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Abstract

We propose a novel regime-switching model to study correlation asymmetries in international equity
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and bad regimes are persistent. Regime changes are detected rapidly and risk diversification allocations
are improved. Asset allocation results in and out-of-sample are superior to other models including the
1/N strategy.

Keywords: Correlation breaks, asset allocation, international equity markets.
JEL Classification: G01, G11, G15

∗Finance Department, LSK Business School, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong. E-mail: solnik@ust.hk.

†Department of Banking and Finance, Chulalongkorn Business School, Chulalongkorn University, Bangkok, Thailand 10330.
Tel.: +66 22185691 ext. 13. E-mail: thaisiri@cbs.chula.ac.th. (Corresponding Author)

We would like to thank Wayne Ferson (editor) and an anonymous referee for their valuable comments that help improve
this paper significantly. We thank Geert Bekaert, Ken Singleton and seminar participants at Hong Kong University of Science
and Technology, National University of Singapore, 2012 FMA Asian Conference, and 2011 Chulalongkorn Accounting and
Finance Symposium for their useful comments and suggestions. Bruno Solnik gratefully acknowledges financial support from
the HKUST Business School SBI. Thaisiri Watewai gratefully acknowledges financial support from Ratchadapiseksompotch
Grant for Development of New Faculty Staff, Chulalongkorn University, and the Thailand Research Fund and the Office of
the Higher Education Commission (MRG-5380271).



Introduction

Past crises have taught us that breaks, not only in volatility but also in correlation, could lead to huge

losses in global portfolios, as illustrated by LTCM in the 1998 crisis or the 2008-2009 crisis. Stochastic

volatility has been extensively studied and modelled, but correlation much less so. A simple example

might help illustrate the importance of correlation. Let’s consider a portfolio spread evenly between ten

uncorrelated investments, each with a volatility of 10%. Then the portfolio volatility is 3.16%. If markets

become more volatile with each volatility doubling from 10% to 20%, the portfolio volatility goes up to

6.32% as long as the correlation remains null. But if correlation breaks and shoots up to one, then the

portfolio volatility goes up to 20%. The increase from 6.32% to 20% is solely explained by the correlation

break. While simplistic, this example illustrates the need to model time-varying correlation in portfolio

management. This paper focuses on correlation of international equity markets.

Evidence of asymmetrical return behavior in international equity markets is well documented. One of

the key findings in the literature is that returns tend to be more correlated when volatilities are high or when

the markets go down1. Earlier studies focused on the link between higher volatility and higher international

correlation. However, as pointed out by Stambaugh (1995), Boyer, Gibson, and Loretan (1999), and

Forbes and Rigobon (2002), correlation is a complex nonlinear function of returns, and empirical estimates

of correlations suffer from the relationship between correlation and volatility. This can introduce severe

statistical biases in the estimation of correlation when conditioning on the level of returns or of volatility2.

Hence, tests must directly model the return distributions. Longin and Solnik (2001) use extreme value

theory to estimate correlations conditional on returns being extreme (exceedance correlation3). They

find that extreme returns exhibit asymmetries. Correlations conditional on negative returns are higher

than correlations conditional on positive returns. Furthermore, correlations conditional on negatively large

returns tend to increase in the magnitude of returns, but correlations conditional on positively large returns

do not. Their results suggest that direction (good or bad), not volatility per se, would induce international

1See, for example, Erb, Harvey, and Viskanta (1994), Longin and Solnik (1995, 2001), Ramchand and Susmel (1998), Ball

and Torous (2000), Ang and Bekaert (2002), Campbell, Koedijk, and Kofman (2002), Okimoto (2008), among others.

2For example, assume that the return distribution of two markets is bivariate normal with correlation of 0.5. If we condition

on a market having a large absolute return (positive or negative), say the 10% largest returns in the distribution, then the

computed correlation jumps to 0.77. But this is a spurious increase in correlation due to the choice of sample, as the true

correlation is constant at 0.50. See Boyer, Gibson, and Loretan (1999).

