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Abstract

We develop and simplify spectral analysis of time series. The main focus is on the

spectral representation theorem, Bochner�s theorem, and some key results concerning

time-invariant linear �lters. We then show how to apply these key results to shed some

light on various applications including Yule-Slutsky e¤ects, seasonal adjustment and

trend estimation. We also show how spectral analysis can indicate appropriateness of

certain statistical models when applied with some economic time series.

Keywords: Spectral Analysis; Linear Filters; Exploratory Data Analysis; Yule-

Slutzky E¤ect; Seasonality; Trend Estimation; HP Filters.

1 Introduction

Most economic time series, particularly macroeconomic ones, exhibit various forms of �uc-

tuation. First time readers of these time series often �nd such �uctuation striking as well as

puzzling. Time series analysts have long decomposed such �uctuation into three main cat-

egories, namely, a slowly changing component known as a trend component, a component

with more or less stable period known as a seasonal component, and the remaining part

with rather random movement known as an irregular component. From an economic point

of view, a trend component is usually thought to re�ect the long-run dynamics of a time

series due to some fundamental factors, such as structural or institutional transformation of

an economy or a company. Many factors, such as weather, harvesting seasons and calendar

or �scal year, can result in seemingly predictable �uctuation of a seasonal component. An

irregular component seems to be the least predictable part and is often associated with

e¤ects of business cycles.

A trend component is often the main object of interest of policy makers responsible

for the long-run performance of an economy, or of company directors concerning with the

long-term success of their business. An irregular component is also of an interest to policy
�E-mail address: s.thawornkaiwong@gmail.com
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makers monitoring stability of an economy and the business cycles. Given the importance

of these two components, a great deal of e¤ort have been made by both economists and

policy makers over a century to obtain a desirable decomposition of economic time series.

A typical procedure to get such decomposition is to �rst remove a seasonal component

from the data by employing seasonal adjustment programmes. Then a trend component is

estimated by some low-pass �lters and the remaining part is an irregular component. Various

smoothing techniques are employed in each of the three steps. From a mathematical point of

view, all popular smoothing techniques can be regarded as time-invariant linear �lters. The

e¤ects of these smoothing techniques can be understood given a working knowledge of the

well-known theory of time-invariant linear �lters. However, the main barrier to popularity

of this elegant theory is the presumed knowledge of spectral analysis of time series.

Classical time series analysis can be divided into two main approaches, namely, time-

domain and spectral-domain analysis. It can be shown, and will be demonstrated in this

paper, that the two approaches are two sides of the same coin. If one wishes to understand

a particular time series, one can either employ the time-domain or spectral-domain analysis

in the study. These two approaches complement rather than competing against each other.

The early development of time series analysis relied heavily on spectral analysis but the

time-domain approach has gained its popularity particularly since the publication of the

Box and Jenkins (1970) methodology. The success of the Box-Jenkins methodology is a

result of the focus on relatively simple autoregressive-moving average (ARMA) models.

With the ARMA models, the time-domain analysis has proven to be so �exible that, in

most applications, spectral analysis can be avoided. The main requirement of the time-

domain analysis is just familiarity with correlation theory. On the other hand, the main

drawback of the spectral analysis is its relatively demanding mathematical requirement. To

get a working knowledge of spectral analysis, a working knowledge of Fourier analysis is

necessary. Relatively advanced measure theory and functional analysis are also essential to

understanding its theoretical component.

As spectral analysis is the most natural and e¤ective approach to understand behaviours

of time-invariant linear �lters, it will be the central issue of this paper. This paper is

aimed to popularize spectral analysis to the readers in Thailand with central bankers as

the main target group. Our aim is rather ambitious since we wish to introduce the spectral

representation theorem to the readers. It is our belief that some understanding of the

spectral representation theorem will help the readers understand the theory of time-invariant

linear �lters. A typical discussion of the spectral representation theorem requires a working

knowledge of measure theory and functional analysis. However, advanced mathematics will

be avoid at all cost in our simpli�ed version of the theorem. The possibility of introducing

the readers a glimpse of the spectral representation theorem in a relatively less technical

way is a result of simple and lucid insights from Hannan (1960). An in-depth investigation

of a special class of stationary processes known as circularly de�ned processes can give
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insights into the core of the spectral representation theorem. Given a relatively demanding

mathematical requirement in Hannan (1960), we will show detailed discussion of how results

in Hannan (1960) can be derived. The minimum mathematical requirements for this paper

are a typical �rst course in linear algebra with matrix diagonalization and a typical �rst

course in probability and statistics. Familiarity with complex numbers at pre-university

levels is also assumed. All results concerning circularly de�ned processes will be shown in

details. The generalization of the representation theorem to stationary processes can be

regarded as the limiting cases of the circularly de�ned processes. Generalization of this

seemingly restricted class of stationary processes to any stationary processes can be made

rigourous by the elegant and abstract idea of Toeplitz forms presented in Grenander and

Szego (1958). To make the paper more accessible, all proofs are omitted for the main text

and can be found in the Appendix.

Sinusoids plus noise and harmonic processes are discussed in Section 2. Detailed dis-

cussion of spectral representation of circularly de�ned processes is given in Section 3. In

Section 4, we explain the spectral representation theorem of stationary processes with ref-

erence to the known results in Section 3. Theory of time-invariant linear �lters is discussed

in Section 5 where various applications of such theory will be discussed in Section 6. The

content in Section 6 can be considered as our attempt to dispel myth concerning e¤ects of

various classes of linear �lters mechanically and routinely employed by policy makers on

original data. We show how the usual 3-month moving average routine can lead to spurious

cycles known as the Yule-Slutsky e¤ect. We explain why the simple exponential moving

average smoothing is a rather inappropriate tool employed to monitor short and medium-

run dynamics of volatility of certain time series. We also discuss the issue of seasonal

adjustment and give a partial explanation why Gomez and Maravall, the main contributor

of modern seasonal adjustment techniques, tried to caution their readers in Gomez and

Maravall (2001) that "data used in econometric models should not be, as a rule, season-

ally adjusted". Band-pass and low-pass �lters are also discussed while a popular low-pass

�lter known as the Hodrick-Prescott (HP) �lter is discussed in details. The inclusion of

the topic of sinusoids plus noise in the main text is rather unusual compared with other

papers popularizing spectral analysis. The reason of its presence in the paper is to dispel

the confusion we learnt from policy makers that it is the core of spectral analysis. The last

section is the concluding part containing our suggestions how policy makers could modify

their mechanical treatment of the data in the light of spectral analysis, and some lessons

learnt from the myth and mistakes.

Before starting serious discussion of the subject, we de�ne certain jargons and notations

employed in the paper. Policy makers often think of a time series as a set of observations

from the real world, such as the quarterly GDP of Thailand. Symbolically, a time series

is just a �nite set of numbers denoted by x1; :::; xN , where N is the total number of

observations policy makers have. However, from a mathematical point of view, this view
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is rather restrictive. In this paper, we adopt the convention employed in the literature

to assume that a time series can be traced back and forward inde�nitely into the past and

future. Hence, we can regard a time series as a doubly-in�nite sequence of random variables

:::; X�N ; :::; X�1; X0; X1; :::; XN ; :::;

which can be abbreviated to fXt : t 2 Zg, where Z is the set of integers. We often shorten
this lengthy symbol by fXtg wherever the abbrevaiation will not cause any confusion. The
data fx1; :::; xNg policy makers have is just a realization of a �nite section of the time
series fXtg : The notation R represents the set of real numbers.

2 Harmonic and Stationary Processes

2.1 Sinusoid Plus Noise

Analysis of time series data has a very long history. It can be dated back as early as in the

ancient Egypt era. The notable example is the long record of the water levels in the Nile

River. However, a proper and systematic treatment, with serious mathematical foundation,

had not started until the second half of the 19th Century. Due to the salient up-and-down

movement of most time series, the early time series analysts paid a great deal of attention

to the cyclical behaviour and tried to �t time series data with sinusoidal functions, i.e. sine

and cosine functions. From a statistical point of view, these early time series analysts had

a vision that, in the absence of any upward or downward trend, a time series fXtg have a
representation of the form

Xt = �+R cos (�t+ �) + "t; (1)

where �; R; � and � are unknown constants and "t are the disturbances.

For some readers unfamiliar with sinusoidal functions, we brie�y consider a simple si-

nusoidal function x : R! R de�ned by

x (t) = R cos (�t+ �) ; t 2 R; (2)

where R is the set of real numbers. Graphs of the functions x (t) in (2) for various values
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of R; � and � are shown in Figures 1(a) - 1(d).
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Figure 1(b)  R = 0.5, λ = π 4, φ = 0
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Figure 1(c)  R = 1, λ = π 2, φ = 0

t

x(
t)

0 5 10 15 20

­1
.0

0.
0

0.
5

1.
0

Figure 1(d)  R = 1, λ = π 4, φ = π 4

t

x(
t)

The term R in (2) is called the amplitude indicating the hightest and lowest values of the

function x (t). The value R is usually assumed to take a positive value so that the highest

value of the function x (t) is R and the lowest value is �R: Compare Figures 1(a) and
1(b). The term � is the angular frequency of the function implying how many cycles are

completed per unit time. Because the cosine function is periodic with period 2�,

cos (�t+ �) = cos (�t+ �+ 2�) = cos f� (t+ 2�=�) + �g for all t 2 R.

