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Abstract

We show how bundling, exclusivity and additional markets internalize fire sale and

other pecuniary externalities. Ex ante competition can achieve a constrained efficient

allocation. The solution can be put rather simply: create segregated market exchanges

which specify prices in advance and price the right to trade in these markets so that

participant types pay, or are compensated, consistent with the market exchange they

choose and that type’s excess demand contribution to the price in that exchange. We

do not need to identify and quantify some policy intervention. With the appropriate

ex ante design we can let markets solve the problem.

Keywords: price externalities; segregated exchanges; Walrasian equilibrium; markets for

rights to trade; market-based solution; collateral; exogenous incomplete markets; fire sales.

∗This paper is a consolidated version of our two earlier papers: “Segregated Security Exchanges with Ex

Ante Rights to Trade: A Market-Based Solution to Collateral-Constrained Externalities” and “A Market

Based Solution to Price Externalities: A Generalized Framework.” We would like to thank Anmol Bhandari,

Mikhail Golosov, Lars Hansen, Bengt Holmstrom, Edward S. Prescott, Thomas Sargent, Alp Simsek, Harald

Uhlig, Randall Wright, Haoxiang Zhu, and seminar participants at conferences. Sartja Duangchaiyoosook

provided excellent research assistance. Tee Kilenthong is grateful to financial support from UTCC. Robert

Townsend is grateful to financial support from the NICHD under grant R01 HD027638, the CEPR and

the DFID under grant MRG002 1255, the John Templeton Foundation, and the CFSP at the University of

Chicago through a grant from the Bill & Melinda Gates Foundation. The findings and conclusions contained

in the report are those of the author(s) and do not necessarily represent the views of the funders.

1



1 Introduction

Our paper is a tale of several literatures and the importance of bringing them together.

One in the wake of the financial crisis is a literature on pecuniary externalities that has

regained the interest of researchers as they seek policy interventions and regulations to

remedy externality-induced distortions, e.g., balance sheet effects, amplifiers and fire sales.

Solutions range from regulation of portfolios, restrictions on saving or credit, interest rate re-

strictions, fiscal policy, or taxes and subsidies levied by the government1. A second literature

in the general equilibrium tradition is the exogenous incomplete security markets literature,

which shows generically that competitive equilibria are inefficient. However, there is a third

literature in general equilibrium theory which dates back to work of one of the founding

fathers, Arrow (1969), namely how bundling, exclusivity and suitably designed additional

markets can internalize externalities, without the need of further policy interventions (or

the need to quantify those interventions). In this world ex ante competition and equilib-

rium, market-determined prices for rights to trade in these additional markets can achieve a

constrained-efficient allocation. The contribution of our paper can be seen as bridging the

gap among these literatures and, more importantly, formulating a proposal for an ex ante

optimal market design of financial markets which eliminates fire sales inefficiencies and other

pecuniary externalities. What we do does have precedents in the literature: Coase (1960)

who specifies property rights to remedy externalities (related to the cap and trade idea in

pollution) and Lindahl (1958) who uses agent specific prices to solve a public goods problem.

We build on these ideas but provide new results.

As pointed out by Lorenzoni (2008) and many others2, both developed and emerging

economies have experienced episodes of rapid credit expansion followed, in some cases, by

a financial crisis, with a collapse in asset prices, credit, and investment. As an example, he

takes the case of the banking sector in Thailand prior to the crisis of 1997. In the first half

of the 1990s, Thai banks increased their investment in real estate. When the crisis erupted,

1See, for example, Bianchi (2010); Bianchi and Mendoza (2012); Farhi et al. (2009); Jeanne and Korinek

(2013); Korinek (2010).
2For the main stylized facts on boom-bust cycles, see Bordo and Jeanne (2002); Gourinchas et al. (2001);

Tornell and Westermann (2002), and many others.
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the fall in real estate prices eroded the real estate value of those collateral guarantees. This

prompted a cut in bank lending, which in turn, led to a further reduction in the demand for

real estate and a further drop in real estate prices. This is but one example. There is also a

literature on fire sales in New York financial markets, e.g Begalle et al. (2013); Duarte and

Eisenbach (2014); Gorton and Metrick (2012); Krishnamurthy et al. (2012).

However, as Lorenzoni (2008) emphasizes, if the private sector had accurate expectations

and correctly incorporated risk in its optimal decisions, yet still decided to borrow heavily

during booms, it means that the expected gain from increased investment more than com-

pensated for the expected costs of financial distress. Thus one needs to understand how,

and under what conditions, this private calculation leads to inefficient decisions at the social

level. The answer is that since they are atomistic, private agents do not take into account

the general equilibrium effect of asset purchases and subsequent sales on prices. We empha-

size here that this general equilibrium effect kicks in only when contracts and markets are

limited by obstacles to trade that depend on prices, such as collateral constraints, that the

value of a contracted promise to pay cannot exceed the value of the associated collateral

which is marked to spot prices. This is the pecuniary externality that is at the basis of the

inefficiency result. Indeed in Geanakoplos and Polemarchakis (1986) more generally, the key

is that prices enter into constraints beyond budgets so that the set of feasible allocations at

the individual level is moving around with the decisions of others as those decisions influence

those prices.

Now we go back to Arrow (1969) for some insights about how to remedy such problems.

He deals directly with the most obvious specification of a non-pecuniary externality, prefer-

ences that depend on what others are consuming. Suppose the utility function of each agent

depends not only on her own consumption of each commodity, but also the consumption of

commodities of the other agents. Still, in a standard competitive equilibrium, each agent

buys her own consumption goods and has no control over the consumption of others, though

she does care about this. From the first order condition, taking advantage of the insight

that the marginal utility of income in the budget is equal to the inverse Pareto weight in the

planning problem, the weighted marginal utility of consumption for a given commodity of

each agent is equal to the price of that commodity. In contrast a Pareto optimal allocation
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of resources can be characterized by maximizing a Pareto weighted sum of utilities subject

to resource constraints for each commodity, that consumption not exceed aggregate endow-

ment. As consumption of a given commodity for a given household enters into the utility of

all of them, the first- order condition is that the weighted sum of marginal utilities equal the

common shadow price of that commodity. Obviously, the first order conditions to these two

problems, necessary for competitive equilibrium and optimality, respectively, do not match.

The competitive equilibrium is inefficient due to the externality.

Arrow (1969) then writes down an equivalent programming problem for the determination

of optima with a subtle shift in notation which, nevertheless, embodies in it a lot of the

economics. Namely, Arrow extends the commodity space letting each given agent have the

right to specify the consumption of the others, as if buying the consumption of others, so that

as far as the given agent is concerned, this looks like a normal private ownership economy

without externalities. Notationally, the variables appearing in the utility function relating

to the given named agent are proper to him alone and appear in no one else’s utility. But

this is done for every agent. This then necessitates another equation which specifies that

what every single agent wants some other target agent to consume is exactly the same, what

all of them want for that agent, and is what that target agent is actually consuming. This

consistency in assignments is an explicit extra constraint in the programming problem. Both

this and the usual resource constraints pick up Lagrange multipliers. The first is like a price

for the right of a given agent to specify consumption of a given commodity for another named

agent, and the second is the common price of the underlying commodity. The first order

condition for a given agent is that her weighted marginal utility of consumption of the good

of the other target agent equals the shadow price in the consistency constraint, the price of

rights. The other first order condition is that the sum over all agents of these prices of rights

equals the price of the underlying commodity. Thus, by substitution, the sum of weighted

marginal utilities for a given commodity of a given agent will equal the common shadow

price of that commodity, the same overall optimum condition as before.

The real point is that it is now a short step to decentralize the rewritten optimum problem

so that it can be achieved as competitive equilibrium with prices that correspond to the above

shadow prices, everyone acting in their own narrow self interest only, not worrying about
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over all consistency in assignments nor market clearing, though everything is consistent in

equilibrium. The problem of an agent as consumer is to maximize utility by specifying

consumption not only for herself but for each of the others, and each of these consumptions

has a rights price. The sum of expenses cannot exceed wealth. The problem of an agent as

supplier is to maximize profits from buying a consumption good and then selling the rights to

specify her own consumption to the others, thus receiving the sum of rights prices that each

of the others is willing to pay. Essentially, for these concave Lagrangian problems (utilities

can be assumed to be concave, resources and assignment constraints are linear, budgets

are linear, etc.) first order conditions are not only necessary but also sufficient. Thus the

allocations of the decentralized market solution and the centralized planner problem are the

same. Both are optimal.

Likewise, as Arrow (1969) does, one might have supposed that each agent cares about

the sum of consumption of a given commodity in the population. Then obviously the rights

prices for assigning consumption to one target agent is the same as assigning to any other

target agent. By extension, one might have supposed that ratios of commodity aggregates

enter into utility functions directly. What we do in our first leading example, since we

care about pecuniary rather than non-pecuniary externalities, is closely related but a bit

different. We let prices enter into collateral constraints and, with homothetic utilities, prices

are determined by ratios of commodity aggregates. So in this first example we can naturally

refer to the commodity ratio as the market fundamental, as it alone determines prices. Then,

to internalize the externality following Arrow, we extend the commodity space so that in the

decentralized competitive problem agents can buy the right to specify any ratio of commodity

aggregates they want as if they had ownership over that ratio as well as the quantity they

wish to buy or sell at that market fundamental. But of course these rights have market

prices, as we now explain in more detail.

As a buyer, the object is the number of rights purchased, namely, the fundamental ratio

which determines the price and positive excess demand at that price. As a seller, the agent

specifies the fundamental ratio and negative excess demand at that associated price, so that

such an agent is compensated for agreeing to trade a given market fundamental. The size

and sign of the discrepancy, which can be positive or negative, is the difference between an
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agent’s pretrade endowment ratio, inclusive of collateral, and the overall market average3.

Conceivably an agent’s net excess demand at the fundamental could be zero, in which case

nothing is paid or received for specifying that fundamental. In general though there will

be active trade among some agent types. But the sum of type-weighted discrepancies must

by construction be zero (not everyone can be above average in equilibrium). The intuition,

again, apart from scale parameters, is that a type’s discrepancy is its net excess demand,

and consistency thus requires that the type weighted sum of excess demands be zero in any

equilibrium. That is, a type’s “contribution” to the price is that type’s excess demand.

Market determined prices will allow agents to pay or be paid for their “contribution”.

Importantly, security trades and the rights to trade at spot prices are tied together. A

security is a promise made by the issuer to the investor and the associated, specified collateral

that goes with the promise. The spot market specifies in addition the value of collateral ex

post, the unwind price. That price is now for us here also an intrinsic part of the security.

This is related to but not identical with Lindahl’s pricing of public goods. With the

latter, each agent can buy the amount of the public good they want at an agent specific

price. Under individual agent maximization, that agent’s price is equal to that agent’s

marginal utility gain. A producer of the public good then maximizes revenue as the sum of

the per unit prices times the quantity produced less production cost. This yields the sum

of marginal utilities equal to the marginal cost, an optimum, achieved in a decentralized

market with agent specific prices for rights to specify the quantity of the public good. In

equilibrium the amount of the public good is common to all of the agents, but there are

agent-specific prices. In contrast, in what we do, the relevant quantity is the agent-specific

excess demand, which can be positive, negative, or zero, which can vary over agent types,

and in equilibrium must sum to zero. The price per unit excess demand is common, not

3This object is related to consumption rights in Bisin and Gottardi (2006), which internalizes the con-

sumption externality due to adverse selection problem. The key difference is that our “discrepancy from the

market fundamental” only requires own type information (endowments and savings/collateral position) and

the knowledge of the equilibrium price, which is a standard Walrasian assumption, while the determination

of the consumption rights for each type in an adverse selection environment utilizes information on other

types (see Eq. (3.2) in Bisin and Gottardi (2010) which specifies correct conjectures of what other types are

doing and the related no-envy conditions in Prescott and Townsend (1984a,b)).
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agent specific, but quantities demanded or supplied are agent specific. Thus agent types

have varying levels of expenditures. Bewley (1981) rigorously establishes Tiebout’s result

but argues that it requires special assumptions and that is not true in general. Lindahl prices

can work but in his view they eliminate the essential part of the public goods problem. We

note in particular that without Lindahl pricing, without taxes, and with the quantity of

public goods in common, expenditure must be the same across agent types.4 For us, prices

are the same across types, so no Lindahl pricing, but quantities, the excess demands, vary

because excess demands are different across different types. This makes the point that our

formulation is different from public goods or pollution in that these quantities are held

in common, whereas in our formulation agent types are buying the rights to a price and to

trade their own specific excess demand at that price (which is what influences the equilibrium

price).

Equilibrium is achieved by adding a supply side, a set of competitive broker dealers who

put together deals with the various agent types and make markets, that is, ensure that in

equilibrium supply and demand for securities in the initial market and the demand for rights

all net to zero. Indeed, any one broker dealer is of negligible size, and each takes prices

as given, so with constant returns to scale in clearing in securities and rights to trade, this

generates the equilibrium fees for the market exchanges (platforms) and the rights to trade

there. The important point is that the overall Walrasian equilibrium is efficient.

In our second leading example, a classic environment with incomplete securities, spot

markets are essential. Dropping homotheticity, we no longer refer to a market fundamental

per se; the aggregate excess demand can be a high dimensional and complex mapping from

the entire array of individual pre trade endowments. Further, securities need not be state

dependent, so a given trade in securities ex ante can have implications for the distribution of

income across states; with insufficient ways to hedge, this is precisely why a standard incom-

plete market equilibrium can be generically inefficient (e.g., Geanakoplos and Polemarchakis,

1986; Greenwald and Stiglitz, 1986). Here, to remove the externality, we do not expand the

4This is the reason why the analogy of our approach to pollution, and cap and trade, breaks down. With

pollution there is a common level and agents pay for the right to pollute. For us, the problem is two sided,

with the position having to do with the influence on the price, and positions must net to zero.
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set of securities. We do not complete the markets of securities. Rather we do expand the

types of markets. We allow forward contracting in the price vector (with dimension equals to

the number of states). A given segregated exchange specifies a given price vector. We allow

in principle many possible vectors, hence many possible exchanges. Agent types are buying

the rights to trade at these spot prices. We specify the quantities of rights to trade as the

vector of excess demands over states given any chosen segregated exchange. These rights are

priced so that in equilibrium these exchanges clear. There are active exchanges with trade

that clear in the usual sense and inactive exchanges with no trade that clear trivially, with

no trade by anyone.

Finally, with these two examples in hand, we generalize our arguments to a large class

of environments. These include that of Lorenzoni (2008), which is a cousin to our collateral

example; Hart and Zingales (2013), which is a cousin to our incomplete market example;

and we extend to information imperfections, a moral hazard contract economy with multiple

goods and retrade in spot markets, and a Diamond-Dybvig preference shock economy with

retrade in bond markets. In none of these do we actually recover the first best optimum but

rather remove the externality and deliver a constrained efficient allocation. The key, and

common ingredient across environments, is a set of constraints which contain prices.

The analysis requires excludability (hence the term segregation above). Interestingly,

Arrow (1969) is less concerned about excludability, an intrinsic part of creating the necessary

markets, as he feels this has a natural counterpart in many, though not all, real world

problems. We take this up in our implementation section. Arrow (1969) is more concerned

about the obvious small numbers problem. That is, his markets are not thick. There is

only one supplier of the own-specific commodity, for example. So while the price-taking

assumption of the Walrasian equilibrium allows one to carry out the analysis above, it is

not realistic. However, this part is easy to remedy if we consider limit economies with a

continuum of traders and positive mass of each traders type, identical in preferences and

endowments within type.5

5In both the optimum problem and the decentralized problem we restrict attention to type symmetric

allocations (a core allocation has to have this property or otherwise it can be blocked and the maximization

problem facing each agent of a given type is identical. Then the populations weights are in both sides of

8



There is, however, an assignment problem that allows yet another extension of the com-

modity space and reinforces the notion of excludability. Due to some inherent nonconvexities

in the way prices enter into constraints, namely collateral times the price of collateral as in

our first example economy, it may be necessary to convexify the problem by allowing mix-

tures. These are priced so that in the decentralized problem each agent can control the

probability that they are assigned to given markets and are excluded from others. What is

a probability in the way an individual of a given type is treated from the individual point

of view is also a fraction of the way that type is treated in the aggregate. The continuum

sets of agent types allows us to do this. Thus resource constraints, market clearing, and

broker dealer technologies are relatively easy to write down and do not involve lotteries. The

lotteries at the individual level, and mixtures at the aggregate level, are part of our techni-

cal apparatus, working for us much the way it does for Koopmans and Beckmann (1957);

Prescott and Townsend (1984a,b); Prescott and Townsend (2006).

We emphasize also that our proofs in space of mixtures are standard in that preferences,

upper contour sets, are convex and constraints are linear. Further, in many applications these

individual lotteries are degenerate, that is, agents purchase deterministic assignments, so the

notation of a lottery is essentially only an indicator function. But in other environments they

do play an active role, and we display an example.

The remainder of the paper proceeds as follows. Section 2 presents two key leading

examples including a collateral economy and an exogenous incomplete markets economy.

Section 3 describes briefly how to map a large variety of example economies into a general-

ized framework in which our market-based solution concept is applicable. We discuss how to

implement our market-based solution in the financial markets in Section 4. Section 5 con-

cludes. Appendix A generalizes to mixtures and Appendix B contains some formal proofs.

Additional results are contained in Appendix C.

first order conditions and cancel out.) The intuition above remains exactly the same.
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2 Leading Examples

This section features two example economies, a collateral economy (Kilenthong and Townsend,

2014b) and an exogenous incomplete markets economy (Geanakoplos and Polemarchakis,

1986; Greenwald and Stiglitz, 1986).

2.1 A Collateral Constrained Economy

This is a two-period economy, t = 0, 1. All financial (debt and insurance) contracts are

traded in period t = 0, henceforth called the “contracting period”. In addition, in period

t = 0, both of two consumption goods can be traded and consumed. All contracts will be

executed in period t = 1, henceforth called the “execution period”. The two goods are also

traded there. There are a finite number S of possible states of nature in this execution period

t = 1, i.e., s = 1, 2, ..., S. This allows as a special case S = 1, so there is only intertemporal

trade, borrowing and lending, from t = 0 to t = 1. For S > 1 in which contingent claims,

Arrow-Debreu securities are traded, let 0 < πs < 1 be the objective, commonly assessed,

and actual probability of state s occurring, where
∑

s πs = 1. Again, the two underlying

goods can be traded and consumed in each state s. We refer to these t = 1 markets as spot

markets.