3Exceedance correlation is the correlation of returns that exceed a given threshold, for example greater than 10% or lower

than -10%.
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correlation asymmetry. This international “correlation break” for extreme negative returns (some authors

call it “correlation breakdown”) is a striking result that has been confirmed in subsequent studies. It

implies that the benefits of international diversification are vastly reduced in bear markets, when it is most

needed, and that international asset allocation should adapt to it. Many subsequent models have tried to

better fit observed international data, but they usually fail to reproduce the observed break in correlation.

Early work develops international models with regime switching (Ang and Bekaert, 2002) or jumps

(Das and Uppal, 2004). Following Longin and Solnik (2001), most recent works rely on estimated copula

models with various heteroscedastic/asymmetric distributions or complex stochastic volatility models. We

later estimate, on our data sample, models from several important classes of these competitor models and

compare their results with ours.

In this paper, we aim to improve modelling return asymmetries, with a focus on international corre-

lation. Besides standard econometric tests, our empirical analysis of competing models focuses partly on

fitting the observed extreme correlation; breaks in correlation are important in managing global portfolios

in changing markets. Taking into account those asymmetries should improve risk modelling to provide

better asset allocation and risk management models. We derive optimal asset allocation weights for our

model and conduct out-of-sample tests against other simpler models including the famous “1/N” rule. We

find significantly better results.

We propose a model that allows correlation asymmetries for both normal and extreme returns. Specif-

ically, returns are decomposed into frequent-but-small and infrequent-but-large components4 and are re-

ferred to as diffusion and jumps, respectively. We use systemic jumps to represent infrequent but strong

co-movements across markets. To capture asymmetries in diffusion and jump components, we use a regime-

switching process that allows correlations and other parameters including means and volatilities of diffusion,

jump size distributions, and jump arrival rates to be stochastic. Hence the whole distribution of diffusion

and jumps can vary across regimes. Our relatively simple modelling choice allows stylized facts such as

fat tails, skewness and time-varying volatility and correlations. It can also model crises with increased

volatility and correlation breaks. After detailing our theoretical model, we proceed as follows.

We derive an efficient estimation method for our regime-switching model with jumps that allows us

to estimate the model parameters for a large number of countries. While Das and Uppal (2004) impose

4In this article we use the terminology “large/small” to refer to the absolute (unsigned) magnitude and “high/low” to

refer to the signed magnitude. For example, a “large” return means a return of large size, whether positive or negative, while

a “high” return means a high positive return.
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a one-factor structure (perfect correlation) on the jump size distribution in order to reduce the number

of parameters, our method is able to estimate the joint distribution of random jump sizes across multiple

countries without such restrictions. This allows us to study the correlation asymmetries of jump com-

ponents across regimes. As discussed below, the change in jump correlation across regimes is in fact a

major cause of the correlation break, a drastic increase in the conditional correlation observed during bad

markets. Our method also provides the estimates of the probabilities of the underlying market regime,

which is assumed to be unobservable. These probabilities can be used to infer the likelihood of the current

market conditions which are essential in financial applications such as portfolio choices and risk manage-

ment. For example, our model enables us to detect rising crisis probabilities and an upward adjustment of

the volatility and correlation after observing a short series of global returns with large negative values.

We provide new empirical findings from the top ten major equity markets over the period 2001-2013,

using weekly data. Our study finds strong evidence of the existence of two global market regimes (good

and bad) and systemic jumps. Consistent with earlier works, returns are low, more correlated and more

volatile in one regime (the bad regime). The persistence of the regimes is an important feature. It shows

that markets go through prolonged periods of good and bad regimes. The probability of remaining in the

same regime is high and the expected regime duration is long (31 weeks for the bad regime and 67 weeks for

the good regime). Estimating that markets enter a regime gives useful information for the future, providing

support for a regime-switching model. Jump sizes are quite different in the two regimes. A large jump

can lead to a rapid transition to the bad regime and the jump regime is persistent. While our regimes are

correlated with standard U.S. economic indicators such as financial stress or VIX, the model gives earlier

warnings of market crises. Our results suggest that the increased international correlation across markets

can provide an early detection of a global crisis.