Hence, the period of this function is 2�=�, i.e. it takes 2�=� unit time for the graph of

this function to complete its full cycle. A high value of the frequency � indicates a rapid

movement of the function. It takes a relatively short time for the graph of this function to

complete its full cycle. On the other hand, a low value of the frequency � indicates a slow

movement of the function. Compare Figures 1(a) and 1(c) The value � is not the frequency

of the cosine wave in the strict sense. Frequency is typically de�ned as the number of cycles

per unit time. For x (t) in (2), the frequency or the number of cycles completed per unit
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time should be �=2�. As the angular frequency is proportional to the frequency in the

strtict sense, they both re�ect the rate at which a sinusiod completes its full cycle. In this

paper, we adopt the convention in time series literature so that the angular frequency �

is simply refered to as frequency. The term � is called the phase indicating the horizontal

shift of the graph of the cosine function. Compare Figures 1(a) and 1(d). Since

cos t = sin (t+ �=2) for all t 2 R,

we can rewrite (2) as

x (t) = R sin (�t+ �1) ;

where �1 = �+�=2: Therefore, we can either employ the cosine or sine function to represent

the same sinusoidal movement. The di¤erence arising from the choice of the functions will

be a phase shift by �=2:

Now return to the sinusoid plus noise model in (1). Since the sinusoid in (2) �uctu-

ates around zero, the additional constant � is introduced so that the function can �uctuate

around any constant � rather than zero. The term "t represents an error term or a shock

making the path of the process fXtg deviate from its main signal R cos (�t+ �) : Developing
estimation techniques for the unknown �; R; � and particularly the unknown periodicity

implied by the unknown � was an active area of research towards the end of the 19th Cen-

tury. Despite simplicity of the sinusoid in (1), the main di¢ culty in obtaining a reasonable

estimate of the unknowns is that the sinusoid is nonlinear in both � and �. One way to

mitigate is problem is to work with the following form

Xt = �+A cos�t+B sin�t+ "t; (3)

where �; A; B and � are unknown constants, rather than (1). For a given value of �, the

model is now linear in the unknown �; A and B. Therefore, under (3), the main source of

nonlinearity is essentially the unknown frequency �: The speci�cation in (3) follows directly

from (1), since, by a trigonometric identity,

R cos (�t+ �) = R cos�t sin��R sin�t cos�:

That is A = R sin� and B = �R cos�: A simple model in (3) can be generalised to allow
for multiple periodic components as

Xt = �+
NX
i=1

(Ai cos�it+Bi cos�it) + "t; (4)

where �; Ai; Bi; �i are unknown constants and "t are the noise or error terms.
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One implication of the model in (3) and a harmless assumption

Et"t+s = 0 for all s > 0 and all t 2 Z; (5)

is that

EtXt+s = �+A cos� (t+ s) +B sin� (t+ s) ; for all s > 0;

where EtYt+s denotes conditional expectation of a random variable Yt+s, observed at time

t + s, given information at time t: If E"2t < 1 for all t 2 Z, condition 5 implies that the
process f"tg is a sequence of uncorrelated random variables. It can easily be shown, by

employing basic probability, that EtXt+s is actually the best mean squared predictor of

Xt+s given information available up to time t: If E"2t = �2" < 1 for all t 2 Z so that f"tg
is the, commonly assumed, sequence of white noise errers, then the mean squared error of

the best mean squared predictor is simply �2" for all t 2 Z and s > 0. That is the best

mean squared prediction error is constant over time regardless of how far into the future

one try to predict the value of Xt+s: The readers with experience in empirical economics

will �nd this particular implication of this class of models unrealistic. This implication is

unrealistic even for applications in physical science. It is normally the case that short-term

prediction is relatively much more accurate than long-term prediction. See Figure 2 for a

typical realisation of a sinusoid plus noise process where the disturbances are the standard

normal random variables.

Moreover, one might argue that prediction with such certainty may not easily arise in
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economic applications. Arbitrageurs are likely to take advantage of this high level of pre-

dictability so that the highly predictable part of the process will vanish and remain with

the one with a relatively high level of uncertainty.

2.2 Stationary and Harmonic Processes

After the breakthroughs from Yule (1927) and Slutzky (1927) and the independent devel-

opment of functional analysis, a new class of process, certainly much more random than the

one in (3), was developed in the 1930s to study the random cyclical movements of various

time series. This new class of process is called a class of stationary processes. We say that

a time series fXtg is weakly stationary if (i) EXt = � for all t 2 Z, (ii) EX2
t = �2X <1 for

all t 2 Z, and (iii)

E (Xt+u � �) (Xt � �) = 
 (u) ; for all t; u 2 Z.

The physical property of this process is that it �uctuates around a certain constant �

without any tendency to deviate from this constant. Moreover, the correlation structure of

the process depends only on the distance between two random values observed at di¤erent

points in time.

Given the cyclical property of the sinusoids, it is interesting to see whether the sinusoid

plus noise process in (1) that can be represented as in (3) can be modi�ed so that it become

stationary. First, consider a random sinusoidal wave (without noise) with a random phase.

This model has the representation

Xt = �+R cos (�t+ �) ; (6)

where � is a random variable. By the trigonometric identity given above, this process can

be represented as

Xt = �+A cos�t+B sin�t; (7)

where A = R cos� and B = �R sin� are new random variables. As the sine and cosine

functions are periodic with period 2�, we can restrict � to take values in the interval [��; �] :
If � is uniformly distributed on [��; �], employing properties of sine and cosine functions,
it can be shown that EA = 0, EB = 0, Cov (A; B) = 0 and EA2 = R2=2 = EB2: It follows
from these results that for a simple harmonic process fXtg de�ned by (6) EXt = � for all

t 2 Z;

EX2
t = �2 + EA2 cos2 �t+ EB2 sin2 �t

= �2 +R2=2 <1 for all t 2 Z;
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and for all u; t 2 Z;

Cov (Xt+u; Xt) = EA2 cos� (t+ u) cos�t+ EB2 sin� (t+ u) sin�t

= R2 cos (�t+ �u� �t) =2 = R2 cos (�u) =2:

Since Cov (Xt+u; Xt) is a function of u only, it follows that fXtg is a stationary process.
The simple random cosine wave in (6) can be generalised to a random sinusoidal wave

with mean zero and multiple periodicities as

Xt =

MX
j=1

(Aj cos�jt+Bj sin�jt) ; (8)

where �j are distinct and Aj ; Bj ; j = 1; 2; :::; M are pairwise uncorrelated random

variables such that for j = 1; 2; :::; M;

EAj = EBj = 0 and EA2j = EB2j = fj=2:

With reference to (6) and (7), the term Aj cos�jt+Bj sin�jt can be regarded as the cosine

wave with frequency �j and amplitude
p
fj . Hence, Xt can be regarded as the sum of

random sinusoidal waves with M di¤erent freqencies.

It follows, from the assumptions on Aj and Bj that EXt = 0 for all t 2 Z; for any
t; u 2 Z;

E (Xt+uXt) =

MX
j=1

�
EA2j cos�j (t+ u) cos�jt+ EB2j sin�j (t+ u) sin�jt

�
=

1

2

MX
j=1

fj cos�ju:

Hence, fXtg is indeed a stationary process. For u = 0, we have

EX2
t = V ar (Xt) =

NX
j=1

fj=2: (9)

Note that

E (Aj cos�jt+Bj sin�jt)2 = EA2j cos2 �jt+ EB2j sin2 �jt = fj=2: (10)

Equations (9) and (10) give the process of the form (8) an attractive physical meaning.

Equation (8) indicates that Xt is a linear combination of random sinusoidal waves with

di¤erent frequencies. The assumption on the covariance structure of Aj and Bj implies

that the random sinusoidal waves are uncorrelated. Equations (9) and (10) indicate that
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the variance (variation from the mean) of the time series fXtg is just the sum of the variances
of the random sinusoidal waves with di¤erent frequencies. The factor fj=2, the variance

of Aj and Bj , can be regarded as the contribution from the random sinusoidal wave with

frequency �j to the variation of the process fXtg. If the variances of random sinusoids

with low frequencies are relatively high compared with the one with high frequencies, then

the process fXtg will tend to be a slowly moving process and vice versa. One may see the
connection between this decomposition with the analysis of variance. See Tukey (1961) for

more discussion on this connection. Figures 3(a) and 3(b) show a realisation of the following

processes

H1t = 2A1 cos
�

10
t+ 2B1 sin

�

10
t+A2 cos

�

5
t+B2 sin

�

5
t;

H2t = A1 cos
�

10
t+B1 sin

�

10
t+ 2A2 cos

�

5
t+ 2B2 sin

�

5
t;

where A1, B1, A2 and B2 are independent standard normal random variables with mean

zero. The process fH1tg gives more weight to the sinusoidal wave with the lower frequency
compared to the process fH2tg. It is therefore not surprising to see that the process fH2tg
has more variation compared with the process fH1tg.

0 20 40 60 80 100

­3
­2

­1
0

1
2

3

  Figure 3(a) Realisation of H1
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  Figure 3(b) Realisation of H2
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It is crucial to point out one issue with the speci�cation in (8) and aliasing. For any

�; t 2 R; and any k 2 Z;

cos (�+ 2�k) t = cos�t cos 2�kt� sin�t sin 2�kt:
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However, for t 2 Z, cos 2�kt = 1 and sin 2�kt = 0 so that

cos (�+ 2�k) t = cos�t for all t 2 Z.

As our time series of interest fXtg is indexed by the set of all integers, Z, it follows that
we cannot di¤erentiate the cyclical movement of the sinusoid with frequency � and the one

with frequency � + 2�k for all k 2 Z. As a consequence, we need to restrict the values of
� to any particular interval with length 2�. We will adopt the convention in the literature

by considering any � in the Nyquist interval [��; �) :
With this particular Nyquist interval, the readers may be concerned with an interpre-

tation of negative frequencies. Recall that one interpretation of the random wave with

frequency � is the cosine wave with a random phase cos (�t+ �). Since cosine is an even

function,

cos (��t+ �) = cos (� (�t� �)) = cos (�t� �) ;

i.e. the cosine function with frequency �� and phase � is identical to the cosine function
with frequency � and phase ��. That is a negative frequency indicates a phase shift of a
cosine wave with a positive frequency.

In comparison with the multiple sinusoids plus noise in (4), the harmonic process is even

less realistic. Consider a simple harmonic process in (6). Suppose �; � and R are known,

one can determine the realised value of the random phase � given at least two observations

from fXtg : Once the realised value of � is determined, one can perfectly forecast other
values of Xt.

