely inadequate and 

subjected to serious delay especially from loss verification process (Thailand Fiscal Policy 

Office, 2010). There are also increasing evidence of moral hazard associated with the program, 

especially as farmers start growing the third crop off suitable season.  

 The nationwide rice insurance program – a top-up program for disaster relief – was piloted 

in 2011. The program was underwritten by a consortium of local insurers and reinsured by Swiss 

Re. At 50% subsidised premium rate of 375 baht/hectare nationwide, the program covered main 

rice season, and compensated farmers up to 6,944 baht/hectare (about 30% of farmers’ input 

costs) should they experience total farm losses from droughts, floods, strong winds, frosts and 

fires during the cropping cycle. To be eligible for compensation, farmers’ paddy fields need to be 

in the government’s declared disaster provinces, and the losses need to be verified by local 

authorities. About 1.5% of growing areas were insured in 2011. The flood resulted in a loss ratio 

of as high as 500% for the first year. Reinsurance prices thus inevitably increased more than 

double making it not market viable for the following years. This program continued in 2012 at 

the same (highly subsidised) rate but with government now taking the role as an insurer. 24  

The current program thus resumes various inefficiencies and market problems, commonly 

evidenced in the traditional crop insurance to jeopardise the program’s sustainability (Hazell et 

al. 1986). First, like other conventional insurance, the program would be subjected to moral 

hazard, e.g., when it induces additional risky off-season rice cropping, etc. Second, high direct 

subsidisations distorted market prices and thus could reduce sustainability of the market in the 

longer run. This could further exacerbate incentive problems. Third, this voluntary program is 

offered at one single premium rate for farmers with different risk profiles. It could potentially 

signify adverse selection and moral hazard.25 Fourth, because the government’s declaration of 

disaster areas can be subjective in nature, asymmetric information at the government level could 

                                                 
23 1 $USD = 31.81 baht (Bank of Thailand as of May 29, 2012). Figure A2 presents total budget spent in 2005-2011. 
24 At 1 rai (in Thai) = 0.16 hectare. For 2011, the subsidised price is 60 baht/rai with the payout at 606 bath/rai if lost 

crop is less than 60 days, or 1,400 baht/rai if lost crop is greater than 60 days of age. The scheme in 2012 continues 

with the same subsidised price but with single payout rate at 1,111 baht/rai. The local insurers also participate in the 

program in 2012 by taking some minimal percentages of insurable risk, leaving the major risk to the government. 
25 Farmers in the risky areas would, in expectation, tend to be the majority of the purchasers of the cheaper contract 

relative to their risk profiles. And the heavily subsidised insurance contracts for those in the risky zones could 

further induce excessive risk taking behaviours. 
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further arise. The highly subjective local verification of losses could potentially induce rent 

seeking at various levels, further affecting the commercial sustainability of this program. The 

highly subjective and non-transparent nature of loss measures would no doubt lead to increasing 

risk pricing in the international market. Finally, the program resumed inefficiencies in time and 

cost of loss verification in the relief program.  

We explore the use of IBRTPs in developing an alternative and potentially more sustainable 

index-based rice insurance program that could effectively protect rice farmer’s production 

income or input loan from these key covariate production shocks. The goal is also to explore 

how disaggregated household data and spatiotemporal disaster data sets commonly available in 

developing countries could be used to design nationwide, scalable contracts that could further 

permit rigorous analysis of micro-level welfare impacts and cost effective pricing through 

diversifications and transfers. 

Data 

Five disaggregated nationwide data sets are used in this study. The first four sets are used to 

construct objectively measured indices for index insurance design, and the last set represents 

variations in households’ incomes from rice production, and thus are used to establish optimal 

contract design, basis risk and hedging effectiveness associated with various designed contracts. 

First, measures of area-yield indices are drawn from the provincial rice yield data collected 

annually by the Office of Agricultural Extension at Thailand Ministry of Agriculture and 

Cooperatives (MoAC). The data are available for all the provinces nationwide from 1981-2010 

and were collated from a combination of an annual survey of randomised villages in each 

province and official records by local agricultural extension offices. They are thus representative 

at the provincial level. Yield data reflect total yield from all crops harvested each year. To 

remove time trend potentially resulting from technical change, improvements in varieties, 

irrigations and other management practices, we de-trend the data using a robust Iterative 

Reweighted Least Squares Huber M-Estimator26 to first estimate the time trend. The resulting 

estimated trended yield is thus obtained as 𝑦𝑡
𝑡𝑟 = �̂� + �̂�𝑡. And so the de-trended yield series for 

each province is thus estimated as 𝑦𝑡
𝑑𝑒𝑡𝑟 = 𝑦𝑡 + (𝑇 − 𝑡)�̂�.  

Second, objectively measures of weather indices are drawn from 20×20 km gridded daily 

rainfall data obtained from the simulated regional climate model ECHAM4-PRECISE 

constructed by Southeast Asia SysTem for Analysis, Research and Training (START) as part of 

their regional climate change projections. These simulated climate data were verified and 

                                                 
26 This trend estimation has been commonly used in agricultural time series especially when the underlying data are 

not normally distributed (Ramirez et al. 2003). 
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rescaled to match well with the comparable data from observed weather stations (Chinvanno 

2011). These simulated weather data are available from 1980-2011.27 

Third, estimated rice yield data were then constructed using an integrated crop-climate 

model developed by Krerk et al. (2009). High resolution GIS maps of soil types (1999), rice 

growing areas constructed by LANDSAT 5TM (2001) and ECHAM4-PRECISE weather were 

first overlaid in order to cluster geographical areas into distinct simulation mapping unit (SMU)28 

representing the smallest homogenous areas, where crop response to weather conditions could be 

uniform. DSSAT crop model was then used to estimate longitudinal estimated rice yields driven 

by ECHAM4-PRECISE weather controlling for exogenous time-invariant SMU-specific GIS 

characteristics and crop management. These estimated yields reflect total yields from one (two) 

crops harvested in the rainfed (irrigated) SMUs. As the simulated yield variations are driven 

solely by variations in weather, these data can serve as objectively measured index for IBRTPs.  

Fourth, the remote sensing Normalised Difference Vegetation Index (NDVI)29 data are 

extracted from Tera MODIS satellite platform every 16 days from 2000-2011 throughout the 

country at a 500-meter resolution. NDVI data provide indicators of the amount and vigour of 

vegetation, based on the observed level of photosynthetic activity (Tucker 2005). The data have 

been increasingly used for monitoring land use patterns, crop productions and disaster losses 

worldwide. We use NDVI data in detecting variations in crop cycles across regions. This 

knowledge is critical in the construction of appropriate weather indices that ally well with 

different stages of crop growth. Some GIS information characterising production systems that 

could condition the sensitivity of rice production to shocks and records of annual crop cycles are 

also obtained from MoAC for cross checking with NDVI data. 

Fifth, household-level incomes from rice production data are obtained from multi-year 

repeated cross-sectional Thai Socio-Economic Survey (SES) surveyed nationwide every 2-3 

years from 1998, 2000, 2002, 2004, 2006 to 2009 Thailand’s National Statistical Office. Each 

round, a total of 34,000-36,000 households were randomly sampled from the sampled villages in 

all provinces (10-25 sampled households per village; 30-50 sampled villages per province). 

Because no household is sampled more than once during these surveys, our analysis thus can be 

based on repeated household cross sectional data.30 Subset of households from the 6 rounds, who 

reported their socioeconomic status as farm operator and rice farming as the main household 

enterprise, are used in this study. The subsample size in each round ranges from 2,500-3,100 

households with households per province varying from 5 in the non-rice provinces to 150 in the 

                                                 
27 These also include projected future climate data and are available at http://www.start.or.th/. The resolutions of 

these data could be improved. Attempts are current made in gridding weather data at lower resolutions. 
28 This results in 9,254 SMUs covering all the 9.1 million hectares of rice growing areas nationwide. The size of 

constructed SMUs ranges from 0.16 to 35,900 hectares. 
29 Data are available worldwide and cost free. See https://lpdaac.usgs.gov/content/view/full/6644. 
30 This is also common to other nationwide repeated cross sectional household socioeconomic survey data available 

in other developing countries, e.g., the Indonesian SUSENAS, etc. And while certain counties were sampled 

repeatedly, amphoe identifiers were not available to allow for construction of amphoe-pseudo panel data. 

http://www.start.or.th/
https://lpdaac.usgs.gov/content/view/full/6644
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key rice growing provinces. Because there is no direct measure of rice production, we use 

household’s annual31 income from crop production per hectare as a representation of 𝑦𝑖𝑡. This 

annual income measure thus includes income from more than one cropping seasons in irrigated 

areas. Other household and area characteristics are also extracted from SES data.  