Interestingly, correlations due to diffusion are similar across the regimes, but correlations due to jumps

increase markedly in bad markets and are much higher than those of diffusion. These highly correlated

jump sizes can be viewed as the source of a correlation break during bad markets. These new findings

help explain the observed asymmetries in correlations. We confirm this by running a horse race between

our model and various models, including DCC GARCH, factor copula, and multivariate factor stochastic

volatility. The results show that our model provides a much better fit to actual data for asymmetry, the

magnitude of exceedance correlations and quantile dependence. We check whether the number of regimes

should be increased or country/region-specific jumps should be added. We fail to reject our simpler model.

We solve dynamic optimal portfolio choices in a multiple-country setting with unobservable market
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regimes and jumps. The regime unobservability is typically ignored in traditional dynamic portfolio choices

with regime switching such as Ang and Bekaert (2002) who assume that investors solve optimal portfolio

choices based on the knowledge of the regime. In contrast, we assume that investors solve optimal portfolio

choices based on their beliefs in the market regimes using a Bayesian framework. We are able to solve the

problems with a relatively large set of countries with hidden regimes5. The analysis shows that asymmetries

in correlations have significant effects on portfolio diversification. Modeling jumps in a regime-switching

model allows a better characterization of the good and bad regimes and markedly different optimal weights

compared to a regime-switching model with only diffusion processes, or a single-regime model with jumps.

Our model also provides superior out-of-sample performance over various models including the well-known

robust 1/N portfolio. There are two reasons for this. First, bad regimes are detected early and with the

increase in the bad-regime probability, investors reduce their exposure to risky assets or even move totally

to the risk-free asset. Second, investors take advantage of the better estimation of time-varying correlation

to select better-diversified asset allocations with higher Sharpe ratios. As regimes are persistent, these two

effects produce strong benefits.

The rest of this paper is organized as follows: Section 1 provides a literature review of correlation

asymmetries of international equity markets. Section 2 describes how we model correlation asymmetries

of the diffusion and jump components of returns. Section 3 explains the estimation method. Section 4

provides empirical results for our model. The analyses of correlation breaks and correlation asymmetries of

extreme returns are detailed in Section 5. In Section 6, we formulate and solve asset allocation problems,

and discuss their implications from both in-sample and out-of-sample analyses. We conclude in Section 7.

1 Literature Review

An early work in correlation-asymmetry modeling with asset allocation implications is Ang and Bekaert

(2002) who estimate a Markov-switching multivariate-normal model. They have two regimes and each

regime has multivariate normal returns. They find some (weak) evidence of a bear regime characterized

by low expected return, high volatility, and high correlation, and a normal regime associated with high

expected return, low volatility, and low correlation. They show that their model can replicate some of

5Honda (2003) and Guidolin and Timmermann (2007) also follow this unobservable regime assumption. However, Honda

(2003) only allows the mean return to be regime-dependent in a geometric Brownian motion model and considers one risky

asset, while we allow all model parameters to be regime-dependent and consider ten countries. Guidolin and Timmermann

(2007) assume a regime-switching VAR model and consider a problem with four assets (small-cap equity, large-cap equity,

bond and T-bill). Neither of these papers allow jumps in asset prices.
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Longin and Solnik’s (2001) results although it underestimates the correlation for large negative exceedances