3 Spectral Representation of a Circularly De�ned Process

The spectral representation of a stationary process fXtg is essentially the idea of decompos-
ing each Xt as a sum of uncorrelated random sinusoids. The analogous idea in linear algebra

is the concept of matrix diagonalisation. We need to formally introduce complex-valued ran-

dom variables as they will greatly simplify our derivation of a simpli�ed form of the spectral

representation theorem. A complex valued random variable Z is a complex-valued function

of the form

Z = X + iY;

where X and Y are real-valued random variables and i is the imaginary number such that

i2 = �1: The mean of a complex-valued random variable Z, denoted by EZ; is de�ned by

EZ = EX + iEY:
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The variance of a complex-valued random variable Z, denoted by V ar (Z), is de�ned by

V ar (Z) = E (Z � EZ)
�
Z � EZ

�
;

where Z � EZ is the complex conjugate of Z � EZ. Similarly, the covariance of random
variables Z1 and Z2, denoted by Cov (Z1; Z2), is de�ned by

Cov (Z1; Z2) = E (Z1 � EZ1)
�
Z2 � EZ2

�
: (11)

A discrete-time time series is typically de�ned as a family of random variables fXt : t 2 Zg
indexed by the set of integers Z. Without any restriction on this family of random vari-

ables, we generally have to deal with an in�nite-dimensional system. This is the reason why

function analysis is key to the development of spectral analysis of stationary processes. To

simplify this mathematical di¢ culty and avoid dealing with an in�nite-dimensional system,

we follow Hannan (1960) by considering a special class of time series known as a circularly

de�ned process. Given random variables X1; X2; :::; XN : For t > N de�ne

XN+1 = X1; XN+2 = X2; :::; X2N = XN ; X2N+1 = X1; ::::

In general, for t > 0 that is not divisible by N; we have that Xt = XtmodN , where tmodN

is the remainder of the division of t by N: For t that is divisible by N , Xt = XN : For Xt

such that t � 0, we can also de�ned them from X1; :::; XN in a similar fashion. However,

this is not a necessary step in our discussion.

One interpretation of the spectral representation is that of decomposing a particular ran-

dom variable Xt from a stationary time series fXtg as a linear combination of uncorrelated
random variables associated with sine and cosine waves. For a general stationary process,

one has to consider such decomposition for an in�nite number of random variables. How-

ever, in the case of the circularly de�ned process, we can reduce and in�nite-dimensional

problem to a �nite-dimensional one. Instead of considering the decomposition of Xt for

each t 2 Z, we only need to consider the decomposition for t = 1; :::; N . Stationarity of a
general stationary process implies that there exists a function 
 such that

Cov (Xs; Xt) = 
 (s� t) ; for all s; t 2 Z.

Certainly, it is necessary that 
 must be even since, for any u 2 Z,


 (u) = Cov (Xt+u; Xt) = Cov (Xt; Xt+u) = 
 (�u) :

One additional structure imposed by a circularly de�ned process is that we only have to

consider 
 (u) for u = 0; 1; :::; N � 1; since any pair of random variables (Xs; Xt) from

the circularly de�ned process can be represented as a pair of random variables (Xu; Xv)
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such that u; v 2 f1; :::; Ng : Consider the covariance of the pair (XN+1; Xt) for any

t 2 f1; :::; Ng. Stationarity of a circularly de�ned process implies that

Cov (XN+1; Xt) = 
 (N + 1� t) :

However, since

Cov (XN+1; Xt) = Cov (X1; Xt) = 
 (1� t) = 
 (t� 1) ;

it follows that 
 (N � (t� 1)) = 
 (t� 1) : This implies that


 (u) = 
 (N � u) ; u = 0; 1; :::; N � 1: (12)

This additional condition indicates how one can construct a stationary circularly de�ned

process.

Let X = (X1; :::; XN )
0 ; where the prime "0" denotes a matrix transposition, and �

be the covariance matrix of X: As � is the covariance matrix, it must be symmetric and

positive semide�nite. It follows that � is unitarily diagonalisable. That is there exists a

unitary matrix P , i.e. P � = P�1; where P � is the conjugate transpose of P , such that

P ��P = F;

where F is the diagonal matrix whose diagonal elements are eigenvalues of �: In addition,

eigenvalues of � are nonnegative real numbers. With reference to (11), Z = P �X will

become a vector of uncorrelated random variables.

If � is any covariance matrix, the choice of a matrix P will generally be arbitary. Sim-

plicity and elegance of a suitable choice of a matrix P arises from stationarity of the process

fXtg. As discussed earlier, stationarity of a circularly de�ned process as seen in (12) implies
that the covariance matrix � can be written as a circulant matrix

� =

0BBBBBBB@


 (0) 
 (1) 
 (2) � � � 
 (N � 1)

 (N � 1) 
 (0) 
 (1) � � � 
 (N � 2)

 (N � 2) 
 (N � 1) 
 (0) � � � 
 (N � 3)

...
...

...
. . .

...


 (1) 
 (2) 
 (3) � � � 
 (0)

1CCCCCCCA
: (13)

A reader familiar with linear algebra may, at this point, be able to see that Xt can be

represented as a linear combination of random sinusoids since a circulant matrix can be

diagonalised by a discrete Fourier transform. That is a unitary matrix P in (18) can be
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chosen so that the j-th column of P is

1p
N

�
ei k ; :::; eiN k

�0
;

where  k = 2�k=N; k = 1; :::; N: That is this choice of matrix P satis�es the property in

(18). See the proof in Appendix 1.

There is one rather trivial technical point we need to address at this point. As men-

tioned in the previous section that thanks to the aliasing issue, we will focus on randam

�uctuation with frequency in the Nyquist interval (��; �] : However, the eigenvectors of �
involve sinusoids with frequencies in (0; 2�] : It turns out that we can easily represent these

eigenvectors in terms of sinusoids with frequencies in the standard Nyquist interval. Since

for any  2 R,
ei = ei( �2�); (14)

we can re-arrange ei k , where  k = 2�k=N as the following. Let K be the smallest integer

less than or equal to N=2: If N is even, then K = N=2. If N is odd, then K = (N + 1) =2:

We can de�ne

�1 =  K+1 � 2�; �2 =  K+2 � 2�; :::; �N�K =  N � 2�; (15)

and

�N�K+1 =  1; �N�K+2 =  2; :::; �N =  K : (16)

By (14),

ei�1 = ei K+1 ; ei�2 = ei K+2 ; ::: ei�N�K = ei( N�2�):

Hence

pj =
1p
N

�
ei�j ; :::; eiN�j

�0
; j = 1; :::; N; (17)

are orthonormal eigenvectors of �. With pj de�ned in (17), (15) and (16) as the j-th column

of the matrix P , it follows that

P ��P = F; (18)

where F is a diagonal matrix diag ff1; :::; fNg, where fj is the eigenvalue of � corresponding
to the eigenvector pj as described above. Equation (18) implies that P �X is a CN -valued
random variable whose elements are uncorrelated. As each element of P �X can be written

as
1p
N

NX
t=1

e�it�jXt;

where its variance is fj ; the eigenvalue of � corresponding to pj .

De�ne Z = (Z1; :::; ZN )
0 by

Z =
1p
N
P �X (19)
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so that each of its element can be written as

Zj =
1

N

NX
t=1

e�it�jXt: (20)

It follows that Zj ; j = 1; :::; N are uncorrelated random variables and

E jZj j2 = fj=N; (21)

where jZj j is the modulus of Zj and fj are the corresponding eigenvalues of �. It is straight-
forward from trigonometric identities that the matrix P � is unitary, i.e. P � = P�1: Hence

equation (19) implies that

X =
p
NPZ;

i.e.

Xt =
NX
j=1

eit�jZj ; t = 1; :::; N: (22)

The expression in (22) is called the spectral representation of a stationary circularly de�ned

process.

In comparison with the harmonic process in (8), relationship (22) implies that a station-

ary circularly de�ned process fXtg can be decomposed into uncorrelated random sinusoids.

By Euler�s formula, the term

eit�j = cos t�j + i sin t�j

can be interpreted as a complex sinusoid with frequency �j : The term Zj can be interpreted

as the random amplitude associated with the complex sinusoid with frequency �j : This

random amplitude has variance equal to fj=N: The term fj=N is called the spectral mass

of the process fXtg at frequency �j :
Now we summarise this result in the following Proposition.

Proposition 1 Suppose fX1; :::; XNg is a stationary circularly de�ned process with the
covariace matrix �. Then

Xt =
NX
j=1

eit�jZj ; t = 1; :::; N;

where

Zj =
1

N

NX
t=1

e�it�jXt;

with the following properties; (i) Zj ; j = 1; :::; N are uncorrelated random variables; and
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(ii)

E jZj j2 = fj=N;

where fj are the eigenvalue of � corresponding the eigenvector pj de�ned in (17).

The unitary diagonalisation in (18) implies that

� = PFP �: (23)

That is for s; t = 1; :::; N; the (s; t)-element of � is


 (s� t) = E (XtXs) =
NX
j=1

fj
N
ei(s�t)�j : (24)

We can summarise this result as the following.

Proposition 2 Suppose fX1; :::; XNg is a stationary circularly de�ned process with the
covariace function 
. Then


 (u) =
1

N

NX
j=1

eiu�jfj ; (25)

where fj are eigenvalues of the covariance matrix �.

In particular,


 (0) =

NX
j=1

fj
N
;

i.e. the variation of the process fXtg can be decomposed into contribution from random

sinusoids with frequencies �j ; j = 1; :::; N where the contribution from each frequency

is fj=N: The relationship between the autocovariance function 
 and its eigenvalues of a

stationary circularly de�ned process fXtg is handy. Equation (25) shows a clear relationship
between the time-domain approach, as characterised by the autocovariance function, an the

spectral one, as characterised by eigenvalues of the autocovariance function without having

to rely on complexity of Fourier inversion.

4 Spectral Representation of Stationary Processes

In this section, we will generalise the spectral representation theorem and the dual rela-

tionship between the autocovariance function and its eigenvalues to a general stationary
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process. In the previous section, we tried to be as water-tight as possible so that the read-

ers can follow us with a great deal of con�dence. As mentioned earlier, the di¢ culty of the

spectral representation theorem for a general stationary process arises from the fact that

the process is generally in�nite dimensional. The advantage of restricting ourselves to a cir-

cularly de�ned process is to make sure that the system we consider is �nite dimensional, i.e.

we essentially need to consider the random variables x1; :::; xN ; rather the whole process

fxt : t 2 Zg. The reader should be able to see that to deal with a �nite dimensional process
like a circularly de�ned process, elementary linear algebra is su¢ cient. To deal with an

in�nite dimensional process, we need a working knowledge function analysis. As we do not

assume that the readers have a working knowledge of functional analysis, we will not prove

any result in this subsection. Instead, we will state some results generalising all the known

results for the circularly de�ned process. Fortunately, the generalised results are just the

limiting case of a circularly de�ned process.