All of the GIS variables are first constructed at pixel level before downscaling to provincial 

level, so that these can all be merged with household-level data. Table 1 provides summary 

statistics of the key variables extracted from these five data sets. Overall, mean de-trended 

provincial averaged rice yield stands at 2,622 kilograms per hectare with high standard deviation 

capturing the variations across households and years. Household’s averaged income from rice 

production is at 40,246 baht per hectare per year. This results from cultivating 1-3 crops (with 

1.64 crops on average) a year. Total input costs are averaged as high as 49% of income32 

implying that households earn about 20,525 baht as farm profit per hectare per year. Mean rice-

growing areas per household is about 1.92 hectares. About 89% of households take out input 

loan each season. And critically, their accumulated agricultural debt stands at an average of 

141% of annual income in any given year. Apart from the lowland majority, 6% of total rice 

growing areas is upland, 12% is flood prone and 19% locates near river basin. 

Index insurance designs for Thai rice farmers 

Various spatiotemporal data sets allow us to explore various standard index insurance contracts 

for Thai rice farmers based on the following constructed indices.  

First, direct measures of area yields �̅�𝑡 can be constructed from annual provincial yield data. 

As it offers protection against any covariate risks affecting provincial yield, not just from 

weather, it could perform well in the case of Thai rice, where pest constitutes one of the key 

covariate threats. Second, estimated provincial yields 𝑦(𝑤𝑡) can be constructed from the SMU-

specific modelled yields. To the extent that the complex crop-climate predictive model performs 

well in predicting weather-driven yield shocks, this index could provide good hedging 

effectiveness for farmers. Third, we explore various parametric weather indices 𝑤𝑡. But because 

the sensitivity of plants to weather shocks varies across stages of crop growth, knowledge of 

cropping cycles and how they vary spatially and temporally are thus critical.  

Cropping cycles and weather indices 

Smoothing33 the provincial NDVI data in a one-year window results in uni- or bi-modal patterns. 

Each of these NDVI modes corresponds well with one full 120-day crop cycle. These smoothed 

provincial NDVI patterns can then be clustered into six distinct zones with homogenous crop 

                                                 
31 Farm incomes from the last month are also available, but the large variations in cropping patterns as well as 

survey timing constitutes great difficulties in controlling for seasonality effects.  
32 These statistics align well with findings in Isvilanonda (2009). 
33 Simple local polynomial smoothing is used over all the pixels that fall into provincial boundary over 2000-2011. 
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cycles presented in Figure 3. Normal starts of the main and second crops in the irrigated areas 

vary across flood prone lower Central (mid May, December), upper Central and North (July, 

January) and South (August, March). Normal starts of the main crop in the rainfed areas follow 

those of the irrigated zones with those of northern provinces allying well with those of the North. 

The variations of crop cycles observed objectively from the patterns of NDVI also align well 

with the MoAC-collected records of cropping patterns in some key provinces. 

These six distinct zone-specific crop cycles then form a basis for constructing provincial 

weather indices. For each crop cycle, we extend World Bank (2006)’s crop scientific findings 

and so explore two provincial dry spell indices covering weather conditions in the first 105 days 

and a flood index covering those in the 106-120 days of the cycle. These indices are constructed 

for both main and second crops in the two-crop zones opening a possibility that farmers can 

obtain insurance protection for both crops. All weather indices are constructed first at pixel level 

and then averaged toward provincial indices.  

 First, a simple cumulative rainfall index can be constructed from daily rainfall 𝑅𝑑  as 

𝐶𝑅𝑡 = ∑ 𝑅𝑑
105
𝑑=1 .                                                           (13)  

The level of CR below some critical strikes thus could reflect the extent of dry spell that could in 

turn damage rice production. The key advantage of this is its simplicity. Hence this index has 

been used in various piloted projects including one in the northeastern province in Thailand.34 

This simple index, however, might not reflect the extent of dry spell well, as it fails to take into 

account how rainfall are distributed within 105-day period. In particular, high CR could result 

from couple large daily rains and a long dry spell (that would otherwise damage crop). 

Alternatively, a moving dry spell index, which measures the extent that 10-day cumulative 

rainfall falls below the crop water requirement (30 mm for 10-day period) in each and every 10-

day dry spell in the 105 cropping days, can be constructed as 

𝑀𝐷𝑡 = ∑ max(30 − ∑ 𝑅𝑑 , 0𝜏+9
𝑑=𝜏 ).                                            (14)96

𝜏=1   

MD above some critical strikes thus could better reflect the extent of dry spell that really matters 

to rice production. This index has widely been identified to better quantify the extent of dry 

spells. But because of its relatively more complexity, this index has not been used widely.35  

 Continuous excessive rainfall is the key cause of extended flooding periods in the paddy 

fields. World Bank (2006) found that the 4-day cumulative rainfall above 250 mm can trigger 

high probability of extended flood causing losses to harvesting rice crops. We thus quantify 

                                                 
34 Current contract piloted by JBIC and Sompo Japan insurance in Khon Kaen relies on simple cumulative rainfall 

are taken from July to September. 
35 For example, drought index insurance for maize piloted in Thailand since 2007. 



 20 

flood index using a moving excessive rain spell index to measure the extent that 4-day 

cumulative rainfall excess 250 mm as 

𝑀𝐸𝑡 = ∑ max(∑ 𝑅𝑑 − 250,0𝜏+3
𝑑=𝜏 ).                                           (15)117

𝜏=106   

ME above some critical strike thus could indicate flood event. But the extent that ME could 

determine extended flooding period and crop losses should also vary across production systems, 

which in turn determine soil type, drainage system, crop variety, etc.   

 The three weather indices so far are constructed based on the assumption that insured 

cropping cycles in each year and province follow the six smoothed zone-specific patterns. 

Because famers tend to adjust their production annually in order to adapt to small inter-year 

variations in rainfall patterns, using fixed crop cycles as a basis for index construction might 

result in mis-representations of crop losses from drought and flood events. Alternatively, indices 

can be constructed based on a dynamic crop cycle. Because successful seeding critically requires 

at least 25 mm of rainfall (World Bank 2006), the first day from the fixed zone-specific starting 

date when a 1-day, 2-day or 3-day cumulative rainfall exceeding 25 mm can be used to trigger 

the start of an insured cropping cycle, during when the underlying weather indices will be 

constructed. Appropriateness of dynamic crop cycle relies on the choice of cycle triggering 

threshold. We experiment among the three choices above and choose the optimal threshold that 

yields the highest explanation power of the constructed indices in predicting actual losses. 

 In order to effectively compare contracts designed with various indices, we standardise these 

indices into relative percentage forms with respect to their provincial-specific expected value.36 

Specifically, provincial indices can be constructed from ℤ𝑡 = �̅�𝑡, 𝑦(𝑤𝑡), 𝐶𝑅𝑡, 𝑀𝐷𝑡, 𝑀𝐸𝑡, as 𝑧𝑡 =

ℤ𝑡/𝐸𝑙(ℤ𝑡). And so per-hectare payout of a standardised index insurance contract that protects 

household’s insurable resulting from ℤ𝑡 = �̅�𝑡, 𝑦(𝑤𝑡), 𝐶𝑅𝑡 falling below their expected values can 

be rewritten from (3) as 𝜋(𝑧𝑡, 𝑧∗) = 𝑚𝑎𝑥{𝑧∗ − ℤ𝑡/𝐸𝑙(ℤ𝑡),0} × �̅�. An insurable �̅� represents 

provincial averaged production income or input cost per hectare to be insured. And the first term 

on the right-hand side reflects payout rate (in percentage of insurable) with respect to strike level 

𝑧∗defined in percentage of 𝐸𝑙(ℤ𝑡). The reverse of the payout function above thus contractual 

payout for a contract that protects household when ℤ𝑡 = 𝑀𝐷𝑡 , 𝑀𝐸𝑡 exceed their expected values. 

 Table 1 provides statistics of these standardised indices. Figure 4 plots the five indices and 

their spatial distributions across all rice growing provinces.37 Overall, provincial averaged, 

estimated yield indices and CR exhibit lower temporal variations relative to weather indices. 

                                                 
36 Note that for 𝑦(𝑤𝑡), 𝐶𝑅𝑡 , 𝑀𝐷𝑡 , 𝑀𝐸𝑡 , we standardise at the SMU and pixel first (using SMU and pixel specific 

moments) before aggregate them into provincial indices. This is different from taking average of index first then 

dividing by overall long-term average later. The latter case will result in index with lower variations since most the 

SMU-level variations are already smoothed out in the aggregation process. 
37 There are two values for each of the weather index in the two-crop zones, one for each crop cycle. Summary in 

Table 1 and Figure 5 reflect the average of the two values each year.  
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Their spatial variations, however, are larger than the last two weather indices. MD seems to well 

capture the key covariate drought events in the country especially in 2008, 2001, 1995 and 1990. 

ME captures the key flood years well especially the catastrophic floods in 1995 and 2010-11.  

Basis risks and hedging effectiveness  

How well might these indices explain variations in household’s annual crop income per hectare? 