The two underlying goods are called good 1 and good 2. Good 1 cannot be stored (is

completely perishable), while good 2 is storable from t = 0 to t = 1. Good 2 can serve

as collateral to back promises issued in the contracting period. Henceforth, good 2 and the

collateral good will be referred to interchangeably. Furthermore, good 1 will be the numeraire

good in every date and state. The price in terms of the numeraire at which the collateral

good 2 can be unwound in spot markets is the key object associated with the pecuniary

externality.

There is a continuum of agents of measure one. The agents are however divided into H

heterogeneous types, each of which is indexed by h = 1, 2, · · · , H. Each type h consists of

αh ∈ (0, 1) fraction of the population, so that
∑

h α
h = 1. Each agent type h is endowed

with good 1 and good 2, eh0 =
(
eh10, e

h
20

)
∈ R2

+ in period t = 0 and ehs =
(
eh1s, e

h
2s

)
∈ R2

+,

in each state s = 1, · · · , S at period t = 1. Let eh =
(
eh0 , · · · , ehS

)
∈ R2(1+S)

+ be the entire
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endowment profile of agent type h over period t = 0 and all states s in period t = 1. As a

notational convention, vectors or matrices will be represented by bold letters. Heterogeneity

of agents originates in part from the endowment profiles eh (and not in preferences, but

we could easily allow this extension). We also assume that the endowments in all periods

and all states are publicly known. Hence, the limited commitment considered in this paper

comes from a contract enforceability problem, not from an informational problem. But see

our comments in Section 3 on generalizations.

Let kh ∈ R+ denote the collateral holding (equivalent to the holding of good 2) of an

agent type h at the end of period t = 0 to be carried to period t = 1. Note that this collateral

allocation does not need to be equal to the initial endowment of good 2, eh20. In particular,

since good 2 can be exchanged or acquired in the contracting period (at date t = 0), kh

will be equal to the net-position in the collateral good after trading in period t = 0. The

collateral good as legal collateral backing claims is assumed to be fully registered and kept

in escrow, i.e., cannot be taken away or stolen neither by borrowers nor lenders. However,

the holding of good 2 can also include normal saving. The storage technology of good 2,

whether in collateral or normal savings, is linear but with a potentially random return. In

some applications, it is natural to treat the returns as a constant and focus on how collateral

interacts with intertemporal trade. In other applications, the risk is in the collateral itself.

Each unit of good 2 stored will become Rs units of good 2 in state s = 1, · · · , S. Specifically,

storing I units of good 2 at date t = 0 will deliver RsI units of good 2 in state s at t = 1.

The contemporary preferences of agent type h are represented by the utility function

u
(
ch1 , c

h
2

)
: R2

+ → R, which is assumed to be continuous, strictly concave, strictly increasing

in both consumption goods, and to satisfy the usual Inada conditions. Let 0 < β ≤ 1 be the

common discount factor. The discounted expected utility of agent type h is thus

Uh
(
ch
)
≡ u

(
ch10, c

h
20

)
+ β

S∑
s=1

πsu
(
ch1s, c

h
2s

)
where, as with the notation for endowments, ch =

(
ch0 , · · · , chS

)
∈ R2(1+S)

+ is the consumption

allocation.

For full generality here, we will consider state-contingent securities as the primitives and

otherwise let the security structure be endogenous. That is, we are dealing with an Arrow-
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Debreu complete security environment, but collateral will limit the securities which emerge

in equilibrium.6

We consider at most only two classes of securities7; (i) θh1s - securities paying in good 1 in

state s, (ii) θh2s - securities paying in good 2 in state s. Here a positive number denotes the

purchaser or holder, and negative the issuer, the one making the promise. When negative,

each of the state-contingent securities must be backed. The collateral constraints for an

agent type h thus take the intuitive form

psRsk
h + θh1s + psθ

h
2s ≥ 0, ∀s. (1)

The collateral constraint (1) states that, for each state s, the net-value of all assets,

including collateral good and securities, must be non-negative. If θh1s and θh2s were negative,

as promises, we could write this as psRsk
h ≥ −θh1s − psθ

h
2s. That is, there is sufficient

collateral in value in state s to honor the value of all such promises. Note that all promises

are converted to units of good 1 using the spot market price of the collateral good ps.

2.1.1 Competitive Collateral Equilibrium (with an externality)

Agents can trade in spot markets, and let τh`s be the amount of good ` = 1, 2 bought by an

agent type h in the spot markets at state s at prices ps, respectively. Let p0 be the price

6A specific piece of collateral can be used to back up several contracts as long as their promises to pay

are in different states. Thus there is no conflict in a given state s. This is known as tranching. This is

distinct from the contract-specific collateralization structure (in Geanakoplos, 2003, among others), in which

the collateral of a given security cannot be used as collateral for any other security. A security which would

default has a known payoff structure, so we may as well start with that in the first place. So it can be shown

that there is no loss of generality in restricting attention to securities without default. But the possibility

of default does restrict securities, and collateral constraints can be binding. Further, issuing securities that

do default requires no less collateral than (an equivalent set of) securities that do not. See Kilenthong and

Townsend (2014b) for more details.
7Actually with spot markets we need securities θh1s paying in the numeraire only. We proceed here in

more generality as what we do will not require active spot markets. As shown in Kilenthong and Townsend

(2014b), spot markets are redundant when all types of state contingent contracts are available ex-ante. In

other words, agents do not really need to trade in spot markets even though they may well do so. But

promises in ex ante markets still need to be backed by collateral in escrow.
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of good 2 in period t = 0, and Q`s be the prices of securities in the ex ante t = 0 market

paying in good ` = 1, 2 in state s, respectively, all priced in the numeraire good 1 at t = 0.

For notational convenience, let p ≡ (p1, . . . , pS) and Q ≡ [Q`s]`,s. A collateral equilibrium is

thus defined:

Definition 1. A competitive collateral equilibrium is a specification of prices (p0,Q,p), and

an allocation
(
ch0 , k

h,θh, τ h
)
h

such that

(i) for any agent type h as a price taker,
(
ch0 , k

h,θh, τ h
)

solves

max
(ch0 ,k

h,θh,τh)
u
(
ch10, c

h
20

)
+ β

∑
s

πsu
(
eh1s + θh1s + τh1s, e

h
2s +Rsk

h + θh2s + τh2s
)

(2)

subject to the collateral constraints (1) for each state s, and the budget constraint at

t = 0:

ch10 + p0

(
ch20 + kh

)
+
∑
s

Q1sθ
h
1s +

∑
s

Q2sθ
h
2s ≤ eh10 + p0e

h
20, (3)

and the spot budget constraint at each state s:

τh1s + psτ
h
2s = 0, (4)

(ii) markets clear for good 1 at t = 0, for good 2 at t = 0, for θh`s in state s, and for τh`s in

state s, respectively: ∑
h

αhch10 ≤
∑
h

αheh10, (5)∑
h

αh
[
ch20 + kh

]
≤

∑
h

αheh20, (6)∑
h

αhθh`s = 0, ∀s; ` = 1, 2; (7)∑
h

αhτh`s = 0, ∀s; ` = 1, 2; (8)

The necessary maximizing condition for a collateral equilibrium (ce) related to collateral

allocation kh (an interior solution to the consumer problem) is given by, for any h,

p0 =
uh20

uh10

∣∣∣
ce

=
∑
s

πsβ
uh2s
uh10

Rs +
∑
s

γhcc−s
uh10

psRs, (9)

where uh`0 =
∂u(ch10,c

h
20)

∂c`0
, uh`s =

∂u(ch1s,ch2s)
∂c`s

for ` = 1, 2, and γhcc−s is the Lagrange multiplier for

the collateral constraint (1) in state s for an agent type h.
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2.1.2 Homothetic Preferences

In principle, the market-clearing prices in these spot markets depend on the distribution of

pretrade (before ex post spot trade) endowments across agents. So to generate intuition and

to allow closed-form solutions we make a strong simplifying assumption, namely homoth-

eticity. With identical homothetic preferences, the aggregate ratio of good 1 to good 2 in

state s is the market fundamental in state s, zs, that determines price ps = p (zs); that is,

zs =

∑
h α

heh1s
RsK +

∑
h α

heh2s
, (10)

where K =
∑

h α
hkh is the aggregate (endogenous) saving including collateral. This is where

we exploit the homotheticity assumption; ratios of the aggregate are enough to pin down

equilibrium prices ps.

Now let ∆h
s = zs

(
eh2s +Rsk

h
)
− eh1s denote agent type h’s contribution to the equilibrium

price. The discrepancy ∆h
s (zs) thus reflects the good-2-weighted gap between the market

pretrade ratio and that of type h, namely, rewriting,

∆h
s (zs) =

(
eh2s +Rsk

h
)(

zs −
eh1s

eh2s +Rskh

)
. (11)

This expression can be positive if kh is large so that agent type h is adding a lot of the

collateral good in state s, in effect lowering the price, or negative if say type h is well

endowed with good 1, raising the price. Finally note that ∆h
s (zs) for type h is a function of

both the market fundamental zs and type h’s own pretrade endowment, which if different

from zs will determine the extent of spot trade. If the discrepancy ∆h
s (zs) is positive there

is net excess demand for good 1 and net supply of good 2. In addition, summing over h,

weighted by mass of type h, αh, yields the following market clearing condition:∑
h

αh∆h
s = zs

∑
h

αh
(
eh2s +Rsk

h
)
−
∑
h

αheh1s = 0, (12)

where the last equality results from condition (10). In the ultimate decentralization below,

this will be a clearing condition for the rights to trade. It is the inclusion of both the

fundamental and the extent and direction of trade under that fundamental that removes

externalities. Both will be chosen by each agent type. This relates back to Arrow (1969).

14



2.1.3 Collateral Constrained Optimality

Attainable allocations are those that can be achieved by exchanges of securities and collateral

in date t = 0 as well as exchanges of consumption goods in date t = 1 at state s, but respect-

ing that agents can trade good 1 for good 2 freely in each state s, and the planner cannot

prevent it8. In other words, a planner can only reallocate goods with the same instruments as

the agents, the security holdings and promises, and must respect the possibility of active spot

market trade. Thus the planner must respect the associated collateral constraints assigning

collateral to promises but allowing collateral to be unwound at the implicit or explicit spot

price inherent in the proposed allocation9. Accordingly, attainable allocations are defined

using the spot-price function p(zs). Likewise Geanakoplos and Polemarchakis (1986) search

for a Pareto improving allocation of assets recognizing the influence of an asset allocation on

spot prices, that spot prices are determined by the conditions that aggregate excess demands

must equal zero.10

Definition 2. An allocation
(
ch0 , k

h,θh, τ h
)
h

is attainable if

(i) it satisfies resource constraints (5)-(8);

(ii) for each agent type h, it satisfies the collateral constraints for each state s:

p(zs)Rsk
h + θh1s + p(zs)θ

h
2s ≥ 0, ∀s, (13)

and the type h spot budget constraints

τh1s + p (zs) τ
h
2s = 0,∀s; (14)

(iii) the consistency constraint (10) holds for all s.

A constrained optimal allocation is characterized using the following planner’s problem.

Let U
h

be the reservation utility level for an agent type h.

8An individual agent, in contrast, has zero mass and no influence on prices regardless of the market

structure.
9Or using a forward price ratio to value promises made in good 1 in terms of good 2, as in footnote 7.

10See Section 7.2, page 87 in that paper.
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Program 1. The Pareto Program with collateral constraints:

max
((ch0 ,k

h,θh,τh)
h
,zs)

u
(
c1

10, c
1
20

)
+ β

∑
s

πsu
(
e1

1s + θ1
1s + τ 1

1s, e
1
2s +Rsk

1 + θ1
2s + τ 1

2s

)
(15)

subject to (5)-(8), (10), (13)-(14) and the participation constraint for each h = 2, · · · , H,

u
(
ch10, c

h
20

)
+ β

∑
s

πsu
(
eh1s + θh1s + τh1s, e

h
2s +Rsk

h + θh2s + τh2s
)
≥ U

h
, (16)

and non-negativity constraints for consumption and collateral allocations.

As is typically the case, it suffices to consider only equal-treatment-of-equals in the Pareto

problem11. Let µhcc−s, and µhū denote the Lagrange multipliers for the collateral constraint

(13) for agent h in state s, and for the participation constraint (16) for agent h, respectively.

For notational convenience, let µ1
ū = 1. A necessary condition12 for constrained optimality

(op) related to collateral allocation kh is given by, for any h,

uh20

uh10

∣∣∣
op

=
∑
s

πsβ
uh2s
uh10

Rs +
∑
s

µhcc−s
µhūu

h
10

p(zs)Rs −
∑
s

αh

µhūu
h
10

p′(zs)

p(zs)

∂zs
∂K

∑
h̃

µh̃cc−sθ
h̃
1s, (17)

where p′(zs) = ∂p(zs)
∂zs

, K =
∑

h α
hkh.

2.1.4 The Externality

Note that an infinitesimal agent of type h takes a spot price, p(zs), as invariant to his

or her own actions in the collateral equilibrium. To the contrary, the constrained planner

11Again, for exposition simplicity and without any real loss, we consider only equal-treatment (for each

type), and interior solutions (i.e., the non-negativity constraint for kh is neglected). With homothetic

and strictly concave preferences, and no non-convexity, agents of the same type will optimally choose the

same allocation in an equilibrium; that is, given the same market prices in equilibrium. Thus, a collateral

equilibrium allocation has equal treatment of equals property. More generally, externalities in this class of

models, if they exist, have nothing to do with the equal treatment of equals property.
12Given that the constraint set is not convex, this optimality condition is necessary but may not be

sufficient. Nevertheless, this does not cause any problem to our externality argument, as we simply need to

show that a collateral equilibrium cannot be constrained optimal, i.e. does not satisfy the necessary optimal

condition (17).
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can influence the spot prices p(zs) through collateral assignments for the agents of type

h = 1, 2, . . . , H, in period t = 0, namely kh, which affect in turn the market fundamentals

zs. This key influence is the term in p′(zs)
p(zs)

∂zs
∂K

. If the very last term in (17) were zero and

we set γhcc−s =
µhcc−s

µhū
, then condition (9) is exactly the same as (17), and there would be no

externality. The last term in (17) could be zero if either µh̃cc−s = 0, that is, no collateral

constraint is binding for any h̃ or p′(zs)
p(zs)

∂zs
∂K

= 0.13

Proposition 1. With continuous, strictly concave, strictly increasing, and identical homo-

thetic utility functions, a competitive collateral equilibrium is constrained optimal if and only

if all collateral constraints are not binding, i.e. γhcc−s = µhcc−s = 0 for all h and all s.

Proof. See Appendix C.

In particular when the very last term in (17) is not zero so not first-best, we can show that

it must be positive. As a result, the equilibrium price of good 2 in period t = 0 will be too

high relative to its shadow price from the (constrained) optimal allocation
uh20

uh10

∣∣∣
op

. In addition,

this implies that the competitive collateral equilibrium level of (endogenous) aggregate saving

Kce is too large14 relative to the (constrained) optimal level of aggregate saving/collateral

Kop. Intuitively, the planner can do better by lowering the aggregate saving/collateral. The

result is summarized in the following proposition.

Proposition 2. With continuous, strictly concave, strictly increasing, and identical homo-

thetic utility functions, if a competitive collateral equilibrium is not first-best optimal, then

(i) the equilibrium price of good 2 in period t = 0, p0, is too high, i.e., p0 >
uh20

uh10

∣∣∣
op

, and

13But under homothetic preferences the later is not possible. With a strictly concave utility function, the

spot price varies with the market fundamental (is not constant), i.e. p′(zs)
p(zs)

∂zs
∂K 6= 0. As a result, when at

least one of the collateral constraints is binding, i.e., µh̃cc−s > 0 for some type h̃, the last term in (17) will be

non-zero. With this non-zero term, a collateral equilibrium will not be constrained efficient. It is true that,

as an exceptional case, a collateral equilibrium could be a full first-best optimum, that is, the environment

could be such that despite the focus of the paper we could ignore the collateral constraint.
14This is our analogous here to the result of Hart and Zingales (2013) that it is possible for agents to be

saving too much.
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(ii) the (endogenous) aggregate saving/collateral in a competitive collateral equilibrium,

Kce, is too large, i.e., Kce > Kop.

Proof. See Appendix C.

This is also our most simple version of Lorenzoni (2008) and the fire sales model. There

is too much debt and hence too much collateral, and this is moving (distorting) prices.

2.1.5 New Markets for the Rights to Trade in Segregated Exchanges and Their

Prices

The externality problem is in general a missing-market problem. For us, here in this example,

the missing markets are those over the “market fundamentals”; that is, those aspects of the

environment which determine the spot-market-clearing price. The forces determining the

valuation of collateral, are as yet, in the previous section, not contracted.15 Therefore, our

solution is to create new markets for rights to trade. The right for type h in state s at market

fundamental zs is the discrepancy from the fundamental16, as discussed earlier, namely,

∆h
s (zs) =

(
eh2s +Rsk

h
) (
zs − eh1s

eh2s+Rskh

)
. In effect, agent types choose the fundamental zs,

or price, at which they want to trade and also the amount they will trade at that zs. This

discrepancy when priced will make each type pay or be paid according to the marginal impact

15It is true when there are states of the world, agents are implicitly trading securities that are contingent

on realized prices. But what we do is different. Suppose, as in our Environment 1 in Section 2.1.6, there is

no uncertainty, hence nothing contingent. The future spot price is a known, deterministic number. There

remains an externality problem, however, through the collateral constraints. Hence we allow agents to commit

to trade at different alternative spot prices, essentially any price they want and can afford. The prices of

these markets then guide agents to a new equilibrium which is constrained efficient, with a deterministic

price which is different from the original one.
16In the general model of Kilenthong and Townsend (2014a), much like the consumption constraints

in Arrow (1969), rights to trade can be determined by excess demand functions. In fact, we can map

∆h
s into the excess demand as follows. For example, with the following common CRRA utility function

u (c1, c2) =
c1−γ1 −1

1−γ +
c1−γ2 −1

1−γ , we can show that the excess demand function for good 1 with the market

fundamental zs is given by τh∗1 (zs) =
(

zγ−1
s

1+zγ−1
s

)
∆h
s (zs). Note that the additional term

zγ−1
s

1+zγ−1
s

depends on

zs only so, to go back and forth between discrepancy and excess demand, we have to only redefine units

traded in each state s. A key advantage of the discrepancy ∆h
s defined in (11) is the independence from the

utility function form.
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of that type on the price. These prices of rights will come from the planner problem and

reflect the marginal valuation of the market-clearing constraint (12),
∑

h α
h∆h

s (zs) = 0.