There is a close similarly in what we try to achieve and what the readers may have

seen in a �rst course in probability. It is natural to �rst introduce a discrete random

variable and let the readers become familiar with its properties. Once the readers develop

some intuition concerning discrete random variables, continuous random variables are then

introduced. Continuous random variables are often introduced as a limiting case of some

discrete random variable. A common route is to introduce a Bernoulli random variable Xi;

Xi =

(
1; with probability p;

0; with probability 1� p:

Let X1; :::; XN be independent Bernoulli random variables. Then YN =
PN

i=1Xi is a

Binomial random variable taking values 0; 1; :::; N: As N !1, the random variable

ZN =
1p
N
(YN �Np)

will, in the limit, follow the distribution of the normal distribution which is a continuous

random variable. Note that YN takes a value in f1; :::; Ng but YN � Np can become

negative and is no longer an integer. As N ! 1, YN � Np can be arbitrarily large or

small. The normalisation by a factor of
p
N stabilises the variance of ZN and makes all the

possible values of ZN more dense on the real line R.
Now we will proceed in a similar fashion to the introductory course in probability by

trying to convince the readers the more general properties of stationary processes after

having established key results concerning circularly de�ned processes. All the results will

be heuristically discussed but the proofs are not given to avoid making use of relatively

advanced mathematics. For a rigorous approach to the spectral representation theorem and

related results, the readers can consult standard textbooks such as Brockwell and Davis

(1991).
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The main intuition for generalizing the results established for stationary circularly de-

�ned processes to general stationary processes is that when N becomes arbitarily large,

periodicity of circularly de�ned processes starts to disappear and any subset of consecutive

observations of stationary processes, say X1; :::; XK , should be arbitrarily well approxi-

mated by circularly de�ned processes given large su¢ ciently large N:

4.1 Wold�s Theorem

Recall the dual relationship between an autocovariance function of a stationary circularly

de�ned process and its eigenvalues. Each eigenvalue fj corresponds to an eigengenvector

associated with sinusoids with frequency �j . With respect to the de�nition of �j in (15)

and (16) as N !1; �1; :::; �N will be dense in the interval (��; �] : Hence, as N !1;
we should be able to approximate the relation in (24) by an integral. If there is no serious

concentration of eigenvalues at any particular frequencies, then as N !1, the term fj=N

will becomes arbitrarily small so that each frequency in the interval (��; �] will give a
negligible contribution to the variation of the process fXtg : But a range of frequencies, say
from the interval (�1; �2] where �2 > �1 can give a positive contribution to the variance of

the process fXtg. This generalisation is analogous to the probability density function of a
continuous random variable.

Now we need to introduce some concepts concerning di¤erent sorts of integration. First,

we introduce the intuitive idea of the Riemann-Stieltjes integral. Given a function g and a

real valued function F such that F is an increasing function, we can de�ne the integralZ b

a
g (x) dF (x)

as the limit of the sum
NX
i=1

g
�
x0i
�
[F (xi)� F (xi�1)] ;

where x0i 2 [xi; xi�1], a = x0 < x1 < ::: < xN = b and max1�i�N jxi � xi�1j ! 0 as

N !1: Note that as N increases the points x1; :::; xN will become dense in the interval

[a; b] :

With reference to Proposition 2, where we consider a stationary circularly de�ned

process, we can de�ne the function F as

FN (�) =
X
j2A�

fj
N
;

where A� is the set of all �j such that �j � �: Then


 (u) =
1

N

NX
j=1

eiu�jfj =

Z �

��
eiu� dFN (�) : (26)
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Note that the function FN is just a step function with a jump at frequencies �1; :::; �N
where the magnitude of the jump is equal to fj=N where fj is an eigenvalue of the covariance

matrix of (X1; :::; XN )
0 : It shares the properties of a distribution function of a discrete

random variable. Now we state a generalisation of this result known as the Wold�s Theorem.

Theorem 1 (Wold�s Theorem). The sequence f
 (u) : u 2 Zg is the autocorrelation func-
tion for some stationary time series fXt : t 2 Zg if and only if there exists a right-continuous,
non-decreasing, bounded function F on [��; �] and F (��) = 0 such that


 (u) =

Z
(��; �]

eiu� dF (�) for all u 2 Z. (27)

The general result in (27) is so similar to the one in (26) that we may intuitively

regard F as the limit of FN as N ! 1: The function F in Theorem 1 is called the

spectral distribution function. There two main reasons for this name. First, it meets all the

requirements for being a distribution function. Second, it is associated with the eigenvalues

of the autocovariance function of the stationary process fXtg :
For u = 0, Theorem 1 implies that

�2 = 
 (0) =

Z
(��; �]

dF (�) = F (�) :

Given that �2 > 0; we can de�ne a new distribution function F1 = ��2F so that F1 (�) = 1

and F1 (��) = 0. Then F1 is a probability distribution function of some random variable

taking values in the interval (��; �] : Then (27) indicates that the autocorrelation function,

 (u) =
 (0) ; of a stationary process fxtg is just the characteristic function of the random
variable with the probability distribution function F1: Recall from probability theory that

a probability distribution function can be decomposed into three components where the

most important two components are a step function associated with the cummulative mass

function of a discrete random variable, and an absolutely continuous function associated

wth the cummulative density function of a continuous random variable. The last component

is rather pathological and does not make any sense unless one has a working knowledge of

measure theory. Moreover, it does not seem to contribute to any real world applications.

So we will simply ignore this component in our discussion.

As a result of this, we can essentially decompose a spectral distribution function into

a step function and an absolutely continuous function like the cummulative probability

function of a continuous random variable. The component associated with the step function

is associated with a predictable process like the harmonic process in Section 2. As the
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predictable part is unrealistic for economic and many other applications, the core part of

classical time series analysis focuses mainly on the type of a spectral distribution function

that is absolutely continuous, i.e. there exists a nonnegative function f such that


 (u) =

Z
(��; �]

eiu� f (�) d� for all u 2 Z.

Again for u = 0,

V ar (Xt) = 
 (0) =

Z
(��; �]

f (�) d�:

This says that the variation of the process fXtg can be composed into contribution from
random sinusoids from all frequencies � in the interval (��; �] where the contribution from
each frequency is f (�) : For simplicity of the presentation we assume that persistency of the

process fXtg is limited so that
P1

u=�1 j
 (u)j < 1: Under this assumption, the following
result holds.

Theorem 2 If
P1

u=�1 j
 (u)j <1, we have that

f (�) =
1

2�

1X
u=�1

e�iu�
 (u) ; for all � 2 (��; �] : (28)

4.2 Spectral Representation Theorem

To generalise the spectral representation theorem, we can proceed in a similar way as in

the Wold�s Theorem. Consider the case of circularly de�ned processes. Recall that for each

sinusoid with frequency �j , there is a random variable

Zj =
1

N

NX
t=1

e�it�jXt

that can be regarded as a random amplitude. For any � 2 (��; �] ; de�ne

ZN (�) =
X
�j��

Zj ;

where the sum is over all Zj ; j = 1; :::; N such that �j � �. With the notion of Stieltjes

integration, we can re-write (22) as

Xt =

Z �

��
eit� dZN (�) : (29)

We need to introduce some de�nitions before stating a theorem concerning the spectral
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representation theorem of stationary processes.

De�nition 1 An orthogonal-increment process on [��; �] is a complex-valued process
fZ (�) ; �� � � � �g such that

(i) E [Z (�)] = 0; �� � � � �;

(ii) E jZ (�)j2 <1; �� � � � �;

and (iii) E [Z (�4)� Z (�3)]
h
Z (�2)� Z (�1)

i
= 0 if (�1; �2]\ (�3; �4] = ;, where ; is

the empty set.

De�nition 2 An orthogonal-increment process fZ (�) ; �� � � � �g is right-continuous if
for all � 2 [��; �],

E jZ (�+ �)� Z (�)j2 ! 0 as � # 0;

where � # 0 means positive � get arbitrarily close to zero.

Now we present a general form of the spectral representation theorem.

Theorem 3 (The Spectral Representation Theorem) If fxtg is a stationary sequence with
mean zero and spectral distribution function F , then there exists a right-continuous orthgonal-

increment process fZ (�) ; �� � � � �g such that (i) E jZ (�)� Z (��)j2 = F (�) ; �� �
� � �; and (ii)

Xt =

Z
(��; �]

eit� dZ (�) ; (30)

where the integral is de�ned in the mean-square sense.

It is important to note the in integral in (30) is

lim
N!1

NX
j=1

ei�
0
jt [Z (�j)� Z (�j�1)] ;

where �0j 2 [�j�1; �j ] ; �� = �0 < �1 < ::: < �N = � and asN !1; max1�j�N j�j � �j�1j !
0: This is very similar to the way we de�ne the Riemann-Stieltjes integral. The exception

is that Z (�) is a random variable from an orthogonal-increment process. As the form of

the spectral representation theorem remains the same as in the case for a circularly de-

�ned process, the physical interpretation of the general representation theorem remains

unchanged.
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4.3 White Noise Process

The simplest example of a stationary process is the so called white noise process. It is a

sequence of random variables f"tg such that

E"t = 0; E"2t = �2 for all t 2 Z,

and for all s; t 2 Z such that t 6= s

Cov ("t; "s) = 0:

In this subsection, we will rationalize its name and discuss its properties. First consider

its analogue under the class of circularly de�ned process. Let E = ("1; :::; "N )
0 : Then it

follows that the covariance matrix of E is �" = �2IN where IN is the identity matrix of

order N . It follows immediately that all eigenvalues of �" are equal to �2: Hence, we have

the spectral representation

"t =

NX
j=1

eit�jZj ;

where E jZj j2 = �2=N for all j = 1; :::; N: This implies that each random sinusoid, with fre-

quency �j ; gives the same contribution to the variation of the random variables "t: Certainly

as N !1; E jZj j2 ! 0 but for all j; k = 1; :::; N;

E jZj j2

E jZkj2
! 1 as N !1:

That is although each random sinusoid with a particular frequency � will give a negligible

contribution to the variation of "t, it relative contribution compared with those from other

frequencies will be the same. From the spectral point of view, a white noise process plays

a very similar role to the probability density function of a random variable with uniform

distribution.