Household data are merged with these indices at the provincial level in order to estimate (1). 

Without household panel, we instead use 6-year repeated cross sectional data to estimate, for 

each index, the following equation38 

𝑙𝑛𝑦𝑖𝑙𝑡 = 𝑋𝑖𝑙𝑡𝛾 + 𝐷𝑙𝜇 + 𝜂𝑡 + 𝜆𝑧𝑙𝑡 + 𝜅𝐷𝑙𝑧𝑙𝑡 + 𝜀𝑖𝑙𝑡.                                   (16) 

The first three terms capture household’s long-term expected income with 𝑋𝑖𝑙𝑡 absorbing 

characteristics of households entered in each survey round, 𝐷𝑙 absorbing provincial time 

invariant characteristics especially with respect to rice production systems (e.g., upland, flooded 

plain, closure to river basin) and 𝜂𝑡  absorbing time effect that captures trend in income common 

across all households. The last three terms reflect stochastic shocks to household income. We 

also interact 𝐷𝑙 with the index in order to capture variations in sensitivity of income to weather 

shocks across different production systems. The systemic shock thus can be represented by 𝛽 =

𝜆 + 𝐷𝑙𝜅 reflecting the sensitivity of household income to provincial index  𝑧𝑙𝑡. The portion of 

household income unexplained by the index 𝜀𝑖𝑙𝑡 thus represents basis risk associated with the 

index. This equation is estimated separately for irrigated and rainfed regions using simple linear 

least squared with standard deviations clustered at provincial level.39  

Table 2 first presents estimation results. Different regressions explore how different indices 

can explain variations in farm income of the rice growing households controlling for household 

and provincial characteristics and time effects that determine household’s long-term mean 

income. The first column shows that these controls explain about 40% and 48% of the income 

variations for households in the irrigated and rainfed areas respectively, implying a maximum of 

60% and 52% of income variations that households are still unable to manage using existing 

mechanisms. Moving from left to right, we can explore how much of these remaining income 

variations could be explained using different indices. Except CR, all the indices significantly 

explain income variations though with different significant level. At 1% significant level, the 

provincial yield index explains an extra 13% and 11% of income variations in the irrigated and 

rainfed areas. The estimated yield perform relatively worse, explaining an extra 7% and 9%. 

                                                 
38 We reintroduce provincial subscript 𝑙 here for clarification. The alternative approach of using pseudo provincial 

panel in estimating (1) controlling for provincial fixed effect would not take full advantage of these rich household 

data, as it would not yield household-level variations of basis risks. 
39 Ideally, we want to estimate provincial-specific 𝛽𝑙. The temporal observations per province are simply not enough 

with 6 years in Thai SES data.  
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Among weather indices constructed based on the fixed 6-zone crop cycles, CR performs the 

worst among all albeit its relative advantage in simplicity. While explaining only 8% of income 

in the irrigated areas, MD significantly explain up to 13% of the income variations in the rainfed 

areas, where cropping rely extensively on rainfall. ME explains only about 10% of income 

variations in both areas. This raises question if it could serve as appropriate index for insuring 

flood losses in these areas. Combining MD and ME, we found that the two-peril index 

combination outperform others and explain 14% and up to 19% of income variations in irrigated 

and rainfed areas respectively. Despite the added complexity, using dynamic crop cycles in 

determining index coverage does not add substantial improvement (if at all) to the explanation 

powers of the constructed weather indices.40 Overall, the two-peril index combination MD+ME 

based on fixed zone-specific crop cycle thus strikes us as the potential basis risk-minimising 

underlying index for Thai rice contract. 

 How might hedging effectiveness of the optimal contracts based on these indices vary given 

the observed variations in household-level basis risks? The 6-year household data are limited in 

temporal variations, and so might under-represent the incidence of extreme events. Using the 

established relationship and distributions of household-level basis risk estimated in (16), we thus 

expand our data temporally and spatially by simulating 32-year income dynamics of 

representative households based on 32-year index data. In specific, for each year 𝑡 from 1980-

2011, 1,000 idiosyncratic shocks are randomly drawn for each province 𝑙 from the province-

specific empirical distributions 𝑓(𝜀𝑖𝑙𝑡) estimated using bootstrapping. Using the 32-year index 

data, provincial averaged household characteristics and provincial characteristics along with the 

estimated coefficients in (16), we then simulate 32-year income dynamics of 1,000 households in 

each province l from 1980-2011. Households’ optimal coverage scales for various contracts and 

strike levels can then be estimated according to (7).41 These then allow us to compute household-

specific certainty equivalent values of consumption with and without various insurance contracts.  

Figure 5 presents our results from 32-year income dynamics of 76,000 simulated households 

with assumed risk aversion 𝜃 = 3 and actuarially fair contract prices. The two top panels 

compare averaged utility-based hedging effectiveness in term of increasing certainty equivalent 

values gained from obtaining insurance contract relative to no contract.42 The bottom two 

compare effectiveness based on simple variance reduction. Contracts are compared at the same 

level of payout frequency thus controlling for the same level of risk coverage and cost despite 

varying underlying risk distributions across indices and provinces.43 Overall, both measures of 

                                                 
40 2-day cumulative rainfall exceeding 25 mm is chosen to trigger the start of each crop cycle, as it provides the best 

results comparing to others. This chosen trigger might not serve as an appropriate trigger for crop cycle just yet. 
41 As the estimated coefficients are specific at provincial level (not household), the simulated households’ optimal 

coverage scales are specific at provincial level. 
42 We note that these estimated levels of welfare improvement relies extensively on the assumed functional form of 

utility. Inferences from these results are for comparison of hedging effectiveness across contracts only.  
43 And so we would expect that specific strike level for each payout frequency to be different across indices and 

provinces depending on their specific underlying distributions. 
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hedging effectiveness of these actuarial fair priced contracts increase at a decreasing rate as 

payout frequency increases. Hedging effectiveness is very minimal for contracts with low payout 

frequency, e.g., of less than once every five years. This is due to the nature of systemic shocks on 

rice production, which tend to be less extreme but occur quite often. Variations of hedging 

effectiveness across households are high and vary across indices.  

The optimal contracts with MD+ME index exhibit the highest hedging effectiveness in both 

measures. The provincial yield index, which was originally perceived to provide larger coverage 

for non-weather location systemic shock, performs almost as good as MD+ME in the irrigated 

zones but worse in the rainfed zones. The simplest contracts based on CR perform the worst in 

all cases. On average, the optimal MD+ME contracts covering 1-in-3 year losses could result in 

2.3% and 2.5% increase in households’ average certainty equivalent values in irrigated and 

rainfed areas respectively. This could imply that the rates that households are willing to pay for 

the contracts on top of the fair rates. and up to 20% and 25% reduction in consumption variance 

in irrigated and rainfed areas respectively. This could imply The MD+ME contract also appears 

with the lowest variations in contract performance across households. These results are also 

robust with respect to other underlying risk aversion and premium loading assumptions.  

Optimal contract designs 

The two-peril MD+ME contract is thus chosen as appropriate basis risk minimising contracts for 

Thai rice production in this study. For each cropping season, MD index is constructed for the 

first 105 days and ME index for the 105-120 days of the cycle. The fixed period of insurable 

crop cycle for each province is drawn from the zone-specific patterns. A seasonal contract 

payout per insured hectare is thus a combination of payouts from the two indices optimally 

scaled with 𝛼𝑀𝐷
∗  and 𝛼𝑀𝐸

∗  estimated using the risk profiles of 76,000 simulated households. The 

top panel of Table 3 reports mean provincial scales, actuarial fair premium rates44 and probable 

maximum losses by zones and strike levels for seasonal contracts available for the main crop.  

Overall, the optimal coverage scales for the rainfed zones are larger than those of irrigated 

zones due to their larger income sensitivities to these indices, especially the MD index. Actuarial 

fair rates are, however, larger at all strike levels for the irrigated zones, especially the irrigated 

flood prone lower central zone, due to larger index variations. Mean provincial fair premium 

rates vary from 12-16% for 1-in-2 year coverage to 6-9% for 1-in-3 year coverage to 2-5% for 1-

in-5 year coverage. The variations of mean provincial premium rates across zones also imply 

spatial variations of the exposures to floods and droughts. The extent of catastrophic risks of the 

                                                 
44 Reported pricings are established using burn rate approach. We also price these contracts using Monte Carlo 

simulations with marginal distribution of the provincial indices are estimated parametrically based on the best-fit 

distribution (according to chi-square criteria). Because the underlying risk (index) does not exhibit long tail 

associated with extreme event, our simulation results using best-fit distributions also confirm the same pricing 

patterns and are available upon request. 
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provincial contracts can be shown by estimated MPLs at VaR99%. The PMLs range from as high 

as 68% of total sum insured for 1-in-2 year coverage to 56% for 1-in-3 year coverage.  