(see also Okimoto, 2008). They also show that the asymmetric bivariate GARCH model, widely used in

the past, cannot replicate these results. For computational reasons, they cannot estimate their regime-

switching model for more than three markets and the asset allocation results assume that investors know

with certainty which regime they are in. Another early work is that of Das and Uppal (2004) who propose

a model where global shocks periodically affect all markets simultaneously. The return-generating process

is Brownian with a jump component à la Merton (1976). Jumps arrive at the same time in all markets

and the jump sizes are perfectly correlated. Das and Uppal (2004) are able to derive explicit analytical

solutions to the portfolio weights. However, returns in the single-regime model of Das and Uppal (2004)

are basically i.i.d. with no persistence in jumps and have constant correlations conditional on the return

history. The model cannot satisfactorily replicate the observed exceedance correlations (see Ang and Chen,

2002).

Following Longin and Solnik (2001), most recent works rely on some estimated copula models with

various heteroscedasic/asymmetric distributions or complex stochastic volatility models. Okimoto (2008)

uses a family of asymmetric copula models with lower-tail dependence (Longin and Solnik (2001) use

one of these copula models). He further introduces two Markov-switching regimes to empirically fit the

exceedance correlation. One regime has lower-tail dependence and the other does not. This rich empirical

model allows a good fit to actual returns and exceedance correlation in extreme events, but is limited to

pair-wise analysis (two countries at a time) given the number of parameters to be estimated.

Estimating a multivariate model with asymmetries in correlation for many countries is challenging. To

make estimation feasible, most multivariate models impose restrictive structures, leading to poor empirical

fit, especially for the asymmetries of extreme correlations. For example, the popular dynamic conditional

correlation or DCC GARCH of Engle (2002) usually relies on a small number of parameters (e.g. 3 for

DCC(1,1)) to model the time-varying correlation matrix, imposing the same dynamic correlation structure

between each pair of returns. Cappiello, Engle, and Sheppard (2006) propose the asymmetric generalized

DCC or AG-DCC model that allows each correlation to have its own dynamic. However, they need to

impose a diagonal covariance matrix when they estimate their model with many assets. Similarly, the

multivariate copulas for 3 or more assets that allow asymmetries between the upper and lower tail depen-

dences (such as multivariate Archimedean and skewed-t copulas) impose the same asymmetric dependence

structure on all pairs of returns characterized by a single parameter. Christoffersen et al. (2012) model

the correlation among a large set of countries with a dynamic asymmetric copula (or DAC) relying on the
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DCC structure and skewed-t copula. The interdependence across markets is modeled as a mean reversion

plus a constant time-trend adjustment in the conditional correlation. This approach detects a time trend

in correlation among a large number of countries, but seems too restrictive for the study of asymmetries

and changes in correlation during market crises6. Oh and Patton (2012) propose a factor copula for mod-

eling dependence in high dimensional time series. They impose factor and block structures to limit the

number of parameters. They fit the model for up to 100 time series with 8 factors. Although the factor

copula approach is shown to be very powerful for handling a large dataset, we show in this paper that a

factor copula model with multiple fat-tailed, asymmetric factors underestimates the extreme correlations

in international equity markets.

Models such as DCC, DAC and factor copula share the same drawback; that is, the (implied) covariances

are assumed to be conditionally deterministic. Stochastic volatility models provide an alternative approach

to modeling variances and covariances, by introducing latent parameters that drive the covariance matrix.

This provides superior performance in both in-sample fitting and out-of-sample forecasting of financial time

series7. A major disadvantage of multivariate stochastic volatility models is that they have no closed form

likelihood function. Estimation of such models is therefore computationally demanding and derivation of

explicit optimal portfolio choices is not possible. Omori and Ishihara (2012) propose a rich multivariate

stochastic volatility model allowing asymmetries, volatility clustering and leverage effects. When the

number of assets is large, they impose a factor structure to make estimation feasible. Our empirical study

shows that their model allows asymmetries in exceedance correlations, but underestimates their magnitude.