Let P∆ (zs, s) be the unit price of rights to trade at spot-market price ps = p (zs), where

the latter is the price used to unwind collateral. The fee for the rights to trade in a security

exchange zs is given by that price P∆ (zs, s) times the quantity of the discrepancy, ∆h
s (zs),

namely the total expenditures is P∆ (zs, s) ∆h
s (zs) (or revenue if negative).

To internalize the externality, agents who bring in too much of good 2 relative to the

market fundamental would have to pay for rights to trade, and vice versa. For example,

if ∆h
s (zs) > 0, then zs >

eh1s
eh2s+Rskh

and type h holds a relative low amount of good 1 and

abundant amount of good 2 relative to zs. As a result, that type h would need to pay for the

right to trade or unwind in this market. This makes intuitive sense since the problem, the

inefficiency, is oversaving. Conversely, when ∆h
s (zs) < 0, an agent type h has a relatively

high amount of good 1 and scarce amount of good 2, relative to zs. With oversaving in the

aggregate this type will be compensated.

Note that if type h’s pretrade endowment is exactly equal to the market fundamental,

eh1s
eh2s+Rskh

= zs, then ∆h
s (zs) = 0. But typically with heterogeneity and active trade an agent

type h will be on one side or the other of the market fundamental, buying or selling the

collateral good 2 for good 1. Of course it takes at least two sides to open an active market.

Finally, an agent type h is making these commitments over all states s, so the total impact

on its budget in the contracting period is
∑

s P∆ (zs, s) ∆h
s (zs).

Competitive Equilibrium with Segregated Exchanges

Each agent must choose one but only one fundamental spot market in each state s, that

is, one forward price at which collateral will be unwound. More formally, let an indicator

function δh (zs) ∈ {0, 1}, that is, δh (zs) = 0 or δh (zs) = 1, denote an agent type h’s discrete

choice of spot and security market zs in each state s = 1, 2, . . . , S. With vector z = (zs)
S
s=1,

we write this function as δh (z) so that the particular zs in each s is specified. These choices

of z are jointly bundled with spot trade τh`s in state s, rights ∆h (zs) and securities θh`s.
17 In

17It may seem the consumption goods are also indexed but in fact they are the residual implied by the choice

of securities θh`s (z) and the associated collateral kh (z) at t = 0. However, spot markets for consumption and
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sum, notationally, let xh (z) =
(
δh (z) , ch0 (z) , kh (z) ,θh (z) , τ h (z) ,∆h (zs)

)
denote a typical

bundle or allocation for an agent type h, where ∆h (z) ≡
[
∆h
s (zs)

]
s
. Again the entire vector

is now indexed by choice of z and the latter is captured by δh (z).18 Likewise prices other

than p0 will be indexed by zs. Let Q` (zs, s) denote the price of security θh`s (z) with with

Q ≡ [Q (zs, s)]s,zs , and P∆ (zs, s) denote the market price of rights to trade in security

exchange zs in state s, the price of rights ∆h
s (zs) with P∆ ≡ [P∆ (zs, s)]s,zs .

Otherwise, apart from the bundling and these prices, a competitive equilibrium with

segregated exchanges is similar to Definition 1 except that the objective function and con-

straints are premultiplied by the discrete choice, the budget is augmented by expenditures

on rights and there is an additional clearing equation for these rights.

Definition 3. A competitive equilibrium with segregated exchanges is a specification of

allocation
[
xh (z)

]
h,z

and prices (p0,Q,P∆,p) such that

(i) for any agent type h as a price taker, allocation
[
xh (z)

]
z

solves

max
[xh(z)]

z

∑
z

δh (z)
[
u
(
ch10 (z) , ch20 (z)

)
+
∑
s

πsu
(
eh1s + θh1s (z) + τh1s (z) , eh2s +Rsk

h (z) + θh2s (z) + τh2s (z)
) ]

subject to collateral constraints∑
z

δh (z)
[
p (zs)

[
Rsk

h (z) + θh2s (z)
]

+ θh1s (z)
]
≥ 0,∀s, (18)

budget constraint at t = 0∑
z

δh (z)
{
ch10 (z) + p0

[
ch20 (z) + kh (z)

]
+
∑
s

∑
`

Q` (zs, s) θ
h
`s (z) +

∑
s

P∆ (zs, s) ∆h
s (zs)

}
≤ eh10 + p0e

h
20, (19)

and budget constraint at state s∑
z

δh (z)
[
τh1s (z) + p (zs) τ

h
2s (z)

]
= 0,∀s; (20)

collateral at t = 0 are not segregated in that everyone can trade consumptions including the collateral good

together in the t = 0 market.
18If δh (z) = 0, then the rest need not be specified.
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(ii) markets clear for good 1 in period t = 0, for good 2 in period t = 0, for securities, spot

trades, and for rights to trade, respectively,∑
h

∑
z

δh (z)αhch10 (z) =
∑
h

αheh10, (21)

∑
h

∑
z

δh (z)αh
[
ch20 (z) + kh (z)

]
=
∑
h

αheh20, (22)

∑
h

∑
z−s

δh (z)αhθh`s (z) = 0,∀s, `, zs, (23)

∑
h

∑
z−s

δh (z)αhτh`s (z) = 0,∀s, `, zs, (24)

∑
h

∑
z−s

δh (z)αh∆h
s (zs) = 0,∀s, zs, (25)

where z−s = (z1, . . . , zs−1, zs+1, . . . , zS) is a vector of market fundamentals in all states

but state s.19

Note that from the market clearing condition of the rights to trade (25), for any active

spot market chosen by multiple types, spot markets must clear and in this sense the valuation

of collateral is self-fulfilling.

Public Finance Interpretation

The budget constraint with the prices of the rights to trade has a public finance interpreta-

tion, as if we were to try to implement the optimum solution by taxes and subsidies.

Specifically, substituting ∆h
s (zs) = zs

(
eh2s +Rsk

h
)
− eh1s into the budget constraint for

an agent type h, equation (19) gives∑
z

δh (z)
{
ch10 (z) + p0

[
ch20 (z) + kh (z)

]
+
∑
s

∑
`

Q` (zs, s) θ
h
`s (z) ≤ eh10 + p0e

h
20

−
∑
s

[P∆ (zs, s) zs] e
h
2s −

∑
s

[−P∆ (zs, s)] e
h
1s −

[∑
s

P∆ (zs, s) zsRs

]
kh
}

We can now see that we need to have three types of taxes/subsidies, (i) saving/collateral

tax of
∑

s P∆ (zs, s) zsRs per unit of saving/collateral, (ii) state-contingent collateral good

19Note that (21)-(22) are summed over all z while (23)-(25) are conditional on partition zs. The difference

reflects the fact that markets for good 1 and good 2 in period t = 0 are not segregated but the others are.
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endowment tax of P∆ (zs, s) zs per unit of collateral good endowment in state s, and (iii)

state-contingent subsidy, negative tax −P∆ (zs, s) per unit of consumption good endowment

of good 1 in state s. Note that it is not sufficient to tax/subsidize only saving/collateral.

The tax/subsidy rate on endowments also depends on the security exchange zs. That is,

the security exchange zs itself is a choice as far as the household is concerned. This is like

looking up marginal rates in a big tax book and settling on which page (or pages) to use,

indexed by the exchanges zs that the agent chooses.

But again we do not need the taxes. We let the markets decide. Markets determine

prices and prices determine allocations.

2.1.6 Example Economies with Segregated Security Exchanges

Before we generalize, and prove the welfare theorems, we present a series of three examples.

The first illustrates the basic mechanics of rights to trade we have featured so far in the

simplest possible setting without uncertainty (in which in equilibrium there are no securities

beyond simple saving). The second features two states of the world in which insurance

contracts are actively traded in both the equilibrium with and without the externalities.

The third is an example which has mixtures at the aggregate level and lotteries at the

individual level, and this provides an illustrative transition to the more general notation in

Appendix A, and proofs of the welfare theorems in Appendix B.

Environment 1 (Intertemporal Smoothing). There are two periods, t = 0, 1, and a single

state, S = 1 in period t = 1. So this is a pure intertemporal economy. We make the point

that the problem and its remedy has nothing to do with uncertainty. In particular, our rights

are not trades on financial options. Indeed, in this example economy no securities will be

traded, in equilibrium, and in this way we focus on the market for rights to trade in spot

markets, only. Henceforth we drop all subscript s from the notation.

There are two types of agents, H = 2, both of which have an identical constant relative

risk aversion (CRRA) utility function

u(c1, c2) = − 1

c1

− 1

c2

. (26)

Each type consists of 1
2

fraction of the population, i.e. αh = 1
2
. In addition, the discount
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factor is β = 1. The storage technology is given by R = 1. The endowment profiles of the

agents are shown in Table 1 below. Note that an agent type 1 is well endowed with both

goods in period t = 0 and vice versa for type 2. The first best allocation has both agents

consuming 2 units of each good in every period. The first-best allocation thus suggests that

agent 2 would like to move resources backwards in time from t = 1 to t = 0, i.e., borrow,

and therefore will be constrained in the competitive collateral equilibrium. But borrowing

requires collateral, and agent 2 is short of this as well. The equilibrium will have agent 2

borrowing nothing and only trading in spot markets. Agent 1 will be saving on its own to

smooth consumption. Finally, in the equilibrium with rights to trade in spot markets, agent

1 will be paying more the higher is her storage/saving and this will be a force to do less.

Likewise, agent 2 will be compensated for her participation in the rights markets, in effect

providing resources for consumption in the first period, i.e., moving in the direction of the

first best.

We summarize the equilibrium allocation in Table 1 featuring collateral kh and con-

sumption ch`s. See Appendix C for the derivation of the competitive equilibrium with the

externality.

Table 1: Endowment profiles of the agents.

endowments equilibrium with the externality (ex) equilibrium with rights to trade (op)

eh10 eh20 eh11 eh21 kh ch10 ch20 ch11 ch21 kh ch10 ch20 ch11 ch21

h = 1 3 3 1 1 1.3595 2.6899 1.7756 1.3252 1.7756 1.1753 2.6073 1.8410 1.2970 1.6781

h = 2 1 1 3 3 0 1.3101 0.8649 2.6748 3.5839 0 1.3927 0.9837 2.7030 3.4972

There is no loss of generality to consider a solution with no security trading, i.e., θh`s = 0

for all h and for all `. Agents do actively trade in spot markets. The price of good 2 in

period t = 0 is pex0 =
(

4
4−kex

)2
= 2.2948, and the market fundamental in period t = 1 is

zex = 4
4+kex

= 0.7463, which implies that the spot price is p (zex) = 0.5570. Note that

the collateral price at t = 0 is higher in the equilibrium with the externality than in the

first-best, “fb”, i.e., pfb0 = 1 < pex0 = 2.2948. On the other hand, the spot price of good 2

in period t = 1 is lower in the equilibrium with the externality than in the first-best, i.e.,

p
(
zfb
)

= 1 > p (zex) = 0.5570.

We will now turn to a corresponding competitive equilibrium with rights to trade in
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segregated exchanges (without the externality). There is one active spot market, zop = 0.7729

(“op” stands for optimality), even though all spot markets are available in principle for trade.

That is, in equilibrium, both types optimally choose to trade in the same spot market with

specified market fundamental, zop = 0.7729.

Table 2 presents equilibrium prices/fees of rights to trade in spot markets, that is P∆ (z)

not only for zop but also other, different market fundamental levels z. Note again that the

prices/fees of out-of-equilibrium (non-active) spot markets are available, but at such prices

agents do not want to trade in them.

Table 2: Equilibrium prices of rights to trade in spot markets P∆ (z). Bold numbers are

equilibrium prices for actively traded spot markets.

z = 0.7479 z = 0.7729 z = 0.7979

P∆ (z) 0.4639 0.5375 0.6118

An agent type 1 is coming in with good 2 in storage, and therefore his discrepancy is

positive. Type 1 pays for right to trade. On the other hand, an agent type 2’s discrepancy

is negative. Thus, with a positive equilibrium fee P∆(zop) = 0.5375, an agent type 2 must

get paid for the access to the spot market. In particular, a constrained agent (h = 2) with

∆2(zop) = −0.6813, is receiving a transfer of −P∆(zop)∆2(zop) = 0.3662 in period t = 0 for

being in the spot market zop = 0.7729. Graphically, this shifts her budget line outward at

t = 0 by T = 0.3662.20

Note that with lower aggregate saving, the price of good 2 in period t = 0 in this

competitive equilibrium with segregated exchanges (without the externality) is lower (pop0 =

2.0073 < pex0 = 2.2948) but the spot price of good 2 at t = 1 is higher (p(zop) = 0.5974 >

p(zex) = 0.5570), relative to the one in the competitive collateral equilibrium allocation (with

20Trading in rights to trade generates a redistribution of wealth and welfare in general equilibrium. The

expected utility of an agent type 1 and type 2 in this competitive equilibrium with segregated exchanges

(without the externality) are U1
op = −2.2936, U2

op = −2.3905, respectively. The expected utility of an agent

type 1 and type 2 in the competitive collateral equilibrium allocation (with the externality) are U1
ex = −2.2527

and U2
ex = −2.5724, respectively. Thus if nothing else is done, internalizing the externality is beneficial to an

agent type 2 (constrained agent) but harmful for an agent type 1. To induce welfare gains for all of agents,

there must be lump sum transfers, as in the second welfare theorem, which we prove below.
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the externality). That is, the price of good 2 varies less over time when the externality is

internalized. In this sense we mitigate fluctuations. We do not move all the way to the first

best.

The next example illustrates an economy with uncertainty where collateralized securities,

θh1s, are actively traded (cannot be substituted by spot trades). All agents are constrained,

but at different states. In particular, an agent will be binding in a state where her endowment

is large. This is because she would like to transfer a part of such a large amount of wealth

backwards in time from t = 1 to t = 0 but cannot do so because of the collateral constraints.

Environment 2 (State Contingent Securities). The economy in this example is similar to

the one in Environment 1 with two periods, but there are two states, S = 2. There are

two types of agents, H = 2, both of which have an identical constant relative risk aversion

(CRRA) utility function as in (26). Each type consists of 1
2

fraction of the population, i.e.

αh = 1
2
. In addition, the discount factor β = 1. The storage technology is constant and

given by Rs = 1 for s = 1, 2. The endowment profiles are presented in Table 3. Note, unlike

the first example, that the agents are identical in endowments at t = 0. But agent type 1

has relatively more of both goods in state s = 1 than in state s = 2 and vice versa for agent

type 2.

Table 3: Endowment profiles of the agents.

eh10 eh20 eh11 eh21 eh12 eh22

h = 1 2 2 3 3 1 1

h = 2 2 2 1 1 3 3

We will now solve for a competitive equilibrium with the externality. The detailed deriva-

tion is again omitted and presented in Appendix C. Collateralized securities θh`s (or borrowing

contracts) are θ1
11 = −θ1

12 = −0.3042 = −θ2
11 = θ2

12. In words, an agent h = 1 issues (bor-

rows) θ1
11 = −0.3042 units of collateralized security paying good 1 at s = 1, and vice versa

for an agent h = 2. We now turn to the competitive equilibrium with rights to trade. Each

type of agent holds the same amount of collateral good kh = 0.4200 < 0.4603, less than the

one in competitive equilibrium with the externality. Collateralized securities (or borrowing
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contracts) are θ1
11 = −θ1

12 = −0.2872 = −θ2
11 = θ2

12. Note that agents trade less securities

relative to the equilibrium with the externality. This is because the agents save less and are

issuing fewer securities. That is, the externality generates too much borrowing.

The following example presents an economy where it is possible to assign agents to

different exchanges and have multiple segregated exchanges.

Environment 3 (Heterogeneous Borrowers and the Role of Mixtures). There are three

types of agents, two borrower types 2, 3 and one lender type 1. Each type consists of 1
3

fraction of the population, i.e. αh = 1
3
, and all other aspects of the environment are as in

Environment 1. The endowment profiles are given in Table 4 below.

Table 4: Endowment profiles of the agents.

Type of Agents eh10 eh20 eh11 eh21

h = 1 4.26 11.5 0.5 0.5

h = 2 3.92 0.5 7 5

h = 3 4.32 0.5 5 7

Interestingly, there are now two active spot markets, z = 0.6113 and z = 0.8132 in the

competitive equilibrium with segregated exchanges. The spot market z = 0.6113 consists

of some fraction of agents type 1 (19.69 percent), and all of agents type 3 (a constrained

type). On the other hand, the spot market z = 0.8132 consists of some residual fraction

of agents type 1 (80.31 percent), and all of agents type 2 (a constrained type). We use the

term mixtures to refer to the fact that agent 1 is allocated to two active markets in some

nontrivial proportions.

Equilibrium fees of rights to trade in spot markets, including the fees of inactive (out-of

equilibrium) spot markets are summarized in Table 5 below.

Table 5: Equilibrium fees of rights to trade in spot markets. The bold numbers are (actively

traded) equilibrium prices.

z = 0.6088 z = 0.6113 z = 0.6138 z = 0.8088 z = 0.8132 z = 0.8138

P∆(z) 0.9119 0.9348 0.9589 2.2339 2.2537 2.2564
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It is socially optimal to compensate constrained agents with positive transfers at period

t = 0, to try to move back toward the first best, i.e., alleviate borrowing constraints. In this

example the number of active segregated spot markets is equal to the number of constrained

types, to allow this to happen.

In the competitive equilibrium with segregated exchanges (without the externality), the

discrepancy from the market fundamental of both constrained types are negative, i.e., ∆2 =

−2.9340 and ∆3 = −0.7209. With positive equilibrium price of the discrepancy, agents type

2 and agents type 3 receive transfers from rights to trade fees P∆ (z) ∆h (z) of 6.6122 units

of good 1 in period t = 0 and 0.6739, respectively. Agents type 1 buy a lottery which is

actuarially fair and thus pay fees paid in proportion to the relative number of its type assigned

to each exchange. Agents type 1 would like to buy into the higher spot market, which is

z = 0.8132 in this case, where good 2 is more valuable because with (endogenous) saving

she will end up with more of good 2 than good 1 in period t = 1 but such a deterministic

choice is not affordable.