Portfolio pricing and potentials for risk diversifications  

Making the seasonal contracts available for both main and second crops in the irrigated areas 

could further allow for temporal risk pooling across seasons within a year. The bottom panel of 

Table 3 reflects these results. While the optimal coverage choices remain the same (as they are 

established from an annual model (16)), the fair rates and PMLs reduce slightly for the seasonal 

contracts available for both crops in the three 2-crop zones. A nationwide portfolio of provincial 

contracts is then constructed with provincial weights established from combining provincial 

optimal scales and provincial share of rice growing area. The bottom row in each panel of Table 

3 reflects the spatial risk pooling benefits. Catastrophic layers of the insurable risk of the 

nationwide portfolio reduce for all strikes relative to those of the individual provincial contracts.  

These resulting spatial and temporal risk-pooling benefits can be explained in Table 4. In the 

top panel, the estimated pairwise correlations of the zone portfolios could be as low as -0.12 

between the rainfed northeastern and irrigated southern regions. In the middle panel, the 

estimated pairwise correlations of the main crop portfolio and the second crop portfolio could 

also be as low as -0.07 in the irrigated southern region. As in (9), pricing provincial contracts as 

part of a diversifying portfolio could thus result in lower rates through lower catastrophic loads.  

Figure 6 plots the net payout (payout net fair premium rates as percentage of total sum 

insured) of the nationwide portfolio of index insurance contracts available for both crops at 

various strike levels. How might the annual portfolio payouts co-move with annual returns of 

various tradables in capital, commodity, future and weather markets? Table 4 reports these 

results. We found no significant pair-wise relationship between the portfolio of Thai rice 

insurance and the key market indices, e.g., Thai Stock Index (SET), NASDAQ, and securities in 

commodity or future markets. Our key results are the significant and negative relationships 

between the portfolio and various actively traded weather indices from around the world. While 

these results are based on low frequency (aggregated annually) data, they could signal potential 

diversifying values of Thai rice insurance portfolio in the portfolio of global weather risks.  

Risk financing and transfer 

Figure 6 shows that the net payout position of risk aggregators, e.g., local insurers, appears with 

great exposures especially during the key catastrophic years. For example, the occurrence of both 

catastrophic drought and flood in 1995 result in net payouts of as high as 43% of total sum 

insured for contracts with 1-in-3 year coverage (120% strike). This signals the importance of 

international market risk transfers in ensuring the sustainability of the program. 
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Table 5 report actuarial fair premium rates and the associated PMLs of various stop-loss 

reinsurance contracts. Because the underlying risks are not as catastrophic as that of earthquakes, 

etc., with reasonable PMLs of about 49% sum insured, we assume an optimistic case, where the 

potential market rates for these reinsurance contracts are established with an additional 

catastrophic load at 3% of the estimated PMLs. This could reflect the potential costs of capital 

for reinsurer in holding necessary reserve or obtaining other risk financing instruments. At these 

potential market rates, we then illustrate some designs of a zero-coupon cat bond with principle 

payments linked with 100% stop-loss reinsurance contracts for the nationwide portfolios.  

Table 6 reports cat bond prices for various specifications of required rate of returns for 

investor, a cap (% of principle) that limit investor’s principle loss if reinsurance contract triggers 

payouts and strike levels of nationwide insurance portfolio for the linked 100% stop-loss 

reinsurance contracts. Cat bond with 100% cap is thus riskier comparing to that with 50% cap 

since an investor would be exposed to losing all of his/her principle should the catastrophic 

events triggered reinsurance payout. The required rates of return are set at 4%, 6% and 10% 

translating into risk premiums between 2.93-8.93% at the current LIBOR rate of about 1.07%.45 

Comparing with other existing cat bonds (with relatively more catastrophic underlying risks) and 

the Mexican cat bond with as low as 2.35% premium above LIBOR, it seems this chosen range 

of risk premiums is sufficiently representative of spreads required by investors in the market 

(Froot 1999). We note that the total return realised by investors when the bond is not triggered is 

always higher than the required return used in computing bond prices. The difference between 

the two presents the added premium associated with the catastrophic risk.46 The bond prices thus 

decrease (hence the bond yields increase) with riskiness of the underlying reinsurance contract, 

the cap value and the required rates of return.  

These results are, however, only for illustration of how Thailand’s nationwide rice insurance 

portfolio might be securitised and transferred to international capital market. The actual potential 

of cat bond will also rely on the costs associated with securitising the contract relative to other 

means. The key feature that deviates this cat bond from others is its coverage of less extreme 

shocks relative to other earthquake- or hurricane-linked products in the market.  

How might this nationwide rice index insurance program work? 

Our results so far imply that (i) the basis risk minimising contract with two-peril MD+ME index 

could provide up to 35% reduction in the insured’s consumption variance, (ii) households are 

willing to pay between 2-4% of total sum insured on top of the fair rates for contracts with 1-in-2 

                                                 
45 LIBOR rate as of May 30, 2012 from www.global-rate.com. 
46 For example, an investor who purchased a cat bond with required return of 4%, 50% cap with 110% strike at the 

price = $0.8823 and received $1 principle back one year later when reinsurance is not triggered, would realise a total 

compounded return of 12.4%. The rate can be interpreted as including a risk free LIBOR rate of 1.07%, 2.93% 

premium associated with bond default and other risks not associated with the insured reinsurance risk, and an 

additional 8.4% premium associated with this catastrophic risk associated with the reinsurance. 

http://www.global-rate.com/
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year to 1-in-3 year payout frequency, (iii) it could be cost effective to price provincial seasonal 

contracts as part of a pooled nationwide portfolio and (iv) opportunities could exist in 

transferring portfolio risks to international markets through some forms of illustrated reinsurance 

and securitisation. We now illustrate the potential market rates, how the designed program and 

public support can be integrated in the risk financing in order to enhance market viability, and 

more importantly, how the program could benefit farmers, agricultural lenders and government. 

Table 7 reports potential market rates for the provincial contracts priced as part of the 

nationwide portfolio under various market arrangements. With a working assumption that the 

additive catastrophic load for a contract equals to the market rate for 100% stop-loss reinsurance 

coverage for that contract, our pricing results in an additional 50% mark up from the fair rates.47 

As catastrophic loads drive high mark-up rates, insurable risk can then be layered so that 

complementary public financing of tailed risk beyond some capped indemnity payouts from 

insurers could result in reduction of market rates. As shown in Table 7, when insurer’s payouts 

are capped at 30% of total sum insured, market rates for the 1-in-2 year and 1-in-3 year contracts 

reduce dramatically to their fair rates (and even below their fair rates for a cap of 20%).48  

 Based on 32-year income dynamics of 76,000 simulated households, welfare maximising 

contract strike level under each market arrangement is then marked in bold in Table 7. The 

associated increases in certainty equivalent consumption are also reported for farmers with low, 

medium and high levels of risk aversion. The 1-in-5 year contract appears optimal under fully 

market-based index insurance program. But with low risk coverage, its utility-based hedging 

effectiveness is low but still positive, implying that on average households are willing to buy this 

contract at the market rate and contribute up to 0.4% of total sum insured on top of the current 

rate. With government financing indemnity payouts beyond 20-30% caps, the welfare 

maximising strike shifts to 1-in-3 year contract. These market arrangements also result in larger 

hedging effectiveness through lower insurance prices and larger resulting optimal risk coverage. 

Which market arrangement is appropriate for this nationwide index insurance program? We 

explore this further by simulating the potential impacts on farmers, agricultural loan portfolios 

and government of these market arrangements for the nationwide index insurance program, as 

well as the existing program. To do so, several assumptions are made. First, we assume that all 

76,000 simulated farmers are clienteles of BAAC. Each year, they take out a loan to finance total 

input cost and to obtain insurance coverage for income from all cultivated rice crops (one or 

two). Total production income is then used to pay back the loan. From SES data, total input cost 

                                                 
47 This mark up is comparable to other existing index insurance programs in other part of the world. These market 

rates are comparable to other pilot projects for rice insurance in Thailand. For example, 4.64% rate changed for 

recently piloted deficit rainfall index insurance covering only drought peril for only the main rice production in 

Khon Kaen province during July-September.  
48 Because the extreme layers of risk are not so catastrophic, capping at higher level beyond 40% of sum insured will 

result in more or less the same effects to market premium rates. The market premium rates for 130% strike contract 

do not change with payout caps, as the contracts’ maximum payout rates are already well below the caps. 
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is assumed to be 49% of averaged provincial crop production income, which also vary across 

provinces. Household is assumed to pay back their loan as much as is feasible – the maximum 

repayment is reached when net income available for consumption drop to zero.  