Ait-Sahalia, Cacho-Diaz, and Laeven (2015) propose a Hawkes jump-diffusion process for asset returns

in which arrivals of jumps in one region increase the likelihood of future jumps in that and other regions.

Their model is good for studying financial contagion. However, due to its complexity, they assume constant

correlation in diffusion and independent jump sizes, and can estimate the model with only two assets. Ait-

Sahalia and Xiu (2016) use high-frequency data (1 minute or less) to study the impact of news on the

pair-wise correlation of future prices before and after the trading session. They find that correlations of

diffusion and jumps increase in periods of crisis. They however do not study international equity correlation,

correlation of extreme returns, nor asset allocation.

Pukthuanthong and Roll (2015) present an empirical study of jump correlation across 82 countries using

6For example, in their Figure 9, their exceedance correlation is too low for bad markets and it decreases as the threshold

becomes increasingly negative, while the observed correlation increases with the (negative) threshold as found on actual data.

7See, for example, Kim, Shephard, and Chib (1998), and Yu (2002).
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DataStream daily data. They detect daily jumps within each month using the BNS-G statistic developed

by Barndorff-Nielsen and Shephard (2006). For each country they get a monthly time series of BNS-G and

compute an average of pair-wise country correlations of those BNS-G. They conclude that the international

correlation of country jumps is low. They also compare the correlation of monthly returns of months with

jumps (“jump months”) and months with no jumps (“nonjump months”) and find a much lower correlation

for jump months. Their conclusion contrasts sharply with our result and it is worth some discussion. We

provide four main reasons to explain the differences.

The first reason is the difference in the universe. The vast majority of their markets are classified

as emerging, frontier or not classified by FTSE or MSCI, while we use the ten largest developed mar-

kets. This could partly explain the differences as emerging and frontier markets can suffer from national

socio-economic-political shocks that are country-specific. On the other hand, their results on the BNS-G

correlation between developed European countries suggest a conclusion closer to ours.

Second, the quality of DataStream daily data is poor for many markets, leading to the detection of

spurious jumps caused by data error8. A major problem is that there are numerous months where daily

prices hardly move during the month but then jump on the last day of the month. This is true for

many emerging/frontier markets during many years, but also for some developed markets such as Canada,

Denmark or Sweden. Let’s take the example of Canada from Sep 1971 to Dec 1985 (172 months); the daily

price variation is minuscule, but not zero, except for a big jump on the last day of the month9. Any jump

during that period always occurs on the last day of the month. It leads to hugely negative BNS-G for most

months. The BNS-G is asymptotically unit normal if no jumps occur. But the mean and median of BNS-G

for Canada over that period are −235 and −53. So roughly 50% of months (86 months) have BNS-G lower

than −53. But this is totally spurious due to the daily prices being only adjusted at the end of the month.

Over the remaining period of Jan 1986 to Oct 2009 (286 months), the median BNS-G is −0.37 with a

standard deviation of 1.74, an order of magnitude found for other countries without data problems. Some

countries exhibit this data problem for most of the months under study, leading to extreme BNS-G. These

spurious and extreme BNS-G statistics induce biases in the BNS-G cross-country correlations, as well as

in the return correlations conditional on jump or nonjump months.

8We thank Richard Roll for providing us with his data, computer codes and output. Statistics reported below are based

on their data.

9In fact, the problem also exists from Jan 1965 to Aug 1971 with all but one daily returns being zero over each month.

They correctly removed those observations but did not detect an almost-identical problem during Sep 1971 - Dec 1985.
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Third, there is an error in the BNS-G formula that leads to a severe under-detection of jumps10. While

the pairwise BNS-G correlation is mostly invariant to the scale factor caused by the error, this seriously

affects the correlation of raw returns conditional on months with or without jumps (their Table 7, panel

B). For example, the mean correlation of jump months increases from 0.083 to 0.259 when the correct

formula is applied. That is because the wrong formula fails to detect many jumps during the periods with

good-quality daily data, while the correct BNS-G formula finds roughly four times as many jumps.