2.1.7 The Existence of Competitive Equilibrium with Segregated Exchanges

and the Welfare Theorems

The formal notation for competitive equilibrium with mixtures is in Appendix A. Suffice it

to note here that as in the classical general equilibrium model, the economy is a well-defined

convex economy, i.e., the commodity space is Euclidean, the consumption set is compact

and convex, the utility function is linear. As a result, the first and second welfare theorems

hold, and a competitive equilibrium exists.

The standard contradiction argument is used to prove the first welfare theorem below.

We assume that there is no local satiation point in the consumption set.

Theorem 1. With local nonsatiation of preferences, a competitive equilibrium with segregated

exchanges allocation is constrained optimal.

Proof. See Appendix B.

The Second Welfare theorem states that any constrained optimal allocation, correspond-

ing to strictly positive Pareto weights, can be supported as a competitive equilibrium with
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segregated exchanges with transfers. The standard approach applies here. Essentially, de-

centralized prices are coming from the Lagrange multipliers for the resource constraints of

the planning problem.

Theorem 2. With locally non-satiated utility functions that satisfy the Inada conditions, any

constrained optimal allocation corresponding with strictly positive Pareto weights λh > 0,∀h

can be supported as a competitive equilibrium with segregated exchanges and with lump sum

transfers.

Proof. See Appendix B.

We use Negishi’s mapping method (Negishi, 1960) to prove the existence of competitive

equilibrium with segregated exchanges.

Theorem 3. With locally non-satiated utility functions that satisfy the Inada conditions and

positive endowments, a competitive equilibrium with segregated exchanges exists.

Proof. See Appendix C.

2.2 An Exogenous Incomplete Markets Economy

As before, consider again an economy with two periods, t = 0, 1. There are S possible states

of nature in the second period t = 1, i.e., s = 1, . . . , S, each of which occurs with probability

πs such that
∑

s πs = 1. There are 2 goods, labeled good 1 and good 2, in each date and

in each state. Because the endowment profiles are the same as specified in the collateral

economy discussed above, we omit notational details in this section for brevity. We do stress

that now there is no saving as our focus is no longer on collateral.

There are J securities available for purchase or sale in the first period, t = 0. Let

D = [Djs] be the payoff matrix of those assets where Djs be the payoff of asset j in units of

good 1 (the numeraire good) in state s = 1, 2, . . . , S in the second period t = 1. Here we do

not include securities paying in good 2 as there must be spot markets anyway. Let θhj denote

the amount of the jth security acquired by an agent of type h at t = 0 with θh ≡
[
θhj
]
j
,

and Qj denote the price of security j with Q ≡ [Qj]j. An exogenous incomplete markets
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assumption specifies that D is not full rank; that is, J < S. This is crucial for the model of

this section. In particular, spot trades become essential but create an externality.

As before, let τh`s denote spot trade amount of good ` = 1, 2 in spot markets in state s

acquired by an agent of type h. Let p0 and ps denote the prices of good 2 in units of good

1 in period t = 0 and at state s in period t = 1, respectively. Here spot market trade is

generically essential given the incomplete security structure.

The preferences of an agent of type h are represented by the utility function uh
(
ch1 , c

h
2

)
,

and the discounted expected utility of h is defined by:

Uh
(
ch
)
≡ uh

(
ch10, c

h
20

)
+ β

S∑
s=1

πsu
h
(
ch1s, c

h
2s

)
, (27)

where β is the discount factor. Note that there would be no externalities if preferences were

identically homothetic, as spot prices are determined by ratio of aggregate endowment only,

which, with no storage, no one can influence. So we assume otherwise; that is, preferences

are now not identically homothetic.

Definition 4 (Competitive Equilibrium with Exogenous Incomplete Market). A competitive

equilibrium is a specification of prices (p0,Q,p), and an allocation
(
ch0 ,θ

h, τ h
)
h

such that

• for any agent type h as a price taker,
(
ch0 ,θ

h, τ h
)

solves

max
ch0 ,θ

h,τh
uh
(
ch10, c

h
20

)
+ β

∑
s

πsu
h

(
eh1s +

∑
j

Djsθ
h
j + τh1s, e

h
2s + τh2s

)
(28)

subject to the budget constraints in the first period

ch10 + p0c
h
20 +

J∑
j=1

Qjθ
h
j ≤ eh10 + p0e

h
20, (29)

and the spot budget constraint in state s

τh1s + psτ
h
2s = 0, for s = 1, . . . , S; (30)

• markets clear for good ` = 1, 2 at t = 0, for θhj for all j = 1, . . . , J , and for spot trade
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τh`s in state s, respectively:∑
h

αhch`0 =
∑
h

αheh`0,∀` = 1, 2, (31)∑
h

αhθhj = 0,∀j, (32)∑
h

αhτh`s = 0,∀s; ` = 1, 2. (33)

The key constraints that generate the externality in this problem are the spot-budget

constraints (30) for an agent of type h. Note that the spot price ps is determined by pretrade

position of endowments and securities where endowments are exogenous but securities are

endogenous, and we write this as ps = ps (θ, e). As in Geanakoplos and Polemarchakis

(1986), the dependency generates an indirect price effect from security reallocations. This

indirect effect then produces an externality when the security markets are incomplete21.

2.2.1 Competitive Equilibrium with Segregated Exchanges

Each security exchange in this case must deal with S spot markets as a bundle. This is due

to the restriction of the incompleteness of the markets; we cannot separately write down

contingent contracts for each state. More formally, each security exchange trades the vector

bundle of the rights to trade in the spot markets at particular vector of prices p = (ps)
S
s=1,

and for an agent type h the right to trade in the spot markets at the same particular vector

p is defined as a vector ∆h (p) =
[
∆h
s (p)

]S
s=1

.

More specifically, type h’s right to trade in exchange p for particular state s is ∆h
s (p)

and is defined as the excess demand for good 1 of an agent type h in spot markets in state

s, i.e., ∆h
s (p1, . . . , ps, . . . , pS) = τh∗1s

(
ehs ,θ

h, ps
)
, which is the solution to the following utility

maximization:

(
τh∗1s

(
ehs ,θ

h, ps

)
, τh∗2s

(
ehs ,θ

h, ps

))
= argmax

τh1s,τ
h
2s

uh

eh1s +
J∑
j=1

Djsθ
h
j + τh1 , e

h
2s + τh2

 (34)

subject to the spot-budget constraints (30).

21When the security markets are complete, these indirect price effects are canceling each other out, and as

a result, the competitive equilibrium with exogenous security markets is (constrained) efficient as expected.

This statement is formally proved in a proposition in Appendix C.
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As with our initial formulation in the collateral economy, we allow each agent to choose

one but only one exchange indexed by p = (p1, . . . , ps, . . . , pS), where it can trade good 2

at spot price ps in each state s. An agent’s choice ranges over all potential price vector p.

More formally, let δh (p) ∈ {0, 1}, that is δh (p) = 0 or δh (p) = 1, denote an agent type h’s

discrete choice of an exchange indexed by p.

At t = 0, each agent type h is choosing both the spot market prices it desires and the

security trades jointly. Thus the consistency constraint for each exchange p that is active

then can be derived from the spot market clearing condition, which can be rewritten as

follows. ∑
h

αhδh (p) ∆h
s (p) = 0,∀s,p. (35)

Each consistency constraint ensures that the composition of agent types in an exchange

p = (p1, . . . , ps, . . . , pS) is such that the spot market clearing prices in each state s is ps.

Notice that these constraints are for active exchanges, not for every possible p.

Let Qj (p) denote the price of security j traded in exchange p with Q ≡ [Qj (p)]j,p, and

P∆ (p, s) denote the market price of rights to trade in exchange p for state-s spot market,

∆h
s (p) with P∆ ≡ [P∆ (p, s)]s,p.

Definition 5. A competitive equilibrium with segregated exchanges is a specification of

allocation
(
xh (p)

)
h,p
≡
(
δh (p) , ch0 (p) ,θh (p) , τ h (p) ,∆h (p)

)
h,p

and prices (p0,Q,p,P∆)

such that

• for any agent type h as a price taker,
[
xh (p)

]
p

solves

max
[xh(p)]

p

∑
p

δh (p)

u(ch10 (p) , ch20 (p)
)

+
∑
s

πsu

eh1s +
∑
j

Djsθ
h
j (p) + τh1s (p) , eh2s + τh2s (p)


subject to the budget constraints in the first period

∑
p

δh (p)

ch10 (p) + p0c
h
20 (p) +

∑
j

Qj (p) θhj (p) +
∑
s

P∆ (p, s) ∆h
s (p)

 ≤ eh10 + p0e
h
20,

and the spot-budget constraint in state s∑
p

δh (p)
[
τh1s (p) + psτ

h
2s (p)

]
= 0,∀s,
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• markets clear for good ` in t = 0, for securities j paying good 1, for good ` in state s,

and for rights to trade in exchange p for state s, respectively,∑
h

∑
p

δh (p)αhch`0 (p) =
∑
h

αheh`0,∀` = 1, 2,

∑
h

δh (p)αhθhj (p) = 0,∀j; p,

∑
h

δh (p)αhτh`s (p) = 0,∀s; p; ` = 1, 2,

∑
h

δh (p)αh∆h
s (p) = 0,∀s; p.

As in the collateral economy, markets for the rights to trade can remove the externality.

The formal argument22 is quite similar to the collateral economy in Section 2.1.

Of course, one might wonder if our method solves the externality problem by simply

completing the markets? By allowing agents to choose markets with pre-specified spot

prices in each state s, we effectively create state-contingent transfers of wealth at least to

some degree. But is it enough to achieve the first best allocation? The answer is generally,

no. Exogenous incomplete markets and the positivity of spot prices still restrict how much

wealth transfers we can make in each state. Technically, the feasible set with incomplete

markets and rights to trade is generically a strict subset of the feasible set with the complete

markets.

See Figure 1 for an illustrative example. This example assumes the stereotypical debt

contract that pays the same amount of good 1 in each two states. However, in state s = 2,

there is more of good 1 and good 2 overall. Then, no matter what the price ratio ps in state

s = 2, certain regions cannot be reached. The main point is that the scarcity in state s = 1

can affect the feasibility in state s = 2 because the markets are incomplete.

3 Mapping Economies into A Generalized Framework

The key point is that our market-based solution concept is applicable to many economies

in which agents face a friction that generates constraints containing spot market prices. So

22In Kilenthong and Townsend (2014a), we prove the welfare theorems for a general model that fits each

of the two leading examples as special cases.
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11 21

(a) A feasible set in state s = 1 when only avail-

able security pays the same amount of good 1

in both states.

Agent 2

(e12,e22)

Agent 1

(b) A feasible set in state s = 2 when only avail-

able security pays the same amount of good 1 in

both states. The shaded areas are not feasible.

Figure 1: Feasible Sets in state s = 1 and s = 2 when markets are incomplete.

here we proceed in reverse and lay out a generalized framework much as in Prescott and

Townsend (1984b), then show several well known environments in the literature are special

cases.

There are at least 6 prototype economies that fit into our framework. These include

collateral economy as in Section 2.1, exogenous incomplete markets as in Section 2.2, fire

sales economy (Lorenzoni, 2008), liquidity constrained economy (Hart and Zingales, 2013),

moral hazard with retrading (Acemoglu and Simsek, 2012; Kilenthong and Townsend, 2011),

and hidden information with retrading (Diamond and Dybvig, 1983). For brevity, this section

presents only the key constraints in each economy without describing the entire environment

of the model nor the equilibrium with the new markets for rights to trade. See Kilenthong

and Townsend (2014a) for the general notation that encompasses all these examples.

The general form of those constraints generating pecuniary externalities is actually easy

to write. It is denoted by Ch
(
ch,θh, τ h,yh,p

)
, where yh is the vector of inputs and outputs

for an associated production technology and p is the vector of spot prices. The notation of

consumption ch, securities θh, and trades τ h is as before. The key feature is the introduction

of price vector p.

For the collateral economy, the key friction can be written as the following constraints:

Ch
s

(
θh`s, y

h
2s, ps

)
≡ psy

h
2s + θh1s + psθ

h
2s ≥ 0,∀s, h, (36)
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which are equivalent to the collateral constraints (1) with yh2s = Rsk
h.

For exogenous incomplete markets, the key constraints are

Ch
s

(
τh`s, ps

)
≡ τh1s + psτ

h
2s = 0,∀s, h, (37)

which is identical to the spot budget constraints (30).

For the fire sales economy of Lorenzoni (2008), the key constraint that causes an ineffi-

ciency is the following no-default condition:

Ce
ed1 (yen00, θ

e
1s, θ

e
2s, ps) = (ηas + max {ps − γ, 0}) yen00 + θe1s + θe2s ≥ 0,∀s = 1, 2. (38)

Constraints (38) imply that the entrepreneur is better off not defaulting at state s = 1, 2

in period t = 1. Here yen00 is the capital input in period t = 0, as is the productivity in

state s, γ is the cost to repair a unit of capital in period t = 0, θets are securities paying in

unit of consumption goods at state s in period t = 1, 2, and 1− η ∈ (0, 1) is the fraction of

the firm’s current profit that the entrepreneur could keep if he decided to default. For more

detail see Kilenthong and Townsend (2014a). The key point is that this constraint depends

on equilibrium prices ps which in turn are determined by collective ex-ante choices of the

agents.

The next economy is the liquidity constrained economy of Hart and Zingales (2011), where

there are two types of agents, namely doctors d and builders b. The key constraints that

cause an inefficiency are the following spot market constraints in period t = 1, 2, respectively:

Ch
1

(
τhf1, τ

h
b , pb

)
= τhf1 + pbτ

h
b = 0,∀h = b, d, (39)

Ch
2

(
τhf2, τ

h
d , pd

)
= τhf2 + pdτ

h
d = 0,∀h = b, d. (40)

These constraints state that each agent can trade building or doctor service when it is

available with their storage claim (as the numeraire goods in each period) received at that

time, which is the liquidity in the model. Note that this is an incomplete market model.

Here τhft, τ
h
b , and τhd are the storage outcome at period t, spot trade for building service, and

spot trade for doctor service, respectively, and pb and pd are the spot-market-clearing prices

of building and doctor services in period t = 1 and t = 2, respectively.

For the moral hazard with retrading economy of (Acemoglu and Simsek, 2012; Kilenthong

and Townsend, 2011), the key constraints that cause an inefficiency are the following incentive
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compatibility constraints (IC):

C1,a,a′ (c, p) =
∑
q

u (c1(q, a), c2(q, a), a) f(q|a)−
∑
q

v (c1(q, a), c2(q, a), a′, p) f(q|a′) ≥ 0,∀a, a′. (41)

The incentive compatibility constraints ensure that the agent takes the recommended action

a and so a′ = a. Mor especifically, here a is the recommended action, a′ is an alternative

action, q = (q1, q2) is the output vector of good 1 and good 2, f(q|a) is the probability

production technology, c`(q, a) is the optimal consumption of good ` condition on realized

output q and recommended action a, and the value function under the alternative action a′

is

v (c1(q, a), c2(q, a), a′, p) = max
τ1,τ2

u (c1(q, a) + τ1, c2(q, a) + τ2, a
′) (42)

subject to the spot budget constraint:

τ1 + pτ2 = 0, (43)

taking the spot price p as given.

The last prototype economy is the hidden information with retrading economy of (Dia-

mond and Dybvig, 1983). The key constraints that causes an inefficiency are the following

truth-telling constraints (IC):

C1,η,η′ (c, p) = u (c1 (η) , c2 (η) , η)− v (c1 (η′) , c2 (η′) , η, p) ≥ 0,∀η, η′, (44)

The truth-telling constraints ensure that the agent report the true shock, and so η′ = η.

Here η is the true shock/state, η′ is the reported shock, c` (η′) is consumption under the true

shock, c` (η′) is consumption conditional on the reported shock η′, and the value function

under the reported shock η′ is

v (c1 (η′) , c2 (η′) , η, p) = max
τ1,τ2

u (c1 (η′) + τ1, c2 (η′) + τ2, η) (45)

subject to the spot budget constraint:

τ1 + pτ2 = 0, (46)

taking the spot price p as given.
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To sum up, agents in each of these economies face a set of frictions that generates con-

straints containing spot market prices similar to the ones in the collateral economy and

the exogenous incomplete markets economy, which are presented in Section 2.1 and 2.2,

respectively. Our new concept of the markets for rights to trade in segregated exchanges

can be applied in the same way to remove an externality in these economies. Formally,

let ∆h
s (p) denote the amount of the rights to trade in a particular security exchange in

state s with a specified price ps. That is, in order to be eligible to trade in this exchange

p ≡ (p1, ps, . . . , ps, . . . , pS), an agent of type h must hold the rights to trade ∆h
s (p) equals

to its excess demand for good 1 in that spot market dhs
(
ehs ,θ

h,yh, ps
)
. These rights to trade

at p have its own unit of account market prices, P∆ (p, s). See Kilenthong and Townsend

(2014a) for more details.

4 Discussion on Implementation

Virtually all the technological ingredients of what would be needed to implement our solution

are available in actual securities markets, including financial markets that are currently

susceptible to fire sales. Below we try to be as specific as possible in a particular application,

with parenthetical remarks to more general considerations.

We begin with the Generalized Collateral Financing Repo. This is a financial platform

organized by the Fixed Income Clearing Corporation (FICC), designed to allow securities

dealers to buy/sell, borrow/lend securities and cash among themselves and to do the netting.

It originated in 1998 and came from a merger of two separate platforms. (This makes

the point that new financial platforms can be created, here with a merger but divisions

and segmentation are also possible). US Treasuries and Fannie Mae & Fredie Mac MBS

are the most common securities traded among other government issued or backed financial

instruments. (Here we imagine our model environment which is written for agent types with

utility over consumption goods is actually an economy with traders/dealers with indirect

preferences over cash and securities having to do with their customer demands, which we

do not model.) Securities are held, maintained, and registered on electronic book entry

systems of FICC, the Clearing Banks, the Federal Reserve and the US Treasury. Some
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direct transfers of securities are made through Fedwire Securities Service with payment in

Fedwire Funds. It is not possible to transfer legal ownership of securities outside of these

utilities. Our assumptions of exclusivity do not require new technology.