With these assumptions, household’s production income available for consumption per 

hectare per year thus reflects total income after receiving insurance payout and netting out all the 

accumulated loans outstanding up to that year: 

𝑐𝑖𝑡 = max (0, 𝑦𝑖𝑡 + 𝛼∗𝜋(𝑧𝑡, 𝑧∗) − ∑ (1 + 𝑟)𝑡−𝜏+1𝐿𝜏)𝑡
𝜏=1                           (17)   

where insurance payout reflects summation of the two potential payouts for each index 

𝜋(𝑧𝑡, 𝑧∗) = 𝑚𝑎𝑥{ℤ𝑡/𝐸𝑙(ℤ𝑡) − 𝑧∗, 0} ×  �̅� with  ℤ𝑡 = 𝑀𝐷𝑡 , 𝑀𝐸𝑡 and �̅� is the provincial averaged 

production income per hectare. The optimal coverage scale 𝛼∗ = (𝛼𝑀𝐷
∗ , 𝛼𝑀𝐸

∗ ). The nominal 

interest rate 𝑟 is at 6.75% per year. Total loan taken per hectare 𝐿𝑡 = 49%�̅� + 𝛿𝐸𝜋(𝑧𝑡, 𝑧∗). From 

SES data, we assume that household cultivates 1.92 hectare of rice paddy each year. 

Based on 32-year dynamic data of 76,000 simulated households, Figure 7 plots cumulative 

densities of income available for household consumption, five-year accumulated debt position 

realised at any given year, BAAC’s annual loan default rates and annual government spending49 

under various schemes. The bottom panel of Table 7 also reports means and SDs of these 

impacts. With no disaster insurance market and government support, there is about 50% 

probabilities that income available for consumption of Thai rice farming households could 

collapse to zero. Household’s five-year accumulated debt realised in any given year is almost 

always positive with an average of 90% of annual production income. This outstanding debt 

could be as high as 300% of averaged annual income in any given year. And BAAC’s loan 

default rate is estimated at 47% per year on average. The existing program with a combination of 

government’s disaster relief and subsidised insurance50 results in favourable distributional 

impacts that almost always first order stochastically dominate those of the baseline. The key 

drawback, however, is the tremendous government budget exposure, which stands at an average 

of 8,890 million baht per year, and could reach 29,930 million baht in some key years.  

The market driven index insurance program without government support could also result in 

dramatically improvement in distributional impacts relative to the baseline case of no market and 

                                                 
49 We rescale the simulated representative sample to represent the current 9.2 hectares of growing areas nationwide. 

The current sample represents 63 similar households (9,200,000/(76,000×1.92)).  
50 Without actual payout statistics, we assume that under the existing program, if household’s actual crop income 

falls below its 1-in-3 year trigger level, they will be paid 3,787 baht per hectare (606 bath/rai) under disaster relief 

program and an extra 6,944 baht per hectare (1,111 baht/rai) if they pay for disaster insurance coverage at a 

subsidised price of 375 baht per hectare (60 baht/rai). We believe this assumption is reasonable, as (i) the program 

covers larger sets of disasters and (ii) it makes payout conditional on government’s declaration of disasters at very 

local levels with required actual loss verification. Because government disaster insurance is offered at highly 

subsidised price, our welfare optimisation implies that all representative risk-averse households will purchase full 

coverage. Hence 100% insurance penetration rate is used. Note that we abstract from all the incentive problems 

associated with existing program that could result in larger exposure on government spending. 
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government support. The probabilities of zero income available for consumption, the averaged 

long-term debt accumulation and BAAC’s loan default rates reduce by half and also with great 

reduction in variations. These distributional impacts are, however, relatively smaller on average 

but not necessarily first order stochastically dominated by those of the existing program. This is 

because, on the one hand, farmers pay higher market prices for market-based index insurance 

product that covers smaller sets of disasters relative to the existing product. On the other hand, 

compensations from index insurance (based on provincial averaged income) tend to be larger 

than those of the existing program (based on 30% of input cost) when the contract is triggered. 

With comparable impacts but no cost to the government, this purely market driven index 

insurance product could be appealing as one of the risk management tools for Thai rice farmers. 

These distributional impacts further improve substantially for the index insurance program 

with integrated public financing of tailed risk beyond insurer’s payout caps. At 30% (20%) 

payout cap, the resulting lower insurance prices and larger optimal risk coverage lead to more 

than 80% (almost 100%) reduction in probabilities of zero income available for consumption, 

long-term accumulated debt and BAAC’s loan default rates relative to the baseline. The required 

public financing of these tailed risks are also substantially smaller in means and variations 

comparing to those required in the existing program. A case for public financing of tailed risk for 

Thailand’s nationwide index insurance program thus could be strong. First, these public-private 

market arrangements are no doubt superior in both potential impacts on households and BAAC 

loan and on government’s budget exposure relative to the existing program. And second, their 

distributional impacts are substantially larger than those under purely market-driven program.  

4.  Conclusions and Implications for the Rest of Asia  

This paper laid out why index based risk transfer products could be attractive as a means to 

address important insurance market imperfections that have precluded the emergence and 

sustainability of formal insurance markets in developing countries. It then provides analytical 

framework for designing and evaluating optimal index insurance contracts using disaggregated 

data, and for analysing the potentials for these insurable risk to be diversified, transferred and 

financed in order to enhance sustainability of the program. It then illustrates how disaggregated 

and spatiotemporal rich sets of household and disaster data, commonly available in developing 

countries, could be used to design and analyse nationwide, scalable disaster index insurance 

program for rice farmers in Thailand.  

Relative to the direct measures of provincial yield and the estimated yield based on climate-

crop modelling, we found that objectively measured weather data could be carefully constructed 

as basis risk minimising indices for index insurance contract. Objectively measured remote 

sensing data also proved to be useful in controlling for heterogeneous cropping patterns across 

larger geographical areas nationwide. The transparency of these weather indices and control 
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measures along with their spatiotemporal availability could hold further advantages in scaling up 

contract designs to wider settings.  

Using household level data in estimating basis risk and so in simulating contracts’ hedging 

effectiveness, we found the resulting contract performance, optimal contract scales and pricings 

to vary largely across provinces and households. Contract designed at the provincial level – the 

most micro level given our representative data – was thus considered. Overall, the optimal 

provincial contract based on basis risk minimising combination of moving dry spell and moving 

excessive rain spell indices could result in up to 25% reduction in the variations of household’s 

income available for consumption. Simple cumulative rainfall, widely used in marketable 

contracts worldwide, however, appeared with the lowest performance. This raised concerns on 

the extent of basis risk associated with currently available contracts. 

 We found evidence of temporal and spatial diversification benefits, as we scaled insurance 

portfolio to cover all provinces nationwide and to cover the second crop grown among farmers in 

the irrigated areas each year. Thus return to scale in term of cost effective portfolio pricing can 

thus be achieved as part of nationwide, multi-seasonal coverage insurance program. 

Spatiotemporal availability of weather data further allowed us to show using simple correlation 

exercise that nationwide index insurance portfolio of Thai rice could be diversifiable with other 

weather indices worldwide in the global portfolios. This could imply, on the one hand, that local 

risk aggregators could diversify their portfolio risk with appropriate hedging portfolio of global 

weather indices. On the other hand, tradable security linked with Thai nationwide insurance 

portfolio, e.g., cat bond, could be appealing in the international market as diversifiable security 

in various diversifying global portfolios. 

 The transparency of these weather indices and control measures in fact could further 

promote the possibility of cost effective risk transfers in the international market. We thus 

designed the corresponding reinsurance contracts and cat bonds, and illustrated their potentials 

and how these might be useful as risk transfer instruments. The key distinction of our cat bonds 

from others is the coverage of relatively higher frequency but lower impact losses from floods 

and droughts, comparing to other earthquake- or hurricane-linked products. Skees et al. (2008) 

also discussed the potentials of micro-cat bond in transferring covariate but less extreme risks out 

of developing countries.  

Bringing all the results together, we asked what might appropriate market arrangement be to 

ensure sustainable implementation of this nationwide insurance program? Using disaggregated 

spatiotemporal rich data, we simulated the potential impacts on household welfare, agricultural 

loan portfolio and government of this nationwide program under various market arrangements 

relative to the current program. The purely market driven program was found to result in more 

than 50% reductions in probabilities that household consumption collapsing to zero, in means 

and variations of five-year accumulated debt and BAAC’s annual loan default rates. As these 
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impacts are comparable to those of the current program, albeit no budget exposure to the 

government, the market-driven program thus already proved as one of the effective disaster risk 

management tools for the setting. Properly layering insurable nationwide risk, we further found 

public financing of tailed risk beyond the 20-30% capped to insurer’s payout rates to result in 

substantial reduction in market premium rates. These in turn resulted in up to twice the impacts 

of the purely market-driven program, though with substantial smaller budget exposures to the 

government relative to the current government program. There could thus be a strong case for 

public financing of tailed risk in enhancing development values and market viability of 

Thailand’s nationwide index insurance program.  