Fourth, there are conceptual differences in the two methodologies. The BNS methodology is designed

to detect discontinuity in the continuous-time price path. The monthly-estimated BNS-G is a test statistic

of jump detection within a given month, an indicator based on a mixture of second and fourth moments

of returns11. We model systemic jumps and focus directly on the correlation of returns and jump sizes. In

our regime switching model, we find that the ratio of jump volatility to diffusion volatility is much larger

in the bad regime and so are the mean jump size and the correlation of jump sizes. But smaller jumps

also occur frequently in the good regime. The precise relationship between the BNS-G correlation and

the existence of common jumps with time-varying means, volatility ratio and correlation is not clear. In

contrast, we directly model and test for global-wide and country-specific jumps. Also note that detecting

a daily jump within a month does not ensure that this month has a higher absolute return. The effect of a

daily jump could be lessened by other small daily returns in that month or even offset by a daily jump of

opposite sign. Actually we find that having at least one daily jump does not give much indication on the

magnitude of the return of that month12. Hence comparing correlations of monthly returns conditional on

10If we denote the BNS-G used in Pukthuanthong and Roll (2015) by GPR and the true BNS-G by GBNS , we have

GPR = [
√
T − 3/(T − 1)] × [GBNS + ε] where ε ≥ 0 is an error term and T is the number of daily observations used in the

month. When T = 22 days,
√
T − 3/(T − 1) is approximately 1/5. When there is a jump, the true GBNS is likely to be

strongly negative. When GPR = −1 (indicating no jumps at 10% confidence level), the true GBNS is in fact well below −5

(indicating jumps at 0.01% confidence level). More specific details are available from the authors.

11Simply comparing the magnitude of the cross-country correlation of a jump-detection indicator and of returns is not

meaningful as these are very different concepts. Simple simulations show that correlation of returns can be much larger than

correlation of BNS-G even though all jumps are common jumps (i.e. systemic), and all parameters are time-invariant. For

example, we find the monthly return correlation is five times larger than the BNS-G correlation (0.415 vs. 0.082) for a daily-

return model with two stocks in which the volatility and correlation of the diffusion components are 0.02 and 0.4, while those

for jump sizes are doubled (0.04 and 0.8), and jumps are systemic with jump arrival rate of 0.01. Both diffusion and jumps

have zero means.

12Using the correct BNS-G formula, we find that the mean absolute returns of jump and nonjump months are very similar

in all countries. The cross-country average of the absolute monthly returns is 6.31% for jump months and 6.37% for nonjump

months. Detailed calculations are available from the authors.
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jump or nonjump months does not provide conclusive evidence that daily jumps are more or less correlated

than non-jump components of daily returns.

2 Modeling Return Asymmetries with Jumps

Returns are decomposed into two components. The first component is to capture the relatively small

normal movements. We refer to this component as frequent-but-small (“diffusion” in continuous time).

The second is to capture movements that rarely occur, but once they occur, they have a relatively large

magnitude. We refer to this component as infrequent-but-large (“jumps” in continuous time). Correlation

across markets comes from correlations between diffusion components (frequent-but-small) and correlations

between jumps (infrequent-but-large). Although our model is presented as a discrete-time model, the

modeling concept can be easily extended to a continuous-time model13.

To model asymmetries across the market regimes, the parameters of both return components are allowed

to be regime-dependent and hence stochastic. Specifically, let {Yt, t = 1, 2, . . .} denote a time-homogeneous

K−state discrete-time Markov chain representing the market regime, and denote by py,z the associated

transition probability from regime y to z. Also, let %y = P (Y1 = y) denote the probability of the initial

state. The log-return process of asset i is denoted by {Ri,t, t = 1, 2, . . .} where

Ri,t = Zi,t +

∆Nt∑
m=1

δmi