A typical repossession or repo transaction is a sale of a security with an agreed upon price,

ex ante, at which it will be bought back. These are like borrowing and lending transactions,

in which a borrower in need of cash from an investor gives up securities to be held in escrow

until the loan is repaid. In the GCF repo market securities are placed at the principal-plus-

interest loan amount only (the FICC acts as a guarantor). The difference between the sale

price and the higher repurchase price is the interest rate. We emphasize that the repurchase

price is part of the contract. All initial contracts, agreed upon transactions, and collateral

are recorded and trades executed with the two major clearing banks.

Repo markets are potentially subject to fire sale risks. There is post-default risk. When a

dealer borrower defaults on the repo, its investors receive the securities posted as collateral.

(Please recall that the securities in our model may well default. No default was assumed

without loss of generality as any security which does default, with collateral passing to the

investor is equivalent with another, that we use explicitly in the analysis, which does not

default. We model the sale of collateral by investors as if in a competitive market.)23 We

emphasize here this default and sale aspect. Related, a borrower may wish to get some of

the securities used as collateral back during the trading cycle and in that case the clearing

bank determines the cash value at current market prices, at that point in time. Our point

here is that the clearing banks could value and unwind collateral in these instances at pre

specified prices, agreed at the time when the trade is entered into. Some exchanges have

liquidation auctions to value assets, for example, those of a defaulting member of a clearing

house, with the auction restricted to members as named players. Our point here is that one

could imagine something like index credit default swaps traded ex ante in market exchanges

as insurance against default, and also that traders would pay or be paid to participate in

this bidding. Payment would be debited/credited from payment accounts in the contract

23There is also a pre-default risk of fire sales which is reminiscent of Lorenzoni’s tale of Thailand. Stressed

dealers face difficulties raising funds in tri-party repo when investors worry about the counterparty risk,

causing them to de-lever and sell securities.
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period, so there would be no time inconsistency problem on that dimension.

In practice trades in the GCF repo market are among dealers and are placed with inter-

dealer brokers (IDBs). In 2012 there were roughly 120 dealers and 5 IDB platforms. All deal-

ers must be approved by the FICC. Trades of a dealer with an IDB are conducted by voice,

allowing negotiation or electronically, allowing anonymous trading with platform/market de-

termined prices. Though buyers are matched with sellers, the bilateral nature of the market

can fade away; that is, in many models, in the limit with a large number of traders, the

outcome is Walrasian as we assume here from the get go. See in particular Townsend (1983)

and Kilenthong and Qin (2014) for an intermediary that could be interpreted as an IDB

announcing prices and trying to attract trades. Our point here, again, is that one could

imagine financial platforms which post prices in advance for unwinding collateral and charge

fees or provide compensation for participation.

Again exclusivity is not a problem given current technology. The current market structure

has exclusivity embedded, as is clear in this discussion of broker dealers, FICC, clearing

banks, and the Fed for trade, clearing, and settlement. More generally, the Fed has a list of

authorized broker dealers for the OTC treasury market. Mutual funds and other investors

are not allowed to deal directly on Fedwire funds and Fedwire securities and go through

broker dealers. More generally, some market exchanges are said to restrict access to high

frequency traders. Or in yet another example, exchange traded funds name a restricted set

of Authorized Participants who are allowed to deal with the sponsor of the fund. Finally,

as a consequence of Dodd Frank regulation, market participants in CDS index contracts

are required to trade in a Swap Execution Facility and to clear in a CCP platform. These

platforms charge fees and commission, based typically on volume.

To sum up, the technology exists to register securities, to monitor trades, to enforce

agreements, to auction assets, and to hedge default risk and security price movements ex

ante.
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5 Conclusion

Here we draw on the insights of Coase (1960) and Lindahl (1958), extend the commodity

space as in Arrow (1969), overcome some conceptual and technical hurdles, and show how

the appropriate set of markets can eliminate fire sale externalities and the inefficiency of

incomplete security markets. Our solution concept extends to many other well known envi-

ronments in the literature. By its nature, a pecuniary externality has to do with the impact

of prices in constraints beyond the role of prices in budget constraints, as happens in many

models. The solution can be put rather simply: create segregated market exchanges which

specify prices in advance (but with the same prices that also clear active markets ex post)

and price the right to trade in these markets so that participant types pay, or are com-

pensated, consistent with the market exchange they choose and that type’s excess demand

contribution to the price in that exchange.
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A Mixture Representation of the New Markets

To deal with the non-convexity problem generated by the collateral constraints, we now use

a probability measure, which is a mixture at the aggregate and a lottery at the individual

level. That is, we now suppose it is possible to assign agents to different exchanges even in

state s. Security trades are also bundled into this potentially random assignment.

More formally, with a continuum of agents, let xh (c0, k,θ, τ , z,∆) be the fraction of

agents type h assigned to a bundle (c0, k,θ, τ , z,∆). At the individual level, for each agent

type h, let xh (c0, k,θ, τ , z,∆) ≥ 0 denote a probability measure on (c0, k,θ, τ , z,∆). In

other words, xh (c0, k,θ, τ , z,∆) is the probability of receiving period t = 0 consumption
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c0 ≡ (c10, c20), collateral k, securities θ = [θ`s]`,s, spot trade τ = [τ`s]`,s, and being in

exchanges indexed by z ≡ [zs]s with rights to trade ∆ ≡ [∆s (zs)]s.

All securities contracts are entered into ex-ante at t = 0, and spot trades and the valuation

of collateral take place at spot price p (zs). Unlike the previous discrete choice xh notation

in Section 2.1.5, it is not necessary to index all the objects in the commodity vector by z.

This is because a probability of objects conditioned on z times the marginal probability of z

can be rewritten as a joint probability with z is an object in the commodity vector. But this

still allows many of the objects chosen to be degenerate, as in the example of Environment

3 earlier, where only agent type 1 chooses a lottery on z and securities conditioned on that

draw of z are degenerate.

As a probability measure, a lottery of an agent type h satisfies∑
c0,k,θ,τ ,z,∆

xh (c0, k,θ, τ , z,∆) = 1. (47)

Each bundle (c0, k,θ, τ , z,∆) will be feasible only if the collateral and security assign-

ments satisfy the collateral constraints (13), and there is a relationship among z and the

∆s (zs), s = 1, 2, . . . , S for each zs, namely equation (11).

Accordingly, we impose the following condition on a probability measure

xh (c0, k,θ, τ , z,∆) ≥ 0 if (c0, k,θ, τ , z,∆) satisfies (11) and (13), (48)

= 0 if otherwise.

More formally, the consumption possibility set24 of an agent type h is defined by

Xh =

{
xh ∈ Rn

+ :
∑

c0,k,θ,τ ,z,∆

xh (c0, k,θ, τ , z,∆) = 1, and (48) holds

}
. (49)

Note that Xh is compact and convex. In addition, the non-emptiness of Xh is guaranteed

by assigning mass one to each agent’s endowment, i.e., no trade is a feasible option.

24More formally, with all choice objects gridded up as an approximation, the commodity space L is assumed

to be a finite n-dimensional linear space. The limiting arguments under weak-topology used in Prescott and

Townsend (1984a) can be applied to establish the results if L is not finite.
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Pareto Program with Segregated Exchanges

We now can write down the programming problem for the determination of ex ante Pareto

optimal allocations. Instead of maximizing type 1 utility subject to parametric reservation

utilities for the other type, as Program 1, here we just maximize the λ-weighted sum of

expected utilities. But there are utilities and λ’s which make them equivalent. Of course we

need all the resource constraints on consumption, securities, and transfers. In sum we have

Program 2.

max
(xh∈Xh)

h

∑
h

λhαh
∑

c0,k,θ,z,∆

xh (c0, k,θ, τ , z,∆)V h (c0, k,θ, τ , z,∆) (50)

where V h (c0, k,θ, τ , z,∆) = u
(
ch10, c

h
20

)
+ β

∑
s πsu

(
eh1s + θ1s + τ1s, e

h
2s +Rsk + θ2s + τ2s

)
is the expected utility value derived from a bundle (c0, k,θ, τ , z,∆) by an agent type h.

Objective function (50) is subject to resource constraints for good 1 at t = 0, good 2 at

t = 0, securities θ`s, spot trades τ`s, and the rights to trade ∆s (zs), respectively:

∑
h

αh
∑

c0,k,θ,τ ,z,∆

xh (c0, k,θ, τ , z,∆) c10 =
∑
h

αheh10, (51)

∑
h

αh
∑

c0,k,θ,τ ,z,∆

xh (c0, k,θ, τ , z,∆) [c20 + k] =
∑
h

αheh20, (52)

∑
h

αh
∑

c0,k,θ,τ ,z−s,∆

xh (c0, k,θ, τ , z,∆) θ`s = 0,∀s; zs; ` = 1, 2, (53)

∑
h

αh
∑

c0,k,θ,τ ,z−s,∆

xh (c0, k,θ, τ , z,∆) τ`s = 0,∀s; zs; ` = 1, 2, (54)

∑
h

αh
∑

c0,k,θ,τ ,z−s,∆

xh (c0, k,θ, τ , z,∆) ∆s (zs) = 0,∀s; zs; ` = 1, 2. (55)

Note again that the resource constraints (51) and (52) imply that all agent types can

trade good 1 and good 2 at t = 0 regardless of their choice of exchange zs. On the other

hand, constraints (53)-(55) imply that each member of an exchange zs can trade ex-ante

securities, spot trades, and rights to trade with other members in the same exchange only.

The optimal condition with respect to any particular xh (c0, k, θ, τ, z,∆) for Pareto Pro-
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gram 2 is

λhV h (c0, k,θ, τ , z,∆) ≤ P̃10c10 + P̃20c20 + P̃20k + +
∑
`,s

Q̃` (zs, s) θ`s

+
∑
`,s

P̃` (zs, s) τ`s +
∑
s

P̃∆ (zs, s) ∆s + P̃ hl (56)

where
{
P̃`0, Q̃` (zs, s) , P̃` (zs, s) , P̃∆ (zs, s)

}
are the shadow prices of the resource constraints,

P̃ h
l is the Langrange multiplier for the probability constraint (49), and the inequality holds

with equality if xh (c0, k,θ, τ , z,∆) > 0. Of course, the choice objects xh (c0, k,θ, τ , z,∆)

can be zero, no mass, if the marginal gain is less than the costs at shadow prices. One might

note in particular that constraint (55) delivers shadow prices not only for each s but also

for every possible zs conditioned on state s. All of them are satisfied at equality, with the

inactive exchanges trivially since there is no mass there (in the underlying commodity space

excess demands are zero for all types in inactive exchanges).

Competitive Equilibrium with Segregated Exchanges in The Mixture Represen-

tation

To decentralize, let P (c0, k,θ, τ , z,∆) be the price for a commodity point (c0, k,θ, τ , z,∆).

However we can already guess from the planning problem that, apart from a normalization

to express in terms of the numeriare good 1, in the equilibrium

P (c0, k,θ, τ , z,∆) = c10 + p0c20 + p0k +
∑
`,s

Q` (zs, s) θ`s +
∑
`,s

P` (zs, s) τ`s +
∑
s

P∆ (zs, s) ∆s. (57)

Thus we have a representation of prices on the objects separately; that is, on consumption

goods at t = 0, security purchases or issues, spot market consumption, and the market rights.

For convenience, though we retain the short-hand P notation. Thus, for consumers: each

agent type h chooses xh in period t = 0 to maximize its expected utility:

max
xh

∑
c0,k,θ,τ ,z,∆

xh (c0, k,θ, τ , z,∆)V h (c0, k,θ, τ , z,∆) (58)

subject to xh ∈ Xh, and period t = 0 budget constraint∑
c0,k,θ,τ,z,∆

P (c0, k,θ, τ , z,∆)xh (c0, k,θ, τ , z,∆) ≤ eh10 + p0e
h
20, (59)

taking price of good 2 at t = 0, p0, and prices of lottery, P (c0, k,θ, τ , z,∆) as given.
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As with Arrow’s original paper, we need something on the production side, since a

type’s action enters into the clearing constraints for the market rights ∆s (zs) (the con-

sistency constraints) and hence helps to determine fundamental zs. Here we create broker

dealers as intermediaries producing trades. Broker-dealers are agents who try to put to-

gether deals, put buyers and sellers of securities together. Formally, the broker-dealer issues

(sells) y (c0, k,θ, τ , z,∆) ∈ R+ units of each bundle (c0, k,θ, τ , z,∆), at the unit price

P (c0, k,θ, τ , z,∆). Note that y (c0, k,θ, τ , z,∆) at a particular bundle (c0, k,θ, τ , z,∆)

is the number of units of that bundle. There is nothing random. Another distinct bundle

(c0, k,θ, τ , z,∆) has its own quantity, number of units y (c0, k,θ, τ , z,∆). With θ 6= θ′, the

intermediary is taking distinct positions in the market. The clearing constraints below will

ensure that when we add up over all bundles, the net positions add up to zero.25

Let y ∈ L be the vector of the number of bundles issued as one move across the underlying

commodity points (c0, k,θ, τ , z,∆). With constant returns to scale (see below), the profit of

a broker-dealer must be zero and the number of broker-dealers becomes irrelevant. Therefore,

without loss of generality, we assume there is one representative broker-dealer, which takes

prices as given.

The objective of the broker-dealer is to maximize its profit by supplying y (c0, k,θ, τ , z,∆)

as follows:

max
y(c0,k,θ,τ ,z,∆)

∑
c0,k,θ,τ ,z,∆

y (c0, k,θ, τ , z,∆) [P (c0, k,θ, τ , z,∆)− c10 − p0c20 − p0k] (60)

subject to clearing constraints:∑
c0,k,θ,τ ,z−s,∆

y (c0, k,θ, τ , z−s, zs,∆) θ`s = 0, ∀s; zs; ` = 1, 2, (61)

∑
c0,k,θ,τ ,z−s,∆

y (c0, k,θ, τ , z−s, zs,∆) τ`s = 0, ∀s; zs; ` = 1, 2, (62)

∑
c0,k,θ,τ ,z−s,∆

y (c0, k,θ, τ , z−s, zs,∆) ∆s = 0 ,∀s; zs, (63)

again taking prices p0, P (c0, k,θ, τ , z,∆) as given. Note that constraints (61) ensure that the

books of the broker dealer are balanced in that the value of issuing and holding securities are

25Our intermediary is different from Lindahl’s producer in that our intermediary does not produce public

goods. But the decentralization concept is similar.
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equal. Similarly, constraints (62) imply that total supply of collateral including the unwind

collateral in a particular exchange is equal to the total commitment to buy the collateral in

the same exchange, and constraints (63) ensure that the net supply of the rights to trade in

an exchange is zero.

The existence of a maximum to the broker-dealer’s problem requires, that for any bundle

(c0, k,θ, τ , z,∆),

P (c0, k,θ, τ , z,∆) ≤ c10 + p0c20 + p0k +
∑
`,s

Q̂` (zs, s) θ`s +
∑
`,s

P̂` (zs, s) τ`s +
∑
s

P̂∆ (zs, s) ∆s, (64)

where Q̂` (zs, s), P̂` (zs, s) and P̂∆(zs, s) are the shadow price of an ex-ante security paying

in good ` of constraints (61), the shadow price of the spot trade of good ` of constraints (62),

and the shadow price of the right to trade in the security exchange zs of constraints (63),

respectively. Condition (64) holds with equality if y (c0, k,θ, τ , z,∆) > 0. On the other

hand, if the inequality (64) is strict, then y (c0, k,θ, τ , z,∆) = 0 as when implicit shadow

costs are greater than revenue.

Market Clearing: The market clearing condition for good 1 in period t = 0 is∑
c0,k,θ,τ ,z,∆

y (c0, k,θ, τ , z,∆) c10 =
∑
h

αheh10 (65)

Similarly, the market clearing condition for good 2 in period t = 0 is∑
c0,k,θ,τ ,z,∆

y (c0, k,θ, τ , z,∆) [c20 + k] =
∑
h

αheh20 (66)

The market clearing conditions for mixtures in period t = 0 are∑
h

αhxh (c0, k,θ, τ , z,∆) = y (c0, k,θ, τ , z,∆) , ∀ (c0, k,θ, τ , z,∆) . (67)

Definition 6. A competitive equilibrium with segregated exchanges (with mixtures) is a

specification of allocation
(
xh,y

)
, and prices (p0, P (c0, k,θ, τ , z,∆)) such that

(i) for each h, xh ∈ Xh solves utility maximization problem (58) subject to period t = 0

budget constraint (59), taking prices as given;

(ii) for the broker-dealer,
{

y, Q̂` (zs, s) , P̂` (zs, s) , P̂∆ (zs, s)
}

solve profit maximization

problem (60) subject to clearing-trade constraints (61)-(63) taking prices as given;
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(iii) markets for good 1, for good 2, and for mixtures in period t = 0 clear, i.e., (65), (66)

and (67) hold.

Note that market clearing (67) when substituted into the broker dealer problem gives

the Pareto programming problem. Indeed, intuitively, one can go back and forth between

the shadow prices of the Pareto problem and the prices and Lagrange multipliers of the

consumer and intermediary Lagrangian problems, as first order conditions are necessary and

sufficient.

B Proofs

Proof of Proposition 1. We first prove that a competitive collateral equilibrium is constrained

optimal if and only if all collateral constraints are not binding, i.e. γhcc−s = µhcc−s = 0 for all

h and all s. The proof is based on the first-order conditions for Pareto program (15) and

the first-order conditions for a competitive collateral equilibrium. Note that the resource

constraints in the Pareto program (15) and the market-clearing constraints in the competi-

tive collateral equilibrium are clearly equivalent. In addition, the collateral constraints are

the same in both problems as well. Hence, we only need to match all first-order conditions

from both problems. In addition, with limited space, we will focus only on the term that

generates an externality.