How might this nationwide insurance program be implemented? An insurance indemnity 

pool of the nationwide index insurance contract could be created to allow local insurers to 

diversify their risks and contribute capital to the reserve pool, from where indemnity payments 

can be drawn. Reinsurance could potentially be acquired when indemnity payments exceed the 

pool but for the risk up to some appropriate capped level. Government could then finance the 

low frequency but catastrophic tailed risk through various options, e.g., offering complementary 

disaster insurance coverage for this tailed risk, providing the insurers direct coverage or 

financing of the transfers of this tailed risk. Government could also maintain some necessary 

reserve and use some forms of IBRTPs to hedge their exposures in the international market.  

The design and market arrangement of this nationwide index insurance for Thai rice farmers 

thus deviate largely from the current program. First, unlike direct premium subsidisation, public 

financing of the tailed risk does not distort market prices. The capped commercialized contracts 

are still sold at their market rates and the rates differ across provinces with different risk profiles. 

This prevents the potential adverse selection problem, likely to occur under the current scheme 

with one price for all. Second, the public financing of the tailed risk provides complementary, 

rather than substituting, coverage. This thus would not crowd out private demand for insurance, 

especially for the risk layer that should appropriately be absorbed by the households and market. 

Third, the government’s budget exposure to financing of the tailed risk could be insured through 

some forms of IBRTPs. This, in turn, could enhance sustainability of the program. And more 

importantly, the key advantages of these index insurance design relative to the current loss-based 

insurance program are (i) relatively lower transaction cost, especially in loss verifications, (ii) 

relatively lower adverse selection and moral hazard, (iii) the contract still preserves insured 

household’s incentive to take good care of their farms and so to adjust their cropping patterns to 

avoid risk since the indemnity is regardless of their actions and (iv) contract could potentially 

make timely payout as verification of these indices are in near real time.  

Various limitations of the current study are worth noting with the goal to stimulate future 

required research ideas. First, our analyses are based on simulated rainfall data, not the actual 

data observed at various stations. Despite its relative advantage in the relatively richer spatial 

distribution, simulated data need to be verified with actual weather experienced at the micro 
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level. Efforts are also underway in many developing countries, including Thailand, in 

constructing appropriate gridded data from observed station data in order to improve spatial 

distribution of the station data. Second, the current analysis mapped the relatively higher spatial 

resolution weather data with household data at provincial level, due to the lack of sub-district 

locators in the SES data. Efforts should be made in matching weather or disaster variables at the 

most micro level possible. Third, various spatiotemporal available remote sensing products, 

could have high potential in improving the measures and performance of the underlying indices. 

Efforts are underway in using these products to detect inter and intra year variations of rice 

growing areas, stage of crop growth, paddy losses and the extent of natural disasters (see 

Rakwatin et al. 2012, for example). And fourth, the observed increases in frequency and intensity 

of natural disasters imply the need for incorporating simulated impacts of climate change in the 

modelling and pricing of insurable risks. The ECHAM4-PRECISE simulated climate data used 

in this analysis could allow us to do so. Alternatively, various available hazard modellings that 

allow for risk simulations under various extreme scenarios could also be used.  

The analytical framework as well as the empirical methodology proposed in this paper 

should be replicable in other settings and in other developing Asian countries, where exposures 

to covariate natural disaster risks remain uninsured. The data sets used in this paper should well 

be available in other Asian countries. The extended time series of spatiotemporal rich weather 

data as well as remotely sensed data are available worldwide at high quality and low cost.51 And 

the high quality, national representative household dynamic welfare data similar to Thai SES 

data should well be available in the key Asian countries. Some examples include repeated cross-

sectional household data from Indonesia National Socioeconomic Survey (SUSENAS), available 

every year from 1990-2010, from Vietnam Household Living Standards Survey (VHLSS), 

available every 2 years from 2002 to 2010.  

This paper offers an optimistic view of the potentially optimal designs, market viability and 

impacts of IBRTPs designed at a large nationwide scale. These results could deviate largely from 

actual implementation in the real world. At least, four key implementation challenges are worth 

noting. First, it could be difficult to establish informed effective demand among clientele with 

relatively low financial literacy in developing countries. Second, the presence of large basis risk 

could still be possible in some coverage areas. Third, cost of marketing and delivery mechanisms 

of the contract could still be high in developing countries. And fourth, the targeted clientele 

could have financial constraints in paying insurance premium.  

                                                 
51 Gridded weather data from WMO stations across Asia are available online at NOAA Global Daily Climatology 

Network (daily, 1900-present). Various satellite imagery Normalised Difference Vegetation Index (NDVI) available 

from NASA MODIS at 250m resolution (15-day; 2000-present) and from NOAA AVHRR at 8km resolution (10-

day; 1982-2000). RADARSAT-1 and RADARDAT-2 with cloud-penetrating SAR sensor at 25m resolution (every 

15 day, 1995-present) have been increasingly used for flood monitoring. 
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These key challenges thus place significant implications on how index insurance program 

should be implemented in developing country settings. Should the insurance contracts be offered 

as a stand alone or linked with other financial products? Linking with other existing financial 

products might resolve high implementation costs and relax some financial constraints among 

targeted clientele. Should the program be established at the micro, meso or macro levels? 

Extended investment in education, training and extension tools are thus critical if contracts are 

sold directly to households. At the meso level, rural banks like BAAC could obtain insurance 

contract to insure their loan portfolio, so that they can then lend insured loans to households. 

Groups and cooperatives can obtain coverage for their group saving or credit schemes. One 

testable assumption is that group-sharing network could potentially smooth out individual basis 

risk associated with index insurance contracts. Necessary randomised impact evaluation research 

has been launched around the world in attempt to address these questions. Extended discussion 

of key implementation challenges of IBRTPs in developing countries to data are summarised in 

Carter et al. (2014), Binswanger-Mkhize (2012), Miranda et al. (2012) and IFAD and WFP 

(2010). Overall, the challenges are significant, but the considerable prospective gains associated 

with IBRTPs for enhancing development of sustainable disaster insurance programs in 

developing countries would seem to justify considerable new effort in this area. 
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Figure 1 Growing Areas and Variations in Rice Production in Thailand 
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Figure 2 Rice Growing Areas Affected by Key Disasters (2005-2011) 
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Figure 3 Contract Zones with Distinct Crop Cycles observed from NDVI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Temporal and Spatial Distributions of the Key Indices 
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 Figure 5 Comparison of Hedging Effectiveness across Optimal Contracts 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Plots are averaged across 76,000 simulated households with CARA = 3. Average standard deviations around the estimated 

series in parentheses. 
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Figure 6 Nationwide Index Insurance Portfolio’s Net Payouts 

 

 

 

 

 

 

 

 

 

 

Figure 7 Simulated Impacts of Various Nationwide Index Insurance Arrangements 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Cumulative densities based on 32-year dynamic data of 76,000 simulated households in 76 provinces nationwide 
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Variables N Mean S.D. Minimum Maximum

Rice production and rainfall

Rice growing areas, 1981-2010  - Country (million hectare) 30 9.2 0.2 8.7 9.5

                                                    - P rovince (% total area) 2,240 53% 24% 2% 92%

Annual cumulative rainfall (cm), 1980-2011 2,432 425 124 179 889

Provincial yield (kg/hectare/year), detrended 1981-2010 2,240 2,622 868 710 5,398

Rice farming households

Household crop production income (baht/hectare/year) 18,216 40,246 31,541 0 98,137

Rice cropping land size (hectare) 18,216 1.92 3.56 0.16 47.00

Number of times cultivated rice per year 18,216 1.64 1.13 1.00 3.00

Number of members working on farm 18,216 2.75 1.24 1.00 6.00

Input and operating cost per cropping season (proportion of income) 18,216 0.49 0.31 0.37 0.89

Household takes out loans for input cost each season = 1 18,216 0.89 0.23 0.00 1.00

Total outstanding agriculture loans (proportion of annual income) 18,216 1.41 6.94 0.00 256.25

Annual Interest rate on 12-month agricultural loan 18,216 0.06 0.03 0.02 0.15

Household size 18,216 3 1 1 6

Head age 18,216 50 14 17 94

Head female = 1 18,216 0.17 0.38 0.00 1.00

Head highest education - primary = 1 18,216 0.85 0.38 0.00 1.00

Head highest education - secondary = 1 18,216 0.05 0.20 0.00 1.00

Head highest education - university = 1 18,216 0.00 0.00 0.00 0.00

Head highest education - vocational = 1 18,216 0.00 0.06 0.00 1.00

Own house  = 1 18,216 0.96 0.18 0.00 1.00

Own agricultural land = 1 18,216 0.81 0.42 0.00 1.00

Provincial production characteristics

Households' farm located in the irrigated areas = 1 77 0.22 0.43 0.00 1.00

Upland areas (% total rice paddy) 77 6% 27% 0% 100%

Flood plain areas (% total rice paddy) 77 12% 47% 0% 100%

River basin areas (% total rice paddy) 77 19% 41% 0% 100%

Indices (% of provincial long-term mean)