Now consider the general case of the white noise process. Let 
" be the autocovariance of

the white noise process f"tg : It follows from the de�niton that 
" (0) = �2 and 0 otherwise.

Hence
P1

u=�1 j
" (u)j = �2 < 1. Then we can apply Theorem 2 to show that for all

� 2 (��; �] ;

f" (�) =
1

2�

1X
u=�1

e�iu�
 (u) =
�2

2�
: (31)

That is each random sinusoid with frequency � 2 (��; �] gives the same relative contribu-
tion to the variation of the random variables "t: This is analogous to the behaviour of white

light which is the mixture of the visible waves with the same intensity.
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5 Time Invariant Linear Filters

As mentioned in the introduction, policy makers working with economic time series usually

employ various smoothing technique to perform seasonal adjustment or get some sense of

a medium-term or long-term trend of the series. From a mathematical point of view, most

popular smoothing techniques can be regarded as time-invariant linear �lters. Before dis-

cussing theoretical implications of time invariant linear �lters, we �rst consider a particular

form of �lter commonly employed by macroeconomists in Thailand. To shed some light on

theoretical results, we will mainly consider the circularly de�ned process.

5.1 Stationary Circularly De�ned Processes

Suppose a monthly economic time series of interest fXtg is a circularly de�ned stationary
process. To eliminate some erratic trends, practitioners in Thailand often apply a simple

one-sided moving average linear �lter

Yt =
1

3
(Xt�2 +Xt�1 +Xt) :

Recall that Xt has the spectral representation

Xt =

NX
j=1

eit�jZj ;

where Zj are uncorrelated complex-valued random variable with zero mean. It follows that

Yt =
1

3

NX
j=1

�
ei(t�2)�j + ei(t�1)�j + eit�j

�
Zj

=
1

3

NX
j=1

eit�j
�
e�i2�j + e�i�j + 1

�
Zj : (32)

Equation (32) has an interesting physical interpretation. For the original series fXtg, the
terms eit�j represent the sinusoidal wave with freqeuncy �j and Zj are their uncorrelated

random amplitudes. The variance of Zj are the contribution to the variance of fXtg from
the random sinusoidal wave with frequency �j . Now the transformed series fYtg has the
spectral representation of the form (32) which can be re-written as

Yt =
NX
j=1

eit�jZ1j ;
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where Z1j =
�
e�i2�j + e�i�j + 1

�
Zj=3. That is the random amplitudes of the sinusiodal

waves are modi�ed by a factor of
�
e�i2�j + e�i�j + 1

�
=3: It follows, from the properties of

Zj , that Z1j remain uncorrelated and have mean zero. However,

V ar (Z1j) = E
�
Z1jZ1j

�
=

fj
N

����e�i2�j + e�i�j + 13

����2 : (33)

This is the contribution to the variation of the transformed process fYtg from the random
sinusoidal wave with frequency �j : The function g (�) =

��(e�i2� + i�i� + 1)=3��2, called the
squared gain function, indicates how the contribution to the variance from random sinusoidal

wave with each freqeuncy is altered.

Figure 4  Squared Gain Function of the 3­M MA Filter
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Figure 4 shows the squared gain function of the 3-month moving average �lter. Without this

�lter, the squared gain should be equal to unity for all frequency. Once the �lter is applied

to the original series, the contribution from other frequency, except at zero frequency, to

the variance of the transformed series will be dampened by a factor shown in Figure 4. This

implies that the 3-month moving average �lter essentially discounts an impact of random

sinusoidal waves at high frequency relative to those at low frequency. Approximately 40%

of the contribution of the random wave completing its cycle every 8 months will be removed

if a 3-month moving average �lter is applied to a monthly time series.
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5.2 Stationary Processes

As the general theory of invariant linear �lters is rather mathematical demanding, we �rst

introduce a simple case in the hope that the reader will develop some intuition.

Assumption 1 Let fXtg be a stationary time series with mean zero and autocovariance
function 
x (�). Assume further that

1X
u=�1

j
x (u)j <1:

Assumption 1 and Theorem 2 imply that the spectral density function of fXtg has the
form

fx (�) =

1X
u=�1

e�iu�
x (u) ; � 2 (��; �] :

Consider the one-sided 3-period moving average as in the previous subsection. De�ne

Yt =
Xt�2 +Xt�1 +Xt

3

It follows that the autocovariance function of fYtg is


y (u) =
1

9
f
x (u� 2) + 2
x (u� 1) + 3
x (u) + 2
x (u+ 1) + 
x (u+ 2)g : (34)

Lemma 3 shows that the spectral density function fy of the process fYtg is well de�ned and
can be written as ����e�i2� + e�i� + 13

����2 fx (�) :
This particular form of the spectral density function of fYtg shares a great deal of similarity
with that of a circularly de�ned case in (33). By taking a one-sided 3-period moving average,

we obtain a new stationary process with the spectral density that is a multiple of the spectral

density of fXtg by a factor of
���e�i2� + e�i� + 1� =3��2 : In fact, it can be shown that a similar

kind of interpretation concerning the random amplitude of the sinusoids eit� holds for the

general case too. However, we omit this discussion concerning the mathematical results

related to this interpretation since it requires much more advanced level of mathematics

assumed in this article.

Now we jump to a greater level of mathematical generality. First notice that any

weighted averages of the time series fXtg can be represented as

Yt =

1X
�=�1

gt;�Xt�� ;
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where for a given t 2 Z; fgt;�g is a deterministic sequence. The double sequence fgt;� ; t; � 2 Zg
is called a linear �lter. In most applications, the deterministic sequence is chosen deliber-

ately to be time independent, i.e. gt;� = g� for all t 2 Z, so that the linear �lter fg� ; � 2 Zg
is called time-invariant. The main purpose of this subsection is to explain the e¤ect of apply-

ing a time-invariant linear �lter to a process fXtg : To ensure that the new random variable
Yt is well de�ned we make the assumption that the weights are absolutely summable, i.e.

1X
�=�1

jg� j <1: (35)

It follows from various results from Chapter 3 in Brockwell and Davis (1991) that the �ltered

process fYtg is well de�ned and also weakly stationary with mean zero and autocovariance
function


y (u) =

1X
�=�1

1X
�=�1

g�g�
x (h� � + �) ;

where 
x is the autocovariance function of fXtg : As the autocovariance and the spectral
distribution functions are two sides of the same coin, once we know that autocovariance

function, we can obtain a full knowledge concerning the spectral distribution function.

Theorem 4 If fXtg is a stationary process with spectral distribution function Fx and a

�ltered process fYtg de�ned by

yt =
1X

�=�1
g�xt�� where

1X
�=�1

jg� j <1;

then fYtg is stationary with spectral distribution function

Fy (�) =

Z
(��; �]

�����
1X

�=�1
g�e

�i��

�����
2

dFx (!) ; �� < � � �:

With some knowledge of measure theory, one can easily derive the following corollary

of Theorem 4.

Corollary 1 If the processes fXtg and fYtg satisfy the conditions in Theorem 4 and the

spectral density function fx of fXtg exists, then the spectral density function fy of fYtg is
well de�ned and

fy (�) =

�����
1X

�=�1
g�e

�i��

�����
2

fx (�) ; �� < � � �:
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Given an absolutely summable time-invariant linear �lter fg�g ; the function T : (��; �]!
C, where C is the set of complex numbers, de�ned by

T (�) =
1X

�=�1
g�e

�i��; � 2: (��; �]

is called the transfer function. The function G : (��; �]! R de�ned by

G (�) = jT (�)j ; � 2: (��; �] ;

where j�j is the modulus of a complex number, is called the gain function. Hence, from the

spectral representation point of view, e¤ects of time-invariant linear �lters on an original

time series can be investigated through the transfer and gain functions.

6 Various Applications

The power of spectral analysis and the theory of time invariant linear �lters can be appre-

ciated with various examples and applications.

6.1 Autoregressive-Moving Average Models and Yule-Slutsky E¤ects

Let f"tg be a sequence of white noise with variance �2: Slutsky (1927), translated into
English in Slutsky (1937), considered smoothing f"tg to obtain new series and noted that
the new processes can capture the movement of the British business cycle quite well. Slutsky

(1927) considered various types of smoothed series, for simplicity, we consider

Xt = "t + "t�1 + "t�2:

Recall from (31) that the spectral density function of the process f"tg is just f" (�) = �2=2�

for all �� < � � �: One can regard fXtg as a �ltered process where

g� =

(
1; � = 0; 1; 2;

0; otherwise.

It follows that
P1

�=�1 jg� j < 1 and Theorem 4 and Corollary 1 imply that fXtg is sta-
tionary with spectral density

fx (�) =
���1 + e�i� + e�i2����2 �2

2�
:

One can generalise Slutsky�s smoothing process to introduce a process

Yt = "t + �1"t�1 + ::: + �q"t�q;
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where f"tg is a white noise process. By Theorem 4 and Corollary 1, it follows that fYtg is
stationary with spectral density

fy (�) = �2
���1 + �1e�i� + �2e�i2� + ::: + �qe

�iq�
���2 :

Wold (1953) called fYtg a Moving Average process of order q, denoted by MA (q) :

Now consider MA (1) processes

Xt = "t + �"t�1

with various values of �. Figure 5(a) shows a realisation of an independent process f"tg with
the standard normal distribution. The values of "t are employed to create three MA (1)

processes with values � = 0:5; 0:9 and �0:5:

Figure 5(a) NID(0,1)
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Figure 5(b) MA(1): θ = 0.5
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Figure 5(c) MA(1): θ = 0.9
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Figure 5(d) MA(1): θ = ­0.5
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It can be seen that the plot in Figure 5(b) is smoother than the one in Figure 5(a).

Similarly the plot in Figure 5(c) is even smoother than the one in Figure 5(c). On the other

hand, the plot in Figure 5(d) is rougher than the one in Figure 5(a). We can explain this
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comparison easily with a simple application of the theory of time invariant linear �lters.