Optimal Conditions for the Pareto Program (15)

Let µhcc−s and µhū denote the Lagrange multipliers for the collateral constraint (13) for state

s for an agent type h and for the participation constraint (16) for an agent type h =

1, 2, . . . , H with a normalization of µ1
ū = 1, respectively. Combining the first-order conditions

with respect to ch10 and kh, and the complementarity slackness conditions for the collateral

constraints gives:

uh20

uh10

=
∑
s

πsβ
uh2s
uh10

Rs +
∑
s

µhcc−s
µhūu

h
10

p(zs)Rs +
∑
s

αh

µhūu
h
10

p′(zs)
∂zs
∂K

∑
h̃

µh̃cc−s

[
Rsk

h + θh̃2s

]
=

∑
s

πsβ
uh2s
uh10

Rs +
∑
s

µhcc−s
µhūu

h
10

p(zs)Rs −
∑
s

αh

µhūu
h
10

p′(zs)

p(zs)

∂zs
∂K

∑
h̃

µh̃cc−sθ
h̃
1s, (68)
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where the last equation follows from the complementarity slackness condition with respect

to collateral constraints:

µh̃cc−s

{
p(zs)

[
Rsk

h̃ + θh̃2s

]
+ θh̃1s

}
= 0⇒ µh̃cc−s

[
Rsk

h̃ + θh̃2s

]
= −

µh̃cc−sθ
h̃
1s

p(zs)
. (69)

Note that (68) is exactly the same as (17).

Optimal Conditions for a Collateral Equilibrium

Let γcc−s be the Lagrange multiplier for the collateral constraint for state s. Combining the

first-order conditions with respect to ch10 and kh gives:

uh20

uh10

=
∑
s

πs
βuh2s
uh10

Rs +
∑
s

γhcc−s
uh10

p(zs)Rs. (70)

We are ready to prove the lemma.

(i) (⇐=) Suppose that γhcc−s = µhcc−s = 0 for all h and all s. We then can show that

any competitive collateral equilibrium allocation will also solve the Pareto program

(15) by matching all necessary and sufficient conditions. In particular, we can pick

µ20

µ10
= p0,

µ`s
µ10

= Q`s, and γhcc−s =
µhcc−s

µhū
= 0. In conclusion, any collateral equilibrium

allocation is constrained optimal if γhcc−s = µhcc−s = 0 for all h and all s.

(ii) (=⇒) Suppose that a competitive collateral equilibrium allocation is constrained opti-

mal, i.e., solves the Pareto program (15). Hence, it must satisfy (68). Using the same

matching conditions as above, this will be true only if the last terms in (68) is zero.

We will prove this by a contradiction argument.

Suppose that there are some h̃ with µh̃cc−s 6= 0, and the last terms in (68) is zero:

αh

µhūu
h
10

∑
s

p′(zs)

p(zs)

∂zs
∂K

∑
h̃

µh̃cc−sθ
h̃
1s

 = 0. (71)

This must be true for all h and h̃.

We will now argue that
∑

h̃ µ
h̃
cc−sθ

h̃
1s has the same negative sign for every state s. Using

the first-order condition for the Pareto program with respect to θh1s, we can show that∑
h̃

µh̃cc−sθ
h̃
1s =

∑
h̃

µ1sα
h̃θh̃1s − βπs

∑
h̃

µh̃ūu
h̃
1sθ

h̃
1s, (72)

49



where µ1s is the Lagrange multiplier for the resource constraint for θh1s. The resource

constraint for θh1s,
∑

h̃ α
h̃θh̃1s = 0, then implies that

∑
h̃ µ1sα

h̃θh̃1s = 0 for all s. In

addition, the first-order condition for the Pareto program with respect to ch10 implies

that µh̃ū = µ10αh̃

uh̃10

. Thus, we now have

∑
h̃

µh̃cc−sθ
h̃
1s = −βπsµ10

∑
h̃

(
uh̃1s

uh̃10

)
αh̃θh̃1s. (73)

The optimality requires that an agent with relative large IMRS,
uh̃1s
uh̃10

, will hold positive

θh̃1s ≥ 0 and vice versa. This implies that the positive term of αh̃θh̃1s ≥ 0 will be weighted

more than the negative one. Combining this result with the resource constraint for θh1s,∑
h̃ α

h̃θh̃1s = 0, we can conclude that
∑

h̃

(
uh̃1s
uh̃10

)
αh̃θh̃1s ≥ 0,∀s, and therefore

∑
h̃

µh̃cc−sθ
h̃
1s = −βπsµ10

∑
h̃

(
uh̃1s

uh̃10

)
αh̃θh̃1s ≤ 0,∀s. (74)

With strictly concave and identical homothetic utility function, we can show that

p′(zs)
p(zs)

∂zs
∂K

< 0, and therefore can conclude that

p′(zs)

p(zs)

∂zs
∂K

∑
h̃

µh̃cc−sθ
h̃
1s

 ≥ 0, ∀s. (75)

As a result, (71) will hold only if

∑
h̃

µh̃cc−sθ
h̃
1s = −βπsµ10

∑
h̃

(
uh̃1s

uh̃10

)
αh̃θh̃1s = 0,∀s. (76)

Given that
∑

h̃ α
h̃θh̃1s = 0, condition (76) implies that

uh̃1s
uh̃10

=
uh1s
uh10
, ∀h, h̃; s. Using the

fact that
uh2s
uh1s

= p(zs) for all h, we can also show that
uh̃1s
uh̃1ŝ

=
uh1s
uh1ŝ
, ∀h, h̃; s. In words, the

marginal rate of substitutions across times and states are equalized across agent types.

Under the assumption stated in the proposition, these equalities are necessary and

sufficient conditions for first-best optimality, which in turn implies that all collateral

constraints are not binding, i.e., γhcc−s = µhcc−s = 0 for all h and all s. Hence, we

can conclude that a collateral equilibrium is constrained optimal, solving the Pareto

program (15), only if all collateral constraints are not binding.
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The rest of the proof is by contrapositive. Suppose a competitive collateral equilibrium is

constrained optimal. The above result implies that a necessary and sufficient condition for a

competitive collateral equilibrium to be constrained optimal is that all collateral constraints

are not binding. No binding collateral constraints implies first-best optimality. In short, we

have shown that first-best optimality is a necessary and sufficient condition for constrained

optimality. Thus we can conclude that a competitive collateral equilibrium is constrained

suboptimal if and only if it is not first-best optimal.

Proof of Proposition 2. The proof is an immediate result of the proof of proposition 1 above.

First, if a competitive collateral equilibrium is not first-best optimal, then (by Proposition

1) we can show that the last term of (68) is strictly positive:∑
s

αh

µhūu
h
10

p′(zs)

p(zs)

∂zs
∂K

∑
h̃

µh̃cc−sθ
h̃
1s > 0. (77)

This implies that the marginal rate of substitution between good 1 and good 2 in period

t = 0 at the competitive collateral equilibrium is larger than the optimal level of the marginal

rate of substitution between good 1 and good 2 in period t = 0, i.e.,
uh20

uh10

∣∣∣
ce
>

uh20

uh10

∣∣∣
op

. This

implies that the equilibrium price of good 2 in period t = 0 is too high relative to its

shadow price from the (constrained) optimal allocation
uh20

uh10

∣∣∣
op

. In addition, given that the

aggregate consumption of good 1 is fixed and preferences are identically homothetic, this

result can be true only if the (endogenous) aggregate saving/collateral in a competitive

collateral equilibrium, Kce, is too large, i.e., Kce > Kop.

Proof of Theorem 1. Let (x,y), and (p0, P (c0, k,θ, τ , z,∆)) be a competitive equilibrium.

Suppose the competitive equilibrium allocation is not Pareto optimal, i.e. there is an at-

tainable allocation x̃ ∈ X such that Uh
(
x̃h
)
≥ Uh

(
xh
)

for all h and Uh
(
x̃h̃
)
> Uh

(
xh̃
)

for some h̃. For notational purposes, let b ≡ (c0, k,θ, τ , z,∆) be a typical bundle. With

local nonsatiation of preferences, we have
∑

b P (b)xh (b) ≤
∑

b P (b) x̃h (b) for all h, and∑
b P (b)xĥ (b) <

∑
b P (b) x̃ĥ (b) for some ĥ. Summing over all agents with weights αh, we

have

∑
b

P (b)
∑
h

αhxh (b) <
∑
b

P (b)
∑
h

αhx̃h (b) . (78)
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The optimal condition (64) for the market-maker’s profit maximization problem implies

that, for any typical bundle b,

P (b)y(b) =

c10 + p0c20 + p0k +
∑
s,`

Q̂` (zs, s) θ`s +
∑
s,`

P̂` (zs, s) τ`s +
∑
s

P̂∆ (zs, s) ∆s

 y(b).

(79)

Using the market-clearing condition for mixtures in period t = 0, (67), we can substitute∑
h α

hxh(b) for y(b) for every bundle b on the left hand side. Then, summing over all bundles

b gives ∑
b

P (b)
∑
h

αhxh (b) =
∑
h

αheh10 + p0

∑
h

αheh20, (80)

where we apply the technology constraints of the broker-dealer (61)-(63) and the market

clearing conditions (65)-(66). Similarly, from what we know already about expenditures for

the supposed dominating bundle at the outset of this proof, we can also show that∑
b

P (b)
∑
h

αhx̃h(b) ≤
∑
h

αheh10 + p0

∑
h

αheh20. (81)

Using (80) and (81), (78) can be rewritten as∑
h

αheh10 + p0

∑
h

αheh20 <
∑
h

αheh10 + p0

∑
h

αheh20

This is a contradiction!

Proof of Theorem 2. We will first prove that any constrained optimal allocation can be de-

centralized as a compensated equilibrium. Then, we will use a standard cheaper-point ar-

gument (see Debreu, 1954) to show that any compensated equilibrium is a competitive

equilibrium with transfers. The compensated equilibrium is defined as follows.

Definition 7. A compensated equilibrium is a specification of allocation (x,y), and prices

p0, P (c0, k,θ, τ , z,∆) such that

(i) for each h as a price taker, xh ∈ Xh solves

min
x̂h

∑
(c0,k,θ,τ ,z,∆)

P (c0, k,θ, τ , z,∆) x̂h (c0, k,θ, τ , z,∆) (82)

subject to

Uh
(
x̂h
)
≥ Uh

(
xh
)

; (83)
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(ii) for the market-maker,
{

y, Q̂` (zs, s) , P̂` (zs, s) , P̂∆ (zs, s)
}

solves (60), taking prices as

given,

(iii) in period-0, markets for good-1, good-2 and mixtures clear, i.e., (65)-(67) hold.

Given that the optimization problems are well-defined concave problems, Kuhn-Tucker

conditions are necessary and sufficient. The proof are divided into three steps.

(i) Kuhn-Tucker conditions for a compensated equilibrium allocation: Let γh(0) and γh(l)

be the Lagrange multiplier for constraint (83), and for the probability constraint (47),

respectively. The optimal condition for xh (c, k,θ, τ , z) is given by

γh(0)V h (c0, k,θ, τ , z,∆) ≤ P (c0, k,θ, τ , z,∆) + γh(l), (84)

where the inequality holds with equality if xh (c0, k,θ, τ , z,∆) > 0. Recall that the

optimal condition (64) for the market-maker’s profit maximization problem implies

that, for any typical bundle b,

P (b) ≤

c10 + p0c20 + p0k +
∑
s,`

Q̂` (zs, s) θ`s +
∑
s,`

P̂` (zs, s) τ`s +
∑
s

P̂∆ (zs, s) ∆s

 . (85)

where the condition holds with equality if y (c0, k,θ, τ , z,∆) > 0.

(ii) Kuhn-Tucker conditions for Pareto optimal allocations: A solution to the Pareto

program satisfies condition (56). In addition, for any bundle (c0, k,θ, τ , z,∆) with

xh (c0, k,θ, τ , z,∆) > 0 for some h, we can show that Q̃2(zs,s)

Q̃1(zs,s)
=

uh2s
uh1s

= p(zs). This

result is derived using a variational principle with respect to θ1s and θ2s, and using

the fact that the agent can trade in spot markets at price p(zs), which implies that

uh2s
uh1s

= p(zs).

(iii) Matching dual variables and prices: We then set γh(0) = λh

P̃10
, p0 = P̃20

P̃10
, Q̂`(zs, s) =

Q̃`(zs,s)

P̃10
, P̂`(zs, s) = P̃`(zs,s)

P̃10
, P̂∆ (zs, s) = P̃∆(zs,s)

P̃10
and γh(l) =

P̃h
l

P̃10
, which imply that

the optimal conditions of the Pareto program are equivalent to the optimal conditions

for consumers’ and market-maker’s problems in the compensated equilibrium. That

is, a solution to the Pareto program also solves the consumer’s and market-maker’s

problems. Again the resource and consistency constraints in the Pareto program are
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identical to the market-clearing and consistency conditions in equilibrium. To sum up,

any Pareto optimal allocation is a compensated equilibrium.

Next we show that any compensated equilibrium, corresponding to λh > 0, is a com-

petitive equilibrium with transfers using the cheaper point argument. First of all, let the

wealth of an agent type h in the compensated equilibrium be wh =
∑

b P (b)xh (b), which

is feasible, i.e.
∑

h α
hwh =

∑
h α

h
(
eh10 + p0e

h
20

)
. In addition, with λh > 0, for every h, an

Inada condition guarantees that a solution to the Pareto program, which is a compensated

equilibrium allocation, will not have a strictly positive mass on c = 0.

We can pick a cheaper allocation as x̂, with c0 = 0. More specifically, let 0 ∈ C, and set

x̂h (0, k,θ, τ , z,∆) =
∑

c0
xh (c0, k,θ, τ , z,∆) and x̂h (c0, k,θ, τ , z,∆) = 0, for any c0 6= 0.

Note that the alternative allocation put strictly positive masses on bundles with c0 = 0. The

strictly increasing utility function implies that p0 > 0. Consequently, the optimal condition of

the market-maker (64) implies that P (c0, k,θ, τ , z,∆) > P (0, k,θ, τ , z,∆), for any c0 ≥ 0

and c0 6= 0. As a result, we can show that
∑

b P (b)xh (b) >
∑

b P (b) x̂h (b).

To sum up, we have shown that there exists an allocation x̂h that is cheaper than the

compensated equilibrium allocation, xh, for every agent h. As a result, using the cheaper-

point argument, a compensated equilibrium is a competitive equilibrium with transfers.

Proof of Theorem 3. For notational convenience, we redefine the grid to include the endow-

ment profiles, i.e.,

eh(b) = 1, for b = (e0, k = 0, θ = 0, τ = 0, z = 0,∆ = 0)

= 0, otherwise

In addition, the optimal condition of the market-maker (64) implies that the price of bundle(
eh0 , k = 0, θ = 0, τ = 0, z = 0,∆ = 0

)
is P

(
eh0 , 0, 0, 0, 0, 0

)
= eh10 +p0e

h
20. Therefore, the total

value of period-0 endowment lottery of an agent h, eh, is given by∑
b

P (b) eh(b) = P
(
eh0 , 0, 0, 0, 0, 0

)
= eh10 + p0e

h
20 (86)

which is exactly income in the budget constraint (59).

Let P = [P (b)]b be the prices of all bundles. In addition, we also add the price of good 2

in period t = 0, p0 into the price space as p0 = P (c = (0, 1), 0, 0, 0, 0, 0). As in Prescott and
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Townsend (2005), with the possibility of negative prices, we restrict prices P to the closed

unit ball;

D =
{

P ∈ Rn|
√

P ·P ≤ 1
}
, (87)

where “·” is the inner product operator. Note that the set D is compact and convex.

Consider the following mapping (λ,x,P) → (λ′,x′,P′), where λ, λ′ ∈ SH−1, xh ∈ Xh.

Recall that the consumption possibility set Xh is non-empty, convex, and compact. Let X

be the cross-product over h of Xh: X = X1 × . . .×XH .

The first part of the mapping is given by λ −→ (x′,P′), where x′ is the solution to the

Pareto program given the Pareto weight λ, and P′ is the renormalized prices. With the

second welfare theorem, the solution to the Pareto program for a given Pareto weight λ also

gives us (compensated) equilibrium prices P∗. The nonlocal satiation of preferences implies

that P∗ 6= 0. The normalized prices are given by

P′ =
P∗

P∗ ·P∗

Note that P′ · P′ = 1. In order to preserve the convexity of the mapping while prices in

the unit ball D, we define the convex hull of the normalized prices. Let D̃ be the sets of all

normalized prices, and accordingly coD̃ be its convex hull. Since P′ ∈ D̃, P′ ∈ coD̃, which

is compact and convex. Note that extending D̃ to its convex hull does not add any new

relative prices. It is not too difficult to show that this mapping, λ −→ (x′,P′), is non-empty,

compact-valued, convex-valued. By the Maximum theorem, it is upper hemi-continuous. In

addition, the upper hemi-continuity is preserved under the convex-hull operation.

The second part of the mapping is given by (λ,x,P) −→ λ′. The new weight can be

formed as follows:

λ̂h = max

{
0, λh +

P ·
(
eh − xh

)
A

}
(88)

λ′h =
λ̂h∑
h λ̂

h
(89)

where A is a positive number such that
∑

h

∣∣P · (eh − xh
)∣∣ ≤ A. It is clear that this mapping

is also non-empty, compact-valued, convex-valued, and upper hemi-continuous. In conclu-

sion, (λ,x,P) → (λ′,x′,P′) is a mapping from SH−1 × X × Sn−1 −→ SH−1 × X × Sn+1.
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Since each set is non-empty, compact, and convex, so does its cross-product. In addition, the

overall mapping is non-empty, compact-valued, convex-valued, and upper hemi-continuous

since these properties are preserved under the cross product operation. By Kakutani’s fixed

point theorem, there exists a fixed point (λ,x,P).

Proved in Theorem 2, any Pareto optimal allocation can be supported as a compensated

equilibrium. In addition, the strictly increasing utility function implies that p0 > 0. Hence,

with positive endowments, an agent h’s wealth at the fixed point is strictly positive;

wh = P · eh = eh10 + p0e
h
20 > 0

With strictly positive wealth, a compensated equilibrium is a competitive equilibrium with

transfers (using a cheaper-point argument as in the proof of Theorem 2).

We now need to show that there is no need for wealth transfers in equilibrium, i.e., the

budget constraint without transfers

P ·
(
eh − xh

)
= 0

holds for every agent h. It is not difficult to show that∑
h

αhP ·
(
eh − xh

)
= 0

In addition, at a fixed point P ·
(
eh − xh

)
must be the same sign for every h. Hence,

P·
(
eh − xh

)
= 0 for every agent h. This clearly confirms that the budget constraint (without

transfers) of every agent h holds. Hence, a competitive equilibrium (without transfers)

exists.