Provincial yield index, 1981-2010 2,240 100% 14% 41% 146%

Estimated yield index, 1980-2011 2,432 100% 24% 57% 146%

Cumulative rainfall index, 1980-2011 2,432 100% 27% 29% 154%

Moving dry spell index, 1980-2011 2,432 100% 35% 38% 165%

Moving excessive rain spell index, 1980-2011 2,432 100% 31% 41% 179%

Table 1 Summary Statistics of key variables 
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No Index

Yt Y(wt) CR MD ME MD+ME CR MD ME MD+ME

Index 1 4.67*** 3.63* 2.43 -3.39* -4.17** -2.11* 2.54* -3.22* -4.02** -2.87*

(1.19) (2.79) (2.85) (2.17) (2.35) (1.51) (2.23) (2.29) (2.54) (1.88)

Index 2 -4.01** -3.89**

(2.23) (2.26)

HH, area and time effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adjusted R-Squared 0.38 0.51 0.45 0.44 0.46 0.48 0.52 0.46 0.45 0.46 0.49

Observations 4,009 4,009 4,009 4,009 4,009 4,009 4,009 4,009 4,009 4,009 4,009

Index 1 3.91*** 2.81* 2.98* -6.17** -4.29** -5.89** 3.12** -6.19** -4.32** -5.91**

(1.22) (2.07) (2.19) (3.54) (2.89) (2.98) (2.01) (3.27) (2.59) (3.24)

Index 2 -3.92** -4.23**

(2.51) (2.69)

HH, area and time effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adjusted R-Squared 0.45 0.56 0.54 0.53 0.58 0.55 0.67 0.54 0.59 0.55 0.67

Observations 14,206 14,206 14,206 14,206 14,206 14,206 14,206 14,206 14,206 14,206 14,206

Note: Coefficients represent net effect of provincial index β=λ+Dκ . Standard errors in parentheses. *significant at 10%, ** at 5% and *** at 1% respectively. 

Household controls include household size, head age, gender and education, whether household owns land, land size, whether household owns house, number of member 

working on farm. Provincial controls include upland, flood plain and river basin areas. Time effects are captured by year dummies. Standard errors are clustered at

provincial level.The best results for dynamic cycles use the first day in the fixed cycle when the 2-day cumulative rainfall reaches 25 mm as trigger starting point.

Yield index Weather index - Fixed Cycles Weather index - Dynamic Cycles

Irrigated Areas

Rainfed Areas

Table 2 Estimation of Farm Income of Rice Growing Households 
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Zone α*(MD) α*(ME) Fair rate PML α*(MD) α*(ME) Fair rate PML α*(MD) α*(ME) Fair rate PML

Irrigated Lower Central 0.7 0.8 16% 68% 0.8 0.9 9% 56% 0.8 0.9 5% 38%

Irrigated Upper Central-North 0.6 0.8 16% 65% 0.7 0.8 8% 52% 0.7 0.8 4% 35%

Irrigated South 0.8 0.9 14% 59% 0.8 1.0 7% 49% 0.8 1.0 3% 32%

Rainfed Lower Central 1.1 0.9 15% 57% 1.1 0.9 7% 46% 1.1 0.9 3% 27%

Rainfed Northeast-North 1.1 0.9 12% 48% 1.1 0.9 6% 37% 1.1 0.9 2% 23%

Rainfed South 1.0 1.0 12% 46% 1.0 1.0 6% 32% 1.0 1.0 2% 19%

Nationwide 0.9 0.9 14% 59% 1.0 1.0 7% 47% 1.0 1.0 3% 29%

Irrigated Lower Central 0.7 0.8 15% 64% 0.8 0.9 8% 53% 0.8 0.9 4% 33%

Irrigated Upper Central-North 0.6 0.8 14% 61% 0.7 0.8 7% 49% 0.7 0.8 3% 31%

Irrigated South 0.8 0.9 13% 57% 0.8 1.0 6% 48% 0.8 1.0 2% 28%

Rainfed Lower Central 1.1 0.9 14% 57% 1.1 0.9 7% 46% 1.1 0.9 3% 27%

Rainfed Northeast-North 1.1 0.9 12% 48% 1.1 0.9 6% 37% 1.1 0.9 2% 23%

Rainfed South 1.0 1.0 12% 46% 1.0 1.0 6% 32% 1.0 1.0 2% 19%

Nationwide 0.9 0.9 12% 55% 1.0 1.0 6% 43% 1.0 1.0 2% 27%

Note: Payout frequencies are for both perils from MD+ME. Optimal scales are estimated at fair rates using annual data. Hence, they are similar for both contracts.

Optimal scales, fair rates are averaged across provincial rates. PMLs are maximum provincial values. Prices are based on 1980-2011 historical burn rates.

Price estimates from Monte Carlo simulations are comparable so omitted. The nationwide scales is averaged provincial scales weighted by shares of growing areas.

Contracts available for both main and second crops

Contracts available for main crop only

Strike = 110% Strike = 120% Strike = 130%

 (Avg. payout freq. = 50%)  (Avg. payout freq. = 30%)  (Avg. payout freq. = 20%)

Table 3 Optimal Seasonal Contracts and Actuarial Fair Rates 
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Strike Mean PML Mean PML Mean PML

110% 6% 49% 5% 43% 5% 41%

120% 3% 39% 4% 35% 3% 31%

130% 1% 25% 2% 23% 2% 20%

Note: Nationwide seasonal contracts available for both main and second crops. Prices are based on historical burn rates 

estimated from 1980-2011 distributions. 

Stop Loss Level (% of Pure Premium)

100% 105% 110%

Contract Zones 1 2 3 4 5 6

1. Irrigated Lower Central 1.00

2. Irrigated Upper Central-North 0.56 1.00

3. Irrigated South 0.42 0.18 1.00

4. Rainfed Lower Central 0.78 0.57 0.21 1.00

5. Rainfed Northeast-North 0.48 0.44 -0.12 0.86 1.00

6. Rainfed South 0.62 0.21 0.74 0.72 0.41 1.00

Seasonal crop coverage 1 2 3 4 5 6

Second crop 0.23 0.11 -0.07

Tradables Coeff. Std.Err. Adj. R2 N

Thai Stock Exchange Index (SET) 4.60 3.60 0.07 32

NASDAQ 47.90 58.80 0.04 32

Corporate bond AAA -503.50 486.86 0.02 32

Food price index 138.87 52.26 0.16 32

Rice future 512.10 250.76 0.01 16

CDD, Florida, U.S. -14.7* 5.40 0.22 28

CDD, Calgary, Canada -11.6*** 2.90 0.31 28

CDD, Madrid, Spain -9.6** 1.73 0.14 28

HDD, Melbourne, Australia -17.3** 5.90 0.24 24

Note: Relationships are estimated from portfolio net payout at 110% strike. All high frequency tradable returns are converted to 

annual unit by averaging returns within year. Commodity price indices, futures, weather and other CaT indices are obtained

from Chicago Merchantile Exchange (CME).

Geographical Diversifications

Diversifications with Tradables

Temporal Diversifications

Table 4 Diversification Potentials of Nationwide Index Insurance Portfolio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 Actuarial Fair Stop-Loss Reinsurance  
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Required Returm Capped (%)

Principle Losses 110% 120% 130%

4% 100% 0.8412 0.8729 0.8898

50% 0.8823 0.8942 0.9064

6% 100% 0.8276 0.8511 0.8688

50% 0.8667 0.8818 0.8997

10% 100% 0.8096 0.8212 0.8389

50% 0.8532 0.8734 0.8935

Note: Bond prices are calculated assuming market rates of stop-loss reinsurance = fair rates+3%PML

100% Stop-Loss Reinsurance on Nationwide Portfolio

Strike Payout freq. Mean SD Mean SD Mean SD Mean SD

110% 50% 17.8% (4.6%) 11.9% (3.1%) 14.3% (3.3%) 16.9% (3.7%)

120% 30% 8.8% (3.7%) 4.2% (2.3%) 6.4% (3.1%) 8.8% (3.7%)

130% 20% 3.1% (2.1%) 3.1% (2.1%) 3.1% (2.1%) 3.1% (2.1%)

Low risk aversion (θ=1)

Med. risk aversion (θ=3)

High risk aversion (θ=5)

Input loan default rate

Government spending

Note: The potential market rates = fair rates + market rates for 100% stop-loss reinsurance. Reinsurance market rates = fair rates+3% PML.

Payouts are capped as % of total sum insured. Those in bold are welfare maximising contract strike  for each market arrangement.CE and impacts of 

insurance are for the welfare maximising coverage. Results vary across provinces. Mean reported with standard deviations in parentheses. 