Figure 6(a) Identity Filter
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Figure 6(b) MA(1): θ = 0.5
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Figure 6(c) MA(1): θ = 0.9
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Figure 6(d) MA(1): θ = ­0.5
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Without applying any �lter to the white noise process f"tg, the squared gain function is
equal to unity. Once we apply a one-sided moving average �lter, we amplify the contribution

from the slow moving random sinusoids, the ones with low frequencies, to the variation of the

series while dampen the contribution from the fast moving random sinusoids, the one with

high frequencies. See Figure 6(b). This explains why the plot in Figure 5(b) is smoother

than the one in Figure 5(a). With a higher value of � = 0:9, we amplify the contribution

from the slow moving sinusoids more than at value � = 0:5: This explains why Figure 5(c)

is smoother than Figure 5(b). On the other hand, for a negative value of �, we amplify the

contribution from the fast moving sinusoids while penalise the contribution from the slow

moving sinusoids. Hence, the plot in Figure 5(d) is rougher than the one in Figure 5(a).

Yule (1927) also investigated e¤ects of smoothing time series. Rather than the simple

moving average, he considered exponential smoothing. In the paper, Yule tried to explain

the cyclical behaviour of Wolfer�s sunspot data. He consider a process fX2tg de�ned by

X2t = �1X2;t�1 + �2X2;t�2 + "t;

where f"tg is a white noise process with variance �2: For simplicity, we consider a simpler
form by assuming that �2 = 0 and re-label �1 simply as � so that we have

X1t = �X1;t�1 + "t: (36)
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It follows from induction that

X1t = "t + �"t�1 + ::: + �p"t�p + �
p+1X1;t�p�1:

If E jX1tj2 are uniformly bounded and j�j < 1, then as p!1, we have that E
���p+1X1;t�p+1��2 !

0: Moreover, it follows that

X1t = "t + �"t�1 + ::: + �p"t�p + :::; (37)

where the convergence is in the mean square sense. Let L be a lag operater such that for

all t 2 Z;
LX1t = X1;t�1:

It follows that (36) can be re-written as

X1t = �LX1t + "t:

This implies that

(1� �L)X1t = "t:

The term (1� �L) can be considered as an operator when applied to fX1tg, one obtians a
white noise sequence f"tg : Equation (37) suggests that the inverse of an operator 1 � �L

exists since

X1t =
�
1 + �L+ �2L2 + ::: + �pLp + :::

�
"t:

Hence the operator
�
1 + �1L+ �

2L2 + ::: + �pLp + :::
�
can be considered as the inverse

of (1� �L) under the assumption that j�j < 1 and E jX1tj2 are uniformly bounded. Now
we can study the behaviour of fX1tg in a context of linear �lters. Since

X1t =

1X
j=0

�j"t�j ;

where f"tg is a white noise process with variance �2: As the series
P1

j=0 �
j is absolutely

summable, then Corollary 1 implies that the fX1tg is also stationary and its spectral density
is

fx1 (�) =
�2

2�

������
1X
j=0

�je�ij�

������
2

:

Recall a well-know result from geometric series that, if j�j < 1;

1X
j=0

�je�ij� =
1

1� �e�ij� :
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Then it follows that for all � 2 (��; �] ;

fx1 (�) =
�2

2� j1� �e�i�j2
:

We can generalise the model considered by Yule (1927) to

Xt = �1Xt�1 + �2Xt�2 + ::: + �pXt�p + "t; (38)

where f"tg is a white noise process. Wold (1953) called the process de�ned in (38) an
Autoregressive process of order p, denoted by AR (p) : We can re-write (38) as

�
1� �1L� �2L2 � ::: � �pLp

�
xt = "t: (39)

The heuristic way of solving this equation is to consider the equation

1� �1z � �2z2 � ::: � �pzp = 0: (40)

The left-side of (40) is a polynomial of degree p. Hence, by the fundamental theorem of

algebra, there are precise p solutions to this equation. That is there are #1; :::; #p such

that

(1� #1z) (1� #2z) ::: (1� #pz) = 0:

The composite operater in (39) can be regarded as the product of simple operators

(1� #1L) (1� #2L) ::: (1� #pL)xt = "t:

Given that j#kj < 1 for all k = 1; :::; p; then

xt = (1� #1L)�1 (1� #2L)�1 ::: (1� #pL)�1 "t:

Applying the steps taken for the AR (1) process p times, the readers show be able to show

that

fx (�) =
�2

2�
��1� �1e�i� � �2e�i2� � ::: � �pe�ip�

��2 :
Now consider realisations of AR (1) processes with di¤erent values of �. Let

Xt = �Xt+1 + "t;
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where f"tg is an independent process following the standard normal distribution.

Figure 7(a) NID(0,1)
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Figure 7(b) AR(1): φ = 0.5
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Figure 7(c) AR(1): φ = 0.9
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Figure 7(d) AR(1): φ = ­0.5
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Figures 7(a) - (d) show how smoothness or roughness of the plots can be a¤ected by di¤erent

values of �. Similar to the explanation given for the moving average smoothing techniqe,

the smoothness or roughness of the plots can be explained by the squared gain plot. See
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Figures 8(a) - (d).

Figure 8(a) Identity Filter
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Figure 8(b) AR(1): φ = 0.5
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Figure 8(c) AR(1): φ = 0.9
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Figure 8(d) AR(1): φ = ­0.5
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The idea of moving and exponential smoothing can be combinded as

Xt � �1Xt�1 � ::: � �pXt�p = "t + �1"t�1 + ::: + �q"t�q; (41)

where f"tg is a white noise process. The process fxtg satisfying (41) is known as an Au-
toregressive Moving Average model of order (p; q), denoted by ARMA (p; q) : To obtain

the spectral density function of fXtg, the following proposition can be proven.

Theorem 5 Let fXtg be an ARMA (p; q) process satisfying

� (L)Xt = � (L) "t;

where f"tg is a white noise process with variance �2, � (z) = 1 � �1z � ::: � �pz
p and

� (z) = 1 + �1z + ::: + �qz
q have no common zeros and � (z) has zeroes outside the unit

circle. Then fXtg has spectral density

fx (�) =
�2

2�

��� �e�i����2
j� (e�i�)j2

; � 2 [��; �] :
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The statement � (z) has zeroes outside the unit circle means

� (z�) = 0 implies jz�j > 1:

Let #1; :::; #p be the numbers such that � (z) = (1� #1z) ::: (1� #pz). Then (1� #kz�) =
0 for all k = 1; :::; p: That is z� = #�1k is a solution to the equation � (z) = 0: Hence

jz�j = j#kj�1 ; and jz�j > 1 implies that j#kj < 1 for all k = 1; :::; p: This condition is stated
to make sure that the operators (1� #kL)�1 is well-de�ned as discussed earlier.

We have seen that application of either the moving average or the autoregressive �lter

to an original time series can make some substantial alteration to the original series. We

have seen that some sort of trends can be created from these two types of �lters. Figures

5(a) - (d) and Figures 7(a) - (d) show how a spurious trend or pattern can be created once

these �lters are applied to an independent white noise process which is suppose to random

and exhibits no trends or patterns.

6.2 Exponential Smoothing and Volatilty of Key Economic Variables

It is sometimes customary to employ an autoregressive �lter to monitor stochastic volatility

of certain economic time series. Policy maker may need to monitor volatility of the stock

indices or foreign exchanges to avoid excessive volatility. One popular approach is to employ

the following �lter

Vt = �Vt�1 + e
2
t ;

where Vt are daily volatility and et are the stock returns or appreciation of a currency.

Given that the stock prices or the movement of a currency are believed to to have a unit

root, their returns fetg is therefore stationary. If we assume further that the process
�
e2t
	
is

also stationary, then the volatility process fVtg is just a �ltered series of the process
�
e2t
	
:

The popularity of this choice of volatility measure may be due to its resemblance with the

famous ARCH model.

With reference to the previous subsection, it follows that the spectral density of the

process fVtg is
fV (�) =

1

j1� �e�i�j2
fe (�) :

To see how the original series is a¤ected by this autoregressive �lter we consider the squared

gain plot. As the value of � is normally chosen to be a positive number close to unity, the

squared gain in Figure 8(c) indicates that policy makers may put too much weight on

long-run dynamics of the volatility rather than the medium-run or short-run dynamics.
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6.3 Seasonal Adjustment

In the interview conducted by Phillips (1988) in 1986, Professor James Durbin, the world

renowned statistician and econometrician, mentioned how had gotten involved in research

on the topic of seasonal adjustment procedures. It started from Prime Minister Harold

Wilson�s idea that the strange behaviour of the unemployment time series could be a result

of the seasonal adjustment procedure that was being used. After a year of two of pursuing an

investigation in this area, James Durbin and Robert Brown found that Harold Wilson was

right. There was something wrong with the seasonal adjustment. James Durbin thought it

was remarkable that a point like this should be spotted by a prime minister.

On the other side of the world and forty years later, policy makers in Thailand usually

take the issue of seasonal adjustment for granted. Possibly all policy makers notice that

seasonal patterns are a common sailient feature in most economic time series. Many of them

believe that those seasonal patterns should be removed from the series so that long-term

or medium-term �uctuations could become more apparent. However, to our knowledge,

the default setups in some famous computer packages are usually employed to deal with

seasonal patterns. No special adjustments, other than the default one, seem to have been

employed to take into account some extreme events such as the Great Flood in 2011. Most

modelers in policy units often treat it as easy and for granted. When one is encountered

with a question about what seasonality is, we have not so far got any sensible answer.

There are two popular approaches employed by o¢ cial statistical units around the world

to deal with the issue of seasonality, namely, the X12ARIMA and TRAMO SEATS method-

ology where the latter methodology has gain more popularity in recent years. Given that

X12ARIMA is the only method employed to deal with seasonality in Thailand, we will

only brie�y discuss the issues related with the X12ARIMA procedure. There are 4 decom-

position procedures in the X12 or X13 ARIMA technique, namely, additive, log-additive,

multiplicative and pseud-additive decompositions. On the the additive or log-additive can

be considered as linear �lters. The other are non-linear. Ghysels, Granger and Siklos (1996)

showed how non-linearity can have very serious consequences on the deseasonalised series.