C More Results

Lemma 1. For any state-contingent security, there exists a security with no default that

can generate the same total payoffs using the same amount of collateral.

Proof of Lemma 1: Default is Irrelevant under Complete Contracts. Consider a contingent

security that will be in default in state s, with collateral Ĉ < 1
Rsp(zs)

. That is, an issuer of
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this security will “default” in state s. Hence, according to condition (??), the payoff of this

security (in units of good 1) in state s is

min
(

1, ĈRsp(zs)
)

= ĈRsp(zs) < 1. (90)

We now argue that there is an alternative security that does not default but generates

exactly the same total payoffs using the same amount of collateral overall. Consider a state-s

contingent security with collateral amount C̃ = 1
Rsp(zs)

. This security will not default. It

is straightforward to show that the payoff of this security is one unit of good 1 in state s.

Now consider ĈRsp(zs) units of the alternative security. That collection of securities pays

in state s one per unit or ĈRsp(zs) in total. This is exactly the same as the payoff of the

original security with default: see (90). In addition, the total collateral for ĈRsp(zs) units

of the alternative security with 1
Rsp(zs)

collateral per unit is Ĉ, which is exactly the same as

the collateral level of the original security. Therefore, the alternative security can generate

the same payoffs using the same total amount of collateral but without default. A similar

argument also applies to all other types of securities.

C.1 Details of the Building Blocks of the Collateral Constraints

This section precisely defines directly collateralized and asset-back securities (pyramiding),

and derives the unified collateral constraints (1) by considering the collateral constraints of

each type of securities one at a time and adding them up (and disaggregating back down).

Collateral Constraints on Directly Collateralized Securities

Let ψh1s and ψh2s denote agent h’s demand at the end of period 0 for a security paying in

good 1 and in good 2, both with good 2 as collateral directly, respectively. Again, we

adopt the convention that positive means demand and negative means sale. So, holding

a positive amount of a security paying good 2 in state s, max
(
0, ψh2s

)
= ψh2s, a positive

number, is equivalent to buying that security (or lending) while holding a negative amount

of a security, min
(
0, ψh2s

)
= ψh2s, a negative number, is equivalent to selling that security (or

borrowing). In short, the max and min operators pick off demand and supply, respectively.

A wedge is created by the need to back the supply by collateral but not the demand.
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More generally, a security paying a unit of good 1 in state s backed by good 2 pays the

minimum of 1 unit of good 1 or the value of its collateral in state s. By an argument similar

to the one given earlier, the minimum no-default collateral is 1
p(zs)Rs

per unit. Similarly, with

no-default and no-over-collateralization, a security paying in good 2 in state s requires 1
Rs

units of good 2 as collateral. The results so far are summarized in the first two rows of the

Table 6 with collateral requirement in the last column.

Table 6: Collateral requirements for each type of securities.

payment collateral issued purchased assets total collateral

unit unit liabilities available requirement for

as collateral no default securities

ψh1s good 1 good 2 −min
(
0, ψh1s

)
max

(
0, ψh1s

)
−
(

1
Rsp(zs)

)
min

(
0, ψh1s

)
ψh2s good 2 good 2 −min

(
0, ψh2s

)
max

(
0, ψh2s

)
−
(

1
Rs

)
min

(
0, ψh2s

)
σh1s good 1 securities paying −min

(
0, σh1s

)
max

(
0, σh1s

)
−
(

1
p(zs)

)
min

(
0, σh1s

)
in good 2

σh2s good 2 securities paying −min
(
0, σh2s

)
max

(
0, σh2s

)
−p(zs) min

(
0, σh2s

)
in good 1

νh1s good 1 securities paying −min
(
0, νh1s

)
max

(
0, νh1s

)
−min

(
0, νh1s

)
in good 1

νh2s good 2 securities paying −min
(
0, νh2s

)
max

(
0, νh2s

)
−min

(
0, νh2s

)
in good 2

For securities
(
ψh1s, ψ

h
2s

)
with good 2 as collateral, paying in good 1 and good 2, respec-

tively, agent h must hold good 2 at the end of period 0 no less than the collateral requirement

in any state (shown in Table 6):

kh ≥ −min
(
0, ψh1s

)( 1

Rsp(zs)

)
−min

(
0, ψh2s

)( 1

Rs

)
, ∀s, (91)

which can be rewritten as

p(zs)Rsk
h + min

(
0, ψh1s

)
+ p(zs) min

(
0, ψh2s

)
≥ 0, ∀s. (92)

These are state-contingent collateral requirement constraints with directly collateralized se-

curities. We incorporate asset-backed securities in the next section.
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Note that when an agent h’s collateral requirement constraints (91) are not binding for

every state s (i.e., the LHS of (91) exceeds its RHS or (91) holds with strict inequality

for every state s), then the agent h holds collateral kh more than needed to back issued

securities. The extra part of collateral is normal saving.

Pyramiding: Asset-Backed Securities

In real world economies, agents are allowed to use the promises to receive goods of others as

collateral to back their own promises. This is termed pyramiding. In other words, there are

two types of collateral, good 2 itself (described in the preceding section) and “assets” backed

by such collateral. The prototypical example of an asset-backed promise in this paper is an

ex-ante agreement for an agent to give up good 1 in the spot market in state s backed by

someone else’s promise, a receipt of good 2, or vice versa. The promise of receipt is the asset,

and this backs the promise to pay. Indeed, if the planned spot-market trade is at equilibrium

price of p(zs), then one is moving along a budget line and so the value of collateral, the good

to be recovered, exactly equals the promise and there is no need for additional underlying

collateral.

With two physical commodities, there are four possible types of asset-backed securities,

summarized in the last four rows of Table 6. For example, a unit of an asset-backed security

σ̂s paying in good 1 in state s needs 1
p(zs)

units of assets paying in good 2 as collateral. The

value of the payoff of 1
p(zs)

units of securities paying in good 2 in state s equals p(zs)× 1
p(zs)

= 1

unit of good 1, which is exactly the face-value promise to pay. These collateral requirements

are minimum no-default levels.

As shown in the third row of Table 6 (see the column titled total collateral requirement),

an asset-backed security paying a unit of good 1 in state s, σh1s, requires that the total amount

of purchased assets paying in good 2 in state s is no less than−
(

1
p(zs)

)
min

(
0, σh1s

)
. Similarly,

an asset-backed security νh2s requires that the total amount of purchased assets paying in good

2 in state s is no less than −min
(
0, νh2s

)
(see the last row of Table 6). On the other hand, the

total amount of purchased assets paying in good 2 is max
(
0, ψh2s

)
+max

(
0, σh2s

)
+max

(
0, νh2s

)
,

as shown in the second, fourth and last rows of Table 6 (see the next-to-last column titled

purchased assets). Hence, the collateral requirement condition regarding issued securities
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σh1s and νh2s that require financial assets paying in good 2 as collateral can be written as, for

any state s,

max
(
0, ψh2s

)
+ max

(
0, σh2s

)
+ max

(
0, νh2s

)
≥ −

(
1

p(zs)

)
min

(
0, σh1s

)
−min

(
0, νhs

)
.

This states that the agent purchases enough assets or promises paying in good 2, θh2s, σ
h
2s, ν

h
2s,

to back up her own asset-backed securities or issued promises σh1s, ν
h
2s. The above condition

can be rearranged as

p(zs) max
(
0, ψh2s

)
+ p(zs) max

(
0, σh2s

)
+ p(zs)ν

h
2s ≥ −min

(
0, σh1s

)
, (93)

where we applies the fact that max
(
0, νh2s

)
+ min

(
0, νh2s

)
= νh2s.

Similarly, the collateral requirement condition for issued securities that require financial

assets paying in good 1 as collateral is given by

max
(
0, ψh1s

)
+ max

(
0, σh1s

)
+ νh1s ≥ −p(zs) min

(
0, σh2s

)
, ∀s, (94)

where the right-hand-side comes from the fourth and fifth rows of Table 6.

We now show that the collateral constraints

p(zs)Rsk
h + θh1s + p(zs)θ

h
2s ≥ 0, ∀s (95)

are equivalent to collateral requirement conditions (with three types of collateral), (92), (93),

and (94). In other words, there is no loss of generality to use the collateral constraints (95);

an allocation is attainable under (95) if and only if it is so under (92), (93), and (94).

To be more precise, let θh1s = ψh1s + σh1s + νh1s and θh2s = ψh2s + σh2s + νh2s be contingent

securities paying in good 1 and in good 2 in state s, respectively, which can be backed either

by good 2 or purchased assets (other people’s promises). Note that θh1s and θh2s include both

directly collateralized and asset-backed securities. An attainable allocation under (92), (93),

and (94) can be defined similarly to the one under (1) by replacing (7) the following resource

constraints:∑
h

αhψh1s =
∑
h

αhψh2s =
∑
h

αhσh1s =
∑
h

αhσh2s =
∑
h

αhνh1s =
∑
h

αhνh2s = 0, ∀s. (96)

The collateral constraint (95) results from summing (92), (93), and (94) altogether, and

then applying max(0, x)+min(0, x) = x to get rid of max and min operators. In addition, the
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proof of this lemma also shows how to recover contract allocation
(
ψh1s, ψ

h
2s, σ

h
1s, σ

h
2s, ν

h
1s, ν

h
2s

)
h

from
(
θh1s, θ

h
2s

)
.

Lemma 2. The following statements are true:

(i) if
(
ch0 , k

h, ψh1s, ψ
h
2s, σ

h
1s, σ

h
2s, ν

h
1s, ν

h
2s

)
h

is attainable, then the collateral constraint (95) and

the market-clearing conditions (7) hold, and

(ii) if
(
kh, θh1s, θ

h
2s

)
h

is attainable, then there exists a collateral and security allocation(
kh, ψh1s, ψ

h
2s, σ

h
1s, σ

h
2s, ν

h
1s, ν

h
2s

)
h

that satisfies collateral requirement conditions (92), (93),

(94) and the market-clearing conditions (96).

Proof. The first statement can be proved as follows. First, it is clear that conditions (96)

imply (7). We now only need to show that (92), (93), and (94) imply (95). Summing up all

collateral requirement conditions, (92), (93), and (94), and using the fact that max (0, x) +

min (0, x) = x give, for an agent h in state s,

p(zs)Rsk
h +

[
ψh1s + σh1s + νh1s

]
+ p(zs)

[
ψh2s + σh2s + νh2s

]
≥ 0,

which is the collateral constraint for an agent h in state s where θh1s = ψh1s + σh1s + νh1s and

θh2s = ψh2s + σh2s + νh2s.

The second statement is proved as follows. Consider an allocation
(
kh, θh1s, θ

h
2s

)
h

that satis-

fies (95) and (7). We will now choose a corresponding allocation
(
kh, ψh1s, ψ

h
2s, σ

h
1s, σ

h
2s, ν

h
1s, ν

h
2s

)
h

that satisfies θh1s = ψh1s+σh1s+νh1s, θ
h
2s = ψh2s+σh2s+νh2s, the collateral requirement conditions

(92), (93), (94), and the market-clearing conditions (96). Consider the following candidate

allocation:

ψh1s = θh1s + p(zs)θ
h
2s, (97)

ψh2s = νh1s = νh2s = 0, (98)

σh1s = θh1s − ψh1s = −p(zs)θh2s, (99)

σh2s = θh2s. (100)

(98) implies that agents hold no ψh2s, ν
h
1s, ν

h
2s; they will borrow or lend through directly

collateralized contract paying in good 1 ψh1s only.
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It is straightforward to show that resource constraints (96) hold. Since the resource con-

straints are satisfied and the collateral allocations kh are the same, the market fundamentals

are the same. We now would like to show that collateral requirement conditions (92), (93),

(94) also hold. First, we will show that (93) and (94) hold. There are two cases to consider;

(i) θh2s > 0, (ii) θh2s < 0. Case I: Suppose that θh2s > 0. Using (100), this implies that σh2s > 0,

which in turn leads to min
(
0, σh2s

)
= 0. On the other hand, it is true that

max
(
0, ψh1s

)
+ max

(
0, σh1s

)
= max

(
0, ψh1s

)
+ max

(
0, σh1s

)
+ νh1s ≥ 0,

where the first equality follows from (98). Since min
(
0, σh2s

)
= 0, we have

max
(
0, ψh1s

)
+ max

(
0, σh1s

)
= max

(
0, ψh1s

)
+ max

(
0, σh1s

)
+ νh1s ≥ −p(zs) min

(
0, σh2s

)
,

which is (94). On the other hand, (99) implies that σh1s < 0 when θh2s > 0. As a result,

min
(
0, σh1s

)
= σh1s. Using (98), (99), (100), we then can show that

p(zs) max
(
0, ψh2s

)
+ p(zs) max

(
0, σh2s

)
+ p(zs)ν

h
2s + min

(
0, σh1s

)
= 0 + p(zs)σ

h
2s + 0 + σh1s = p(zs)θ

h
2s − p(zs)θh2s = 0,

where the second equality follows from (99) and (100). This shows that (93) holds.

Case II: Suppose that θh2s < 0. (99) and (100) imply that max
(
0, σh1s

)
= σh1s = −p(zs)θh2s

and min
(
0, σh2s

)
= σh2s = θh2s, respectively. We then can write

max
(
0, ψh1s

)
+ max

(
0, σh1s

)
+ νh1s = max

(
0, ψh1s

)
− p(zs)θh2s ≥ −p(zs)θh2s = −p(zs) min

(
0, σh2s

)
,

which is exactly (94). Note that the first equality follows from (98), the second inequality

follows from the fact that max
(
0, ψh1s

)
≥ 0. Similarly, using , we can show that max

(
0, σh2s

)
=

min
(
0, σh1s

)
= 0. This implies that

p(zs) max
(
0, ψh2s

)
+ p(zs) max

(
0, σh2s

)
+ p(zs)ν

h
2s + min

(
0, σh1s

)
= 0 + 0 + 0 + 0 = 0,

which is exactly (93).

Similarly, we can now show that (92) also holds. There are two cases to be considered as

well.
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Case I: suppose that θh1s + p(zs)θ
h
2s < 0. (97) implies that ψh1s < 0, which in turn implies

that min
(
0, ψh1s

)
= ψh1s = θh1s + p(zs)θ

h
2s. Using (98), we now can show that

p(zs)Rsk
h + min

(
0, ψh1s

)
+ p(zs) min

(
0, ψh2s

)
= p(zs)Rsk

h + θh1s + p(zs)θ
h
2s + 0 ≥ 0,

where the last inequality follows (95). This implies that (92) holds.

Case II: we can use a similar argument to show that (92) holds when θh1s + p(zs)θ
h
2s =

ψh1s > 0. In summary, we have show that all collateral requirement conditions hold.

C.2 Ex-ante Contracting versus Ex-post Spot Trading

Thus far we implicitly shut down trade in the spot markets in each state. This section shows

that the spot markets are redundant when all types of contracts are available (see Lemma 3

below). In other words, agents do not need to trade in spot markets, though they may well

do so. Importantly, the spot markets are open and deliver the spot price p(zs). In addition,

we also show that the asset-backed securities are not necessary when the spot markets are

open and active (see Lemma 4 below). Put differently, agents simply are indifferent between

trading in spot markets or ex-ante asset-backed securities.

When the spot markets are open, each agent h can trade τh1s units of good 1 for τh2s units

of good 2 at a spot price p(zs) according to the spot-trade constraint:

τh1s + p(zs)τ
h
2s = 0. (101)

Recall that the spot price function, p(zs), is the price such that the spot markets for both

goods clear: ∑
h

αhτh1s = 0, (102)∑
h

αhτh2s = 0. (103)

Hence, an attainable allocation with the spot markets is defined by adding the spot-trade

constraint (101) and market-clearing constraints (102)-(103) to Definition 2.

To be more precise, an allocation is said to be equivalent to an attainable allocation if

it is attainable and generates the same consumption allocation and market fundamental in

each state s as the original attainable allocation.
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Lemma 3. For any attainable allocation
(
ch0 , k

h, θh`s, τ
h
`s

)
h
, there exists an equivalent allo-

cation
(
ch0 , k

h, θ′h`s, τ
′h
`s

)
h

such that

τ ′h`s = 0,∀s, h, `. (104)

Proof. Let
(
ch0 , k

h, θh`s, τ
h
`s

)
h

be an attainable allocation. We will show that we can find an

equivalent allocation with no spot trade, i.e., τ ′h`s = 0. Consider the following candidate

allocation (with ′)

c′h0 = ch0 ,∀h, (105)

θ′h1s = θh1s + τh1s,∀s, h, (106)

θ′h2s = θh2s + τh2s,∀s, h. (107)

Note that agents here acquire or issue securities on good 1 and good 2 in state s rather than

waiting for trade in spot markets. The rest of the proof is similar to the proof of Lemma 2,

and hence is omitted (it is available in our Working Paper version).

Condition (104) in Lemma 3 implies that the spot markets in period 1 are redundant

when all securities are allowed; that is, anything that can be done through the spot markets

and one set of securities is feasible under another set of securities without spot markets.

Henceforth (and previously), the ex-post spot trade transfers will be (were) set to zero,

(τh`s = 0 as in (104)) and the spot-trade constraints (101) will be (were) neglected, unless

stated otherwise.

Lemma 4. For any attainable allocation
(
ch0 , k

h, ψh`s, σ
h
`s, ν

h
`s, τ

h
`s

)
h
, there exists an equiva-

lent allocation
(
ch0 , k

h, ψ′h`s, σ
′h
`s, ν

′h
`s , τ

′h
`s

)
h

such that

σ′h1s = σ′h2s = ν ′h1s = ν ′h2s = 0,∀s, h. (108)

Proof. Suppose
(
ch0 , k

h, ψh`s, σ
h
`s, ν

h
`s, τ

h
`s

)
h

is attainable. Consider the following alternative

allocation (with ′)
(
ch0 , k

h, ψ′h`s, σ
′h
`s, ν

′h
`s , τ

′h
`s

)
h

such that for all h and all s

σ′h1s = σ′h2s = ν ′h1s = ν ′h2s = ψh2s = 0, (109)

ψ′h1s =
(
ψh1s + σh1s + νh1s

)
+ p(zs)

(
ψh2s + σh2s + νh2s

)
, (110)

τ ′h1s = −p(zs)
(
ψh2s + σh2s + νh2s

)
+ τh1s, (111)

τ ′h2s =
(
ψh2s + σh2s + νh2s

)
+ τh2s. (112)
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Note that at the alternative allocation, agents will do in spot markets what they might have

done in asset-backed security markets. In addition, with active spot markets, there is no

need to trade in collateral-backed securities paying in good 2 (trade in the ones paying in

numeraire good only). The rest of the proof is similar to the proof of Lemma 3, and hence

is omitted.