1.4% 0.1%

21%21%

0.4%

Market Arrangements

Increase in certainty equivalent value, CE insured- CEuninsured(% sum insured per season)

Simulated impacts of insurance on households, agricultural loans and government (θ=3)

24,275

(28,978)

0.1% 3.6%

(12%)

24,275

(28,978)

33,052

(24,464)

31,278

(26,464)

39%

0.2%

0.4% 4.9% 2.7%

0.2%

(57%) (57%)(0%) (17%)

Market Rates 30%

9%

8%

(4%)

(No I = 90% 1-yr income)

39% 0%

(12%)

0%

Net income for consumption

5-yr loan outstanding

0

40%

With Public Financing of Tailed Risk beyond Capped Payout at

20%

4.2% 2.0%

(No I = 47% per year)

Potential 

(No I = 0 million baht) (0) (3,249) (1,580) (0)

(No I = 25,314 baht/year)

0 843 297

(0%)

Table 6 CAT Bond Linked with Stop-Loss Reinsurance  

 

 

 

 

 

 

 

 

Table 7 Potential Market Pricings and Arrangements for Nationwide Index Insurance  
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Figure A1 Growth Stages of Rice Plants and Key Variables 

 

 

 

 

 

 

 

 

Note: Data are obtained from World Bank (2006) 

 

Figure A2 Government Budget Spent on Disaster Reliefs for Rice Farmers (2005-2011) 

 

 

 

 

 

 

 

 

 

 

 
     Note: Data are obtained from Thailand Ministry of Agriculture  
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Country/Product Type Targeted users Risk 

 

 

 

Index No. latest 

beneficiaries 

Risk financing 

 

Progress 

Bangladesh 

Weather index 

insurance  

Micro level, standalone, 

group-based contracts, 

linked with loans 

Farmers, 

farmer’s groups 

Drought and flood Simple weather 

parameters 

- - Under 

development  

India 

Public and private 

weather index 

insurance  

Micro level, standalone, 

linked with loans, seed 

sales, contract farming 

Farmers (small, 

medium, large) 

Various weather-

related shocks 

(excess and 

deficit rainfall, 

humidity and 

frost) 

Station rainfall, 

temperatures, weather-

linked crop diseases, 

fog, humidity, satellite 

weather index 

> 700,000 

across the 

country 

Public agricultural 

insurer (AIC), ICICI 

Lombard, IFCCO-

Tokio, Swiss Re, 

Tokio Marie, 

Endurance Re, 

SIRIUS Re 

First piloted in 

2003, expand 

largely Mostly 

unsubsidized 

except some 

small numbers of 

states 

Mongolia 

Index-based 

livestock insurance  

Micro level, private-

public partnership in risk 

financing 

Nomadic 

herders 

Severe weather, 

especially winter 

storm 

District census of 

aggregate livestock 

mortality rate 

4100 in 4 

provinces 

Insurance pool of 

local insurers with 

government 

providing stop-loss 

reinsurance, WB 

contingent loan for 

catastrophe loss 

through risk layering 

First piloted in 

2006; expand 

gradually 

 

Thailand 

Drought insurance 

for maize and rice  

Micro level, distributed 

by Bank of agricultural 

& agricultural coop. 

Maize and rice 

farmers 

Droughts Cumulative rainfall 

during growing season 

817 in 11 

provinces 

Consortium of nine 

local insurers 

Sompo Japan 

Product for 

maize first 

piloted in 2007, 

government 

supports to 

expand. For rice 

first piloted in 

2011 

Vietnam 

Area-yield index 

insurance for rice 

Micro level, cover loans 

to rice farmers  

Rice farmers Covariate shocks 

that affect area 

yield 

Area yield indexbased 

on data from the 

Vietnam’s Bureau of 

Statistics 

10 provinces  Agribank Insurance 

Joint Stock 

Company (ABIC) as 

insurer, reinsurer 

using Swiss Re and 

Vietnan National 

Reinsurance 

Corpopration (Vina 

Re) 

Sold since 2011 

The Philippines 

Area-yield index 

insurance for rice 

Micro level, supported 

by the German GTZ 

Rice farmers Covariate shocks 

that affect area 

yield 

Area yield index 

triggers relative to 15-

year average yield 

17 irrigated 

municipalities  

Local insurer Piloted in 2012 

Vietnam  

Flood insurance for 

Meso level protecting 

bank from loan defaults 

Vietnam Bank 

of Agri.and 

Rural 

Early flooding of 

rice fields during 

rice harvest 

River level measured at 

the upper Mekong river 

during early rice 

- - First designed in 

2008 but has not 

been 

Country/Product Type Targeted users Risk 

 

 

 

Index No. latest 

beneficiaries 

Risk financing 

 

Progress 

Bangladesh 

Weather index 

insurance  

Micro level, standalone, 

group-based contracts, 

linked with loans 

Farmers, 

farmer’s groups 

Drought and flood Simple weather 

parameters 

- - Under 

development  

India 

Public and private 

weather index 

insurance  

Micro level, standalone, 

linked with loans, seed 

sales, contract farming 

Farmers (small, 

medium, large) 

Various weather-

related shocks 

(excess and 

deficit rainfall, 

humidity and 

frost) 

Station rainfall, 

temperatures, weather-

linked crop diseases, 

fog, humidity, satellite 

weather index 

> 700,000 

across the 

country 

Public agricultural 

insurer (AIC), ICICI 

Lombard, IFCCO-

Tokio, Swiss Re, 

Tokio Marie, 

Endurance Re, 

SIRIUS Re 

First piloted in 

2003, expand 

largely Mostly 

unsubsidized 

except some 

small numbers of 

states 

Mongolia 

Index-based 

livestock insurance  

Micro level, private-

public partnership in risk 

financing 

Nomadic 

herders 

Severe weather, 

especially winter 

storm 

District census of 

aggregate livestock 

mortality rate 

4100 in 4 

provinces 

Insurance pool of 

local insurers with 

government 

providing stop-loss 

reinsurance, WB 

contingent loan for 

catastrophe loss 

through risk layering 

First piloted in 

2006; expand 

gradually 

 

Thailand 

Drought insurance 

for maize and rice  

Micro level, distributed 

by Bank of agricultural 

& agricultural coop. 

Maize and rice 

farmers 

Droughts Cumulative rainfall 

during growing season 

817 in 11 

provinces 

Consortium of nine 

local insurers 

Sompo Japan 

Product for 

maize first 

piloted in 2007, 

government 

supports to 

expand. For rice 

first piloted in 

2011 

Vietnam 

Area-yield index 

insurance for rice 

Micro level, cover loans 

to rice farmers  

Rice farmers Covariate shocks 

that affect area 

yield 

Area yield indexbased 

on data from the 

Vietnam’s Bureau of 

Statistics 

10 provinces  Agribank Insurance 

Joint Stock 

Company (ABIC) as 

insurer, reinsurer 

using Swiss Re and 

Vietnan National 

Reinsurance 

Corpopration (Vina 

Re) 

Sold since 2011 

The Philippines 

Area-yield index 

insurance for rice 

Micro level, supported 

by the German GTZ 

Rice farmers Covariate shocks 

that affect area 

yield 

Area yield index 

triggers relative to 15-

year average yield 

17 irrigated 

municipalities  

Local insurer Piloted in 2012 

Vietnam  

Flood insurance for 

Meso level protecting 

bank from loan defaults 

Vietnam Bank 

of Agri.and 

Rural 

Early flooding of 

rice fields during 

rice harvest 

River level measured at 

the upper Mekong river 

during early rice 

- - First designed in 

2008 but has not 

been 

Table A1: Summary of Existing Pilot Projects of IBRTPs in Asia 
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Country/Product Type Targeted users Risk 
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Thailand 
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817 in 11 
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Consortium of nine 
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Sompo Japan 

Product for 

maize first 

piloted in 2007, 

government 

supports to 

expand. For rice 

first piloted in 

2011 

Vietnam 

Area-yield index 

insurance for rice 

Micro level, cover loans 

to rice farmers  

Rice farmers Covariate shocks 

that affect area 

yield 

Area yield indexbased 

on data from the 
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Statistics 

10 provinces  Agribank Insurance 

Joint Stock 

Company (ABIC) as 

insurer, reinsurer 

using Swiss Re and 

Vietnan National 

Reinsurance 

Corpopration (Vina 

Re) 

Sold since 2011 

The Philippines 

Area-yield index 

insurance for rice 

Micro level, supported 

by the German GTZ 

Rice farmers Covariate shocks 

that affect area 

yield 

Area yield index 

triggers relative to 15-

year average yield 

17 irrigated 

municipalities  

Local insurer Piloted in 2012 

Vietnam  
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Meso level protecting 

bank from loan defaults 

Vietnam Bank 

of Agri.and 

Rural 

Early flooding of 

rice fields during 

rice harvest 

River level measured at 

the upper Mekong river 

during early rice 

- - First designed in 

2008 but has not 

been 
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government 
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2011 

Vietnam 

Area-yield index 

insurance for rice 

Micro level, cover loans 
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Joint Stock 

Company (ABIC) as 

insurer, reinsurer 

using Swiss Re and 

Vietnan National 

Reinsurance 

Corpopration (Vina 
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