Laroque (1977) and Ghysels (1984) showed that the additive and log-additive decompo-

sitions can be approximated by the linear �lters. The readers can see the original papers to

see the numerical values of the weights assigned to the �lters. To see e¤fects of these linear

35



�lters, we focus on the squared gain derived from the quarterly �lters.

Figure 9 Squared Gain Function of the Q Filter
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It can be seen from Figure 9 that the squared gain function remove all �uctuations with

frequency around �=2 and � from the orignal series while leaving �uctuations from other

frequencies rather una¤ected. Given that the original series is a quarterly data, the sinusoids

with frequency �=2 and � are the ones which complete their cycles in 4 quarters and 2

quarters, respectively. That is the linear quarterly �lter remove all �uctuations which

repeat themselves on a yearly basis. This conclusion may be regarded as an achievement

becuase one can completely remove what most people regard as the seasonal patterns. One

can compare the achievement of this technique compared with the crude YoY (year on year)
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comparison in Figure 10.

Figure 10 Squared Gain Function of the Y­Y Filter
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However, the main drawback of this approach is that the deseasonalised series will

have spectral density equal to zero at frequencies �=2 and �: If policy makers wish to

employ this deseasonalised series to construct a model based on the popular Box-Jenkins

methodology, one will create an internal inconsistency. Theorem 5 implies that with the

standard parameter space associated with the ARMA model, one can never create a spectral

density function with f (�=2) = f (�) = 0. Hence, the ARMA model will be inappropriate.

This conclusion can be applied to the VAR technique, the multivariate extension of the

ARMA model popularly utilised by macroeconomists, too.

6.4 Band-pass and low-pass �lters

Macroeconomists are particularly interested in two types of �lters, namely, band-pass and

low-pass �lters. We �rst discuss the band-pass �lter. Some economists believed that the

business cycles have periods between xxx to xxx quarters. Hence, to study the behaviour

of each macroeconomic time series associated with the business cycle, it may be more

appropriate to �lter the low frequency and high frequency components out. See Stock

and Watson(???). A band-pass �lter is the �lter fg�g such that the squared gain function
satis�es the following property:

jT (�)j2 =
(
1; �1 � j�j � �2;

0; otherwise.
(42)
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Such �lter fg�g will remove all random sinusoids with frequency lower than �1 and those

with frequency higher than �2: Recall that sinusoids with negative frequencies can be re-

garded as those with positve frequencies. Recall that we stick with our convention of

interpreting only sinusoids with positive frequency. Recall from Corollary 1 that

T (�) =
1X

�=�1
g�e

�i��: (43)

To �nd the sequence fg�g satisfying equations (42) and (43), we need some results from
Fourier Analysis. If fg�g is absolutely summable, it follows that

g� =
1

2�

Z �

��
T (�) ei�� d�: (44)

Choosing T (�) = 1; for �1 � j�j � �2; and 0; otherwise, will make T (�) satisfy (42). Then

(44) becomes

g� =
1

2�

Z �2

�1

ei�� d�+
1

2�

Z ��1

��2
ei�� d�

so that

g� =

8><>:
�2 � �1

�
� = 0;

sin�2� � sin�1�
��

� 6= 0:

The problem with this sort of �lter is that it requires an in�nite number of observations on

xt: The feasible �lter such that g� = 0 for large values of j� j can only give an approximation
to the problem. See Baxter and King (???) for a popular approximated band-pass �lter.

Figure 11(a) - (d) show the squared gain of band-pass �lters for various values of � :

Figure 11(a) Squared Gain ­ BP Filter: tao = 20
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Figure 11(b) Squared Gain ­ BP Filter: tao = 40
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Figure 11(c) Squared Gain ­ BP Filter: tao = 60
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Figure 11(d) Squared Gain ­ LP Filter: tao = 80
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Now we focus on another type of �lter useful to macroeconomists. Explain economic

intuition. Estimate the trend. Then one can �nd the so-called output gap once the trend

is estimated. It is called a low-pass �lter. This �lter basically passes all sinusoids with low

frequency but suppresses all other sinusoids. We can formalize a low pass �lter as a �lter

fg�g such that

jT (�)j =
(
1; j�j � �0;

0; otherwise,

where T (�) is the transfer function. We can apply the result from the band-pass �lter by

setting �2 = �0 and �1 = 0 to show that an ideal low-pass �lter has the following form

g� =

8<: �0=�; � = 0;
sin�0�

��
; � 6= 0:

Alternatively, the readers can start by solving equation (44). As is the case for the band-

pass �lter, this is just an ideal low-pass �lter. In practice, one need to perform the standard

truncation. Figures 12(a) - (d) show the squared gain of the low-pass �lters for various

values of � :

Figure 12(a) Squared Gain ­ LP Filter: T = 20
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Figure 12(b) Squared Gain ­ LP Filter: T = 40
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Figure 12(c) Squared Gain ­ LP Filter: T = 60
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Figure 12(d) Squared Gain ­ LP Filter: T = 80
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6.5 HP Filter

One type of a low pass �lter that gains a great deal of popularity among macroeconomists

is the so-called HP �lter popularized by Hodrick and Prescott (1980), later published in

Hodrick and Prescott (1997). Hodrick and Prescott (1980) consider a problem of trend
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estimation of the form

xt = � t + et;

where � t represent the trend of the time series fxtg and et are the irregular components
representing deviation from the trend. The time series fxtg is supposed to be seasonally
adjusted. Hodrick and Prescott (1980) recommend estimation of the trend components by

the penalized least squares smoothing technique where the optimization problem is

min
f� tgT+1t=0

(
TX
t=1

(xt � � t)2 + %
TX
t=1

[(� t+1 � � t)� (� t � � t�1)]2
)
:

The parameter % is a positive number employed to control smoothness of the trend f� tg :
Large values of � make the trend f� tg smooth. The �rst order condition of the objective
function is

0 = �2 (xt � ��t )� 4�
�
��t+1 � 2��t + ��t�1

�
2�
�
��t � 2��t�1 + ��t�2

�
+ 2� (� t+2 � 2� t+1 + ��t ) ;

where f��t g is a sequence of optimal trend. Solving this Euler equation we obtain

xt =
�
��t + �

�
��t+2 � 4��t+1 + 6��t � 4��t�1 + ��t+2

��
=

h
1 + � (1� L)2

�
1� L�1

�2i
��t ;

where L is the lag opeator and L�1 is the forward operator, i.e. L�1��t denotes �
�
t+1: We

can theoretically consider a general process fxt : t 2 Zg so that we have

��t =
h
1 + � (1� L)2

�
1� L�1

�2i�1
xt: (45)

That is ��t is a function of xt for all t 2 Z. It is important to note that to show that an inverse
operator of

h
1 + � (1� L)2

�
1� L�1

�2i exists is non-trivial. For some sketched derivation
see King and Rebelo (1993). Equation (45) indicates how we can construct the squared

gain function of the HP �lter. This is the same as the derivation of the autoregressive �lter.

It can be shown that the spectral density function of f��t g is

f� (�) =
1���1 + � (1� e�i�)2 (1� ei�)2���2 fx (�)

=
1���1 + 16� sin (�=2)4���2 fx (�) ;

where fx is the original spectral density of fxtg : Gomez (2001) showed that the HP �l-
ter is a special class of the so-called Butterworth �lter commonly applied in engineering
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applications. Butterworth �lter has the squared gain function of the form

jG (�)j2 = 1����1 + � sin(�=2)
sin(�0=2)

�2d����2
;

where �0 is the frequency at which G (�0) = 1=2, and d = 1; 2; ::: is a chosen parameter.

The higher values d yield sharper results. It can be seen from the squared gain function

that the HP �lter is a special class of the Butterworth �lter where d is set to be equal to 2

and the parameter � in the HP �lter determines the value of �0, i.e.

� =

�
1

2 sin (�0=2)

�4
:

Figures 13(a) - (d) show the squared gain of the Butterworth �lter for various values of d

and �0 is set to be equal to unity. The case for d = 2 corresponds to the HP �lter. It can

be seen that high values of d gives sharper results.

Figure 13(a) Squared Gain ­ B Filter: d = 2
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Figure 13(b) Squared Gain ­ B Filter: d = 4
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Figure 13(c) Squared Gain ­ B Filter: d = 6
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Figure 13(d) Squared Gain ­ B Filter: d = 8
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As the HP �lter is a special class of the Butterworth �lter, it would be more optimal to

switch from the conventional HP �lter to the Butterworth �lter. Moreover, the HP �lter is

a one-sided �lter. It is therefore subject to data revision. Furthermore, Harvey and Jaeger

(1993) show that application of the HP �lter on some nonstationary time series can create

spurious cycles and hence is subject to the Yule-Slutsky e¤ect.
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6.6 Regression Analysis

The purpose of this subsection is to dispel one myth commonly believed among applied

economists working with economic modelling at the central bank in Thailand. It is believed

that if one does not remove seasonality, then regression analysis involving economic time

series exhibiting seasonal patters will lead to spurious relation or conclusion. The source of

spurious relationship is seasonality. To see why this myth is incorrect, we need to introduce

an extension of spectral analysis to multivariate time series.