It is worthy of emphasis that Lemma 3 and Lemma 4 imply that the asset-backed secu-

rities that we need in this model are the ones that replicate spot markets. In other words,

the asset-backed securities in this model (with tranching) are simply substitutes for spot

markets. Henceforth, we let asset-backed securities play this role and shut down active trade

in spot markets. The result is summarized in the following corollary.

Corollary 1. Asset-backed securities and the spot markets are perfect substitute in this

model.

C.3 Spot Markets and Security Prices: No-Arbitrage Condition

The pyramiding mechanism puts a restriction on the prices of contracts traded within each

security exchange. The ratio of the equilibrium prices of the securities in security exchange

zs in state s, Q2s

Q1s
, must be equal to the marginal rate of substitution or the spot price in the

security exchange, p(zs). Otherwise, there will be an arbitrage possibility (by keeping the

collateral constraints satisfied with pyramiding). The result is summarized in the following

lemma.

Lemma 5. In a competitive equilibrium, for each s and zs,

Q2s = p(zs)Q1s. (113)

Using the no-arbitrage condition (113), the collateral constraints (95) can be rewritten

as

Q2sRsk
h +Q1sθ

h
1s +Q2sθ

h
2s ≥ 0,∀s. (114)

These constraints state that the value in units of good 1 at t = 0 of all ex ante securities

held (RHS) cannot exceed the value of collateral held (LHS). These constraints are applicable

when the spot markets are not available but the ex-ante asset-backed securities can be traded.
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C.4 Derivation of a Competitive Equilibrium with the Externality

in Environment 1

The endowment profile and the first-best allocation suggest that agent 2 would like to move

resources forward from t = 1 to t = 0, and therefore will be constrained. Hence, we will

assume that agents type 2 hold no collateral, i.e. k1 = k and k2 = 0. We now solve for an

equilibrium k. From the market clearing conditions of contracts, we can set θ1
11 = −θ2

11 = θ̂

and θ1
21 = −θ2

21 = θ. Note that this does not mean agent 1 is demanding both securities. In

addition, using the specified collateral allocation, the market fundamental in period t = 1

is now z = 4
4+k

(the ratio of endowment of good 1 to the sum of endowment of good 2 and

saving), and consequently the spot price of good 2 in period 1 is p(z) =
(

4
4+k

)2
.

With homothetic preferences, the first-order conditions of the problem (2) for both types

imply that in spot markets at date t = 0

p0 =

(
c1

10

c1
20

)2

=

(
c2

10

c2
20

)2

=

(
4

4− k

)2

. (115)

Since agent 1’s collateral constraint is not binding, the first-order conditions of her utility-

maximization problem (2) with respect to θ1
21 and c1

10 lead to

Q21 =
u1

21

u1
10

=

(
c1

10

c1
21

)2

, (116)

where uhit = ∂uh

∂cit
is the marginal utility with respect to cit, and Q21 is the price of a security

paying in good 2 in period t = 1. Note that we put superscript h on the utility function for

clarity. Further, the first-order conditions of the consumer’s problem (2) with respect to θ1
21

and k1 (interior solutions) lead to

p0 = Q21. (117)

Intuitively, this is the case because their payoffs are identical and both are collateralizable.

Using (115) and (116), condition (117) implies that

c1
10

c1
20

=
c1

10

c1
21

=⇒ c1
20 = c1

21. (118)

That is, an unconstrained agent consumes the same amount of good 2 in both periods.
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Substituting (115) and (116) into (117) gives(
4

4− k

)2

=

(
c1

10

c1
21

)2

;

4

4− k
=

c1
10

1 + k + θ
=⇒ (4− k) c1

10 = 4 + 4k + 4θ, (119)

where we use c1
21 = 1 + k + θ.

On the other hand, an agent type 2’s collateral constraint is binding; with k2 = 0,

θ̂2 + p(z)θ2 = 0 =⇒ −θ̂ − p(z)θ = 0 =⇒ θ̂ = −
(

4

4 + k

)2

θ, (120)

where the second and the last equations use θ̂2 = −θ̂ and θ2 = −θ, and p(z) =
(

4
4+k

)2
,

respectively.

The budget constraint of an agent 1 (3) can be written as

c1
10 − 3 + p0

[
c1

20 + k − 3
]

+Q11θ̂ +Q21θ = 0. (121)

A standard no-arbitrage argument (similar to the one used in Lemma 5) implies that

Q21 = p(z)Q11. (122)

It thus true from (122) that

Q11θ̂ +Q21θ = Q11θ̂ +Q11p(z)θ = Q11

[
θ̂ + p(z)θ

]
p(z) = 0, (123)

where the last equation follows the fact that the term in the bracket is zero, from (120).

Now the LHS of the budget constraint (121) can be rewritten as

c1
10 + p0

[
c1

20 + k − 3
]

= 3. (124)

Using (115), we can replace c1
20 by

(
4−k

4

)
c1

10. Then using p0 =
(

4
4−k

)2
gives

c1
10 +

(
4

4− k

)2 [(
4− k

4

)
c1

10 + k − 3

]
= 3

=⇒ (4− k) c1
10 =

3k2 − 40k + 96

8− k
. (125)

Substituting (119)into (125) gives

3k2 − 40k + 96

8− k
= 4 + 4θ + 4k =⇒ 4θ + 4k =

3k2 − 36k + 64

8− k
. (126)
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With the identical homothetic preferences, the period t = 1 consumption allocations

must satisfy

z =
4

4 + k
=
c1

11

c1
21

=⇒ 4

4 + k
=

1 + θ̂

1 + k + θ
. (127)

Substitute (120) into (127) gives

4θ + 4k = −3k

(
4 + k

8 + k

)
+ 4k. (128)

Using (126) and (128), we have

3k2 − 36k + 64

8− k
= −3k

(
4 + k

8 + k

)
+ 4k =⇒ 4k3 − 384k + 512 = 0. (129)

There are three roots for equation (129). Using the condition that 0 ≤ k ≤ 4, there is only

one feasible solution, i.e. k ≈ 1.3595. To sum up, the equilibrium collateral allocation is

k1 = k = 1.3595 and k2 = 0.

C.5 Derivation of a Competitive Equilibrium with the Externality

in Environment 2

First of all, the symmetry of the environment implies that the equilibrium collateral alloca-

tion is also symmetric, i.e. kh = k for all h. As a result, the price of good 2 in period t = 0

is given by

p0 =

(
2

2− k

)2

, (130)

and the spot price of good 2 in each state s is given by

ps =

(
2

2 + k

)2

,∀s. (131)

Further, the price of a (collateralized) security paying in good 2 in state s is given by

Q2s = max
h

(
πsu

h
2s

uh10

)
, ∀s. (132)

The endowment structure implies that agents type 2 will have higher MRS
πsuh2s
uh10

in state 1,

and vice versa. In addition, the structure also implies that θ1
21 = θ2

22 = θ and θ1
11 = θ2

12 = θ̂.
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Hence, (132) can be rewritten as

Q21 =
πsu

2
21

u2
10

=
1

2

(
2

1 + k1 + θ1
21

)2

=
1

2

(
2

1 + k + θ

)2

=
1

2

(
2

1 + k2 + θ2
22

)2

=
πsu

1
22

u1
10

= Q22.

(133)

That is, the symmetry structure implies that Q21 = Q22. Using the optimal conditions with

respect to kh and θh2s, we can show that

p0 = Q21 +Q22 =⇒
(

2

2− k

)2

=

(
2

1 + k + θ

)2

. (134)

Next, with the homotheticity of preferences, the ratio of consumption in each state of

each agent must be equal to the market fundamental; that is,

1 + θ̂

1 + k + θ
=

2

2 + k
. (135)

Furthermore, the collateral constraint in state s = 1 of an agent type h = 1 is binding,

i.e.

p1k − θ̂ − p1θ = 0 =⇒ θ̂ =

(
2

2 + k

)2

(k − θ) . (136)

Note that the same equation can be derived from the binding collateral constraint in state

s = 2 for an agent type h = 2.

We can compute a collateral equilibrium using (134), (135), and (136) to solve for(
k, θ, θ̂

)
. We can rewrite (134) as

2− k = 1 + k + θ =⇒ θ = 1− 2k. (137)

In addition, Substituting (136) into (135) gives

1 +

(
2

2 + k

)2

(k − θ) =

(
2

2 + k

)
(1 + k + θ) . (138)

Then, substituting (137) into (138) will give

1 +

(
2

2 + k

)2

(k − 1 + 2k) =

(
2

2 + k

)
(1 + k + 1− 2k)

=⇒ 3k2 + 16k − 8 = 0. (139)

The unique feasible (positive) solution to the above quadratic equation is k ≈ 0.4603.
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C.6 Derivation of a Competitive Equilibrium with the Externality

in Environment 3

We restrict our attention to a symmetric allocation of each type. Using Lemma , we assume

that all constrained agents hold no collateral, i.e., kh = 0 for h = 2, 3. Let k1 = k.

First, the first-order conditions of the consumer’s problem (2) result in

c1
10

c1
20

=
c2

10

c2
20

=
c3

10

c3
20

=
12.5

12.5− k
. (140)

From the endowment profile, it is clear that an agent 1 will not be constrained. The first-

order conditions of the consumer’s problem (2) with respect to θ1
21 and c1

10 lead to

u1
21

u1
10

= Q21. (141)

Further, the first-order conditions of the consumer’s problem (2) with respect to θ1
21 and k1

(interior solutions) lead to

p0 = Q21. (142)

Combining (141), (142) and the utility function (26), gives

p0 =

(
12.5

12.5− k

)2

= Q21 =
u1

21

u1
10

=

(
c1

10

c1
21

)2

. (143)

This implies that

12.5

12.5− k
=

c1
10

c1
21

=
c1

10

0.5 + k + θ1
21

=⇒ (12.5− k) c1
10 = 12.5

(
0.5 + k + θ1

21

)
, (144)

where we use c1
21 = 0.5 + k + θ1

21.

In addition, the market fundamental in period t = 1 is z = 12.5
12.5+k

, and consequently the

spot price of good 2 in period t = 1 is
(

12.5
12.5+k

)2
. The bindingness of the collateral constraints

of agent 2 and agent 3, combining with the market-clearing conditions of securities, imply

that

θ1
11 = −

(
12.5

12.5 + k

)2

θ1
21. (145)

A standard no-arbitrage argument (similar to the one used in Lemma 5) implies that

Q21 = p(z)Q11, (146)
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which can be used to show that

Q11θ
1
11 +Q21θ

1
21 = Q11θ

1
11 +Q11p(z)θ1

21 = Q11

[
θ1

11 + p(z)θ1
21

]
p(z) = 0, (147)

where the last equation follows the bindingness of the collateral constraints of agent 2 and

agent 3, combining with the market-clearing conditions of securities. The budget constraint

of an agent 1 (3) can be written as

c1
10 − e1

10 + p0

[
c1

20 + k − e1
20

]
= 0. (148)

Substituting (140) and (143) into (148), we have

(12.5− k) c1
10 =

12.52 (e1
20 − k) + e1

10 (12.5− k)2

25− k
. (149)

Substituting (144) into (149), we have

12.5
(
0.5 + k + θ1

21

)
=

12.52 (e1
20 − k) + e1

10 (12.5− k)2

25− k
. (150)

With the identical homothetic preferences, the period t = 1 consumption allocations

must satisfy

z =
12.5

12.5 + k
=
c1

11

c1
21

=⇒ 12.5

12.5 + k
=

0.5 + θ1
11

0.5 + k + θ1
21

, (151)

where the equality follows (145). This can be rewritten as

12.5
(
0.5 + k + θ1

21

)
= (12.5 + k)

(
0.5−

(
12.5

12.5 + k

)2

θ1
21

)
. (152)

Solving (150) and (152) for k and θ1
21, with e1

10 = 4.2631 and e1
20 = 11.5, gives one feasible

solution (0 ≤ k ≤ 12.5) k = 7.2836, θ1
21 = −4.2849. To sum up, the competitive collateral

equilibrium allocation is k1 = k = 7.2836, and k2 = k3 = 0.

C.7 Source of Inefficiency in the Incomplete Markets Example

Proposition 3. The competitive equilibrium with exogenous security markets is (constrained)

efficient if and only if the equilibrium allocation
(
ch, θh, τh,yh

)
is first-best optimal or the

spot price is independent of security positions, i.e., ∂ps
∂θhj

= 0 for every state s, every security

j and every agent of type h.
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Proof. We begin the proof by deriving the necessary and sufficient conditions for the first-

best optimality. The social planner’s problem for the first-best optimality is as follows:

Program 3.

max
(θhi0,θhis)i,s,h

u1
(
e1

10 + θ1
10, e

1
20 + θ1

20

)
+ β

∑
s

πsu
1
(
e1

1s + θ1
1s, e

1
2s + θ1

2s

)
(153)

subject to the participation constraints and the resource constraints, respectively,

uh
(
eh10 + θh10, e

h
20 + θh20

)
+ β

∑
s

πsu
h
(
eh1s + θh1s, e

h
2s + θh2s

)
≥ U

h
, for h = 2, ..., H,∑

h

αhθhis = 0, for i = 1, 2; s = 0, 1, ..., S

Lemma 6. The necessary and sufficient conditions for the first-best optimality are as follows:

γhuu
h
i0

αh
=

γh̃uu
h̃
i0

αh̃
,∀h, h̃ = 1, ..., H; i = 1, 2 (154)

γhuβπsu
h
is

αh
=

γh̃uβπsu
h̃
is

αh̃
,∀h, h̃ = 1, ..., H; i = 1, 2, s = 1, ..., S, (155)

where γhu is the Lagrange multipliers for the participation constraints for h (normalize by

setting γ1
u = 1) and uhis = ∂uh

∂chis
is the marginal utility of an agent of type h with respect to cis.

We now consider the following social planner’s problem for the economy with exogenous

security markets.

Program 4.

max
(θh10,θ

h
20,θ

h
j ,τ

h
1s,τ

h
2s)h

u1
(
e1

10 + θ1
10, e

1
20 + θ1

20

)
+ β

∑
s

πsu
1
(
e1

1s + θ1
s + τ 1

1s, e
1
2s + τ 1

2s

)
(156)

subject to the participation constraints, the resource constraints, and the obstacle-to-trade

constraints, respectively,

uh
(
eh10 + θh10, e

h
20 + θh20

)
+ β

∑
s

πsu
h

(
eh1s +

∑
j

Djsθ
h
j + τh1s, e

h
2s + τh2s

)
≥ U

h
, ∀h, (157)

∑
h

αhθhi0 = 0,∀i, (158)

∑
h

αhθhj = 0,∀j, (159)

∑
h

αhτh1s = 0,∀s, (160)

τh1s + p̃s
(
θ1
s , ..., θ

H
s

)
τh2s = 0,∀s, h. (161)
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Note that the resource (market-clearing) constraints for τh2s are omitted due to Walras law.

A solution to this social planner’s problem is called a constrained optimal allocation.

The first order conditions for θh10, θ
h
20, τ

h
1s, τ

h
2s, θ

h
j are as follows:

γhuβπsu
h
10 + αhµθ10 = 0, (162)

γhuβπsu
h
20 + αhµθ20 = 0, (163)

γhuβπsu
h
1s + αhµτ1s + γhs = 0,∀s = 1, ..., S, (164)

γhuβπsu
h
2s + p̃sγ

h
s = 0,∀s = 1, ..., S, (165)

γhuβ
∑
s

πsu
h
1sDjs + αhµθj +

∑
s

∂p̃s
∂θhj

∑
h̃

γh̃s τ
h̃
2s = 0,∀j = 1, ..., J, (166)

where γhs , γ
h
s , µ

τ
s , µ

θ
j are the Lagrange multipliers for the obstacle to trade or spot-market

constraints in state s, for the participation constraints for h (normalize by setting γ1
u = 1), for

the resource constraints for τh1s, and for the resource constraints for θhj . Note that uhis = ∂uh

∂chis
.

The proof is divided into two parts as follows:

(i) (⇐) We now show that an allocation that satisfies the necessary and sufficient condi-

tions for the first-best optimality (154)-(155) must satisfies the first order conditions

(162)-(166). It is not difficult to see that this will be the case if the externality term,

the last term of (166), is vanished, i.e.,∑
s

∂p̃s
∂θhj

∑
h̃

γh̃s τ
h̃
2s = 0 (167)

It is obvious that if the spot price is independent of security positions, i.e., ∂p̃s
∂θhj

= 0 for

every state s, every security j and every agent of type h, then condition (167) holds.

We now need to show that if the constrained optimal allocation is first-best optimal,

then the no-externality condition (167) must hold. Since the allocation is first- best

optimal, it must satisfies conditions (154) and (155), which imply that
(
γh̃s
αh̃

)
must be

constant across agents, i..e, for each s

γhs
αh

=
γh̃s
αh̃

= Γs,∀h, h̃. (168)
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Using these conditions, we can then show that

∑
s

∂p̃s
∂θhj

∑
h̃

γh̃s τ
h̃
2s =

∑
s

∂p̃s
∂θhj

∑
h̃

(
γh̃s
αh̃

)
αh̃τ h̃2s (169)

=
∑
s

∂p̃s
∂θhj

∑
h̃

Γsα
h̃τ h̃2s =

∑
s

∂p̃s
∂θhj

Γs
∑
h̃

αh̃τ h̃2s = 0, (170)

where the last equation results from the resource constraints for τh2s. This proves

that the no-externality condition (167) holds. To sum up, we prove that there is no

externality if the constrained optimal allocation is first-best optimal or the spot price

is independent of security positions, i.e., ∂p̃s
∂θhj

= 0 for every state s, every security j and

every agent of type h.

(ii) (⇒) Unfortunately, we cannot generally prove the reversed statement but, as shown

in Geanakoplos and Polemarchakis (1986), it is true generically (it is true except for

some unlikely cases). The key idea is that the indirect price effects could be canceling

each other out only if the equilibrium allocation is first-best optimal in most cases.

But this does not happen generally.
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