Suppose Xt = (X1t; :::; Xpt)
0 be a vector of time series. If the multivariate time series

fXtg is (covariance) stationary, and

1X
u=�1

k�X (u)k <1,

where �X is the autocovariance function of the process fXtg and k�k is a matrix norm, then
we can de�ne the spectral density function of fXtg as

fX (�) =
1

2�

1X
u=�1

e�iu� �x (u) ; �� < � � �:

In particular, suppose Xt = (Xt; Yt)
0 : Then we can consider the cross spectral density of

fXtg and fYtg as

fxy (�) =
1

2�

1X
u=�1

e�iu�
xy (u) ; (46)

where 
xy is the cross-autocovariance of fXtg and fYtg :
Consider a simple time series regression

Yt = �Xt + Vt; (47)

where Xt are the regressors and Vt are the disturbances with zero mean. Suppose fXtg
and fVtg are stationary with covariance functions 
x and 
v respectively. Under the usual
assumption of zero correlation between fXtg and fVtg, it follows that fYtg is stationary
with covariance function


y (u) = �2
x (u) + 
v (u) ;

where 
v is the autocovariance function of fVtg : Moreover, the cross-autocovariance of fYtg
and fXtg is


xy (u) = E (Xt+u � EXt+u) (Yt � EYt) = �
x (u) :

Since the cross-autocovariance between Xt+u and Yt does only on the distance u, we can say

that they are jointly stationary. Assuming that
P1

u=�1 j
x (u)j <1 and
P1

u=�1 j
v (u)j <
1; then the linear relationship of fYtg and fXtg in (47) and the property of the cross spectral
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density in (46) imply that

fxy (�) =
1

2�

1X
u=�1

e�iu��
x (u) = �fxx (�) ; � 2 (��; �] ;

where fxx (�) is the spectral density function of fXtg : That is under the linear relationship
in (47)

� =
fxy (�)

fxx (�)
; � 2 (��; �] : (48)

Hence the slope parameter of a linear regression in (47) can be interpreted as the ratio

between the cross spectral density function fxy and the spectral density function of fXtg.
Note that this constant ratio holds for all frequency � in (��; �] : A strong peak of the

spectral density functions at some certain frequencies associated with seasonality will there-

fore be unlikely to cause spurious relationship from regression analysis. It is worth noting

that the least squares estimate of � can be written as an average ratio of an approximate

analogue of the ratio in (48).

7 Re�ections and Conclusions

We have illustrated how the spectral analysis of time series can shed light on many issues

and techniques commonly encountered by economists. We have shown that the standard

routine commonly employed by policy makers such as the 3-period moving average and the

exponential moving average �lter can result in undesirable e¤ects. They can potentially

create spurious patterns, known as the Yule-Slutsky e¤ect. We have also explained the

reason why deseasonalised time series can cause many problems. The issue of trend esti-

mation was discussed where the HP �lter is shown to be sub-optimal compared with the

Butterworth �lter. It is very important to remind the reader that our discussion of the time

invariant linear �lters only covers stationary series. An extension to nonstationary series

such as those with a unit root needs to be done with care.

8 Appendix

8.1 Appendix 1

Let U be the circulant shift matrix de�ned by

uij =

8><>:
1 for j = i+ 1; i = 1; :::; N � 1;
1 j = 1; i = N;

0 otherwise.

(49)
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That is U is a matrix of the form

U =

0BBBBBBB@

0 1 0 � � � 0

0 0 1 � � � 0
...
...
...
. . .

...

0 0 0 � � � 1

1 0 0 � � � 0

1CCCCCCCA
:

It should be noted that U is an orthogonal matrix, i.e. U 0 = U�1: The reason for the name

"shift matrix" is that for X = (X1; X2; :::; XN )
0, it follows that

UX = (X2; X3; :::; XN ; X1)
0 :

The covariance matrix of UX is U�U 0. However, due to conditions (12) and (13), the

covariance matrix of UX is also �. This implies that U�U 0 = �. As U is orthogonal,

U� = �U: (50)

This relation suggests a connection among eigenvectors of � and U:

It follows from Lemmas 1 and 2 that eigenvectors of � are of the form

pk =
1p
N

�
ei!k ; ei2!k ; :::; eiN!k

�0
;

where !k = 2�k=N; k = 1; :::; N: Let P be a matrix whose j-th column is pj . Then it can

be verify that P is a unitary matrix, i.e. P � = P�1:

8.2 Appendix 2: Technical Lemmas

Lemma 1 The eigenvalues of the matrix U de�ned in (49) are

! = ei2�k=N ; k = 1; :::; N:

Let  k = 2�k=N; k = 1; :::; N: The vector
�
ei k ; ei2 k ; :::; eiN k

�0
is an eigenvector

associated with the eigenvalue ei k :

Proof. Let IN be the identity matrix of order N: The characteristic equation of U

is jU � !IN j = 0; where j�j denotes determinant of a matrix. Let A = U � !IN . Then

aij =

8>>>><>>>>:
1 j = i+ 1; i = 1; :::; N � 1;
1 j = 1; i = N;

�! j = i; i = 1; :::; N;

0 otherwise.
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Expanding the last row of A, it follows that

jAj = (�1)N+1 jC1j � ! jC2j ;

where C1 is a square matrix of order N � 1 de�ned by

c1ij =

8><>:
1 j = i

�! j = i� 1;
0 otherwise,

and C2 is a square matrix of order N � 1 de�ned by

c2ij =

8><>:
1 j = i+ 1

�! j = i;

0 otherwise.

It follows that both C1 and C2 are triangular matrices. Thus jC1j = 1 and jC2j = (�!)N�1 :
It follows that the characteristic equation is

!N = 1:

That is

! = ei2�k=N ; k = 1; :::; N:

Let  k = 2�k=N: Let y = (y1; :::; yN )
0 be an eigenvector associated with an eigenvalue

! = ei k : Then the relation Uy = !y implies

yk+1 = !yk; k = 1; :::; N � 1;

y1 = !yN :

This implies that
�
ei k ; ei2 k ; :::; eiN k

�0
is an eigenvector associated with the eigenvalue

ei k :

Lemma 2 Eigenvectors of U are eigenvectors of � de�ned in (13).

Proof. Let pj is an eigenvector of U associated with an eigenvalue !j . Then �Upj = !j�pj

for all j = 1; :::; N: Equation (50) implies that

U�pj = !j�pj ; j = 1; :::; N:

That is �pj is also an eigenvector of U associated with an eigenvalue !j . Since !j are all
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distinct for j = 1; :::; N; it follows that there exist constants cj such that

�pj = cjpj ; j = 1; :::; N:

That is pj are also eigenvectors of �:

Lemma 3 Let fytg be the process with the autocovariance function in (34) and 
x is an
autocovariance function satisfying Assumption (1). Then the spectral density function fy
of fytg is well de�ned and for any � 2 (��; �] ;����e�i2� + e�i� + 13

����2 fx (�) :
Proof. Assumption (1) implies that the spectral density function fx of fxtg is well de�ned.
Condition (34) and Assumption (1) imply that

1X
u=�1

��
y (u)�� <1
so that the spectral density function fy of fytg is well de�ned. By Theorem 2, for any

� 2 (��; �] ;

fy (�)

=
1

9 � 2�

1X
u=�1

e�iu� f
x (u� 2) + 2
x (u� 1) + 3
x (u) + 2
x (u+ 1) + 
x (u+ 2)g :

The �rst sum involving 
x (u� 2) is

1X
u=�1

e�iu�
x (u� 2) = e�i2�
1X

u=�1
e�i(u�2)�
x (u� 2)

= 2�e�i2�fx (u) ;

where the last equality follows from Theorem 2. We can apply the same manipulation to

other terms to show that

fy (�) =
e�i2� + 2e�i� + 3 + 2ei� + ei2�

9
fx (�)

=

����e�i2� + e�i� + 13

����2 fx (�) :

46



References
Baxter, M., King, R.G., 1999. Measuring business cycles: Approximate band-pass �lters

for economic time series. The Review of Economics and Statistics 81, 575-593.

Box, G.E.P, Jenkins G.M., 1970. Time Series Analysis: Forecasting and Control.

Holden-Day, San Francisco.

Brockwell, P.J., Davis R.A., 1991. Time Series: Theory and Methods. Springer-Verlag,

New York.

Dagum, E.B., 1980. The X11 ARIMA seasonal adjustment method. Statistics Canada.

Ghysels, E., 1984. The Economics of Seasonality: The Case f the Money Supply, Un-

published Ph.D. dissertation. Department of Managerial Economics and Decision Science,

Northwestern University.

Ghysels, E., Granger, C.W.J., Siklos, P., 1996. Is seasonal adjustment a linear or

nonlinear data �ltering process? Journal of Business and Economic Statistics 14, 374-386.

Gomez, V., 2001. The use of Butterworth �lters for trend and cycle estimation in

economic time series. Journal of Business and Economic Statistics 19, 365-373.

Gomez, V., Maravall A., 2001. Seasonal adjustment and signal extraction in economic

time series. In: Pena, D., Tiao, G.C. Tsay R.S. (Eds.), A Course in Time Series Analysis.

J. Wiley and Sons, New York.

Grenander, U., Szego, G., 1958. Toeplitz Forms and Their Applications. University of

California Press, Berkeley and Los Angeles.

Hannan, E.J., 1960, Time Series Analysis. Science Paperbacks and Methuen & Co Ltd,

London.

Harvey, A.C., Jaeger, A., 1993. Detrending, stylized facts and the business cycle. Jour-

nal of Applied Econometrics 8, 231-247.

Hodrick, R.J., Prescott, E.C., 1980. Postwar U.S. business cycles: An empirical inves-

tigation. Discussion Paper No. 451, Carnegie-Melow University.

Hodrick, R.J., Prescott, E.C., 1997. Postwar U.S. business cycles: An empirical inves-

tigation. Journal of Money, Credit and Banking 29, 1-16.

Laroque, G., 1977. Analyse d�une Methode de Desaisonnalisaton: Le Programme X11

du US Bureau of the Census Version Trimestrielle. Annales de l�INSEE 88, 105-127.

Phillips, P.C.B., 1988. The ET interview: Professor James Durbin. Econometric Theory

4, 125-157.

Slutzky, E., 1927. The summation of random causes as the source of cyclic processes (in

Russian). Problems of Economic Conditions, edited by The Conjuncture Institute, Moscow

3, 34-64.

Slutzky, E., 1937. The summation of random causes as the source of cyclic processes.

Econometrica 5, 105-146.

Stock, J.H., Watson, M.W., 1999. Business cycle �uctuations in us macroeconomic time

series. In: Taylor, J.B., Woodford, M. (Eds.), Handbook of Macroeconomics. Elsevier,

47



Amsterdam.

Yule, G.U., 1927. On a method of investigating periodicities in disturbed series, with

special reference to Wolfer�s sunspot numbers. Philosophical Transactions of the Royal

Society of London. Series A 226, 267-298.

Tukey, J.W., 1961. Discussion, Emphasizing the connection between analysis of variance

and spectrum analysis. Technometrics 3, 191-219.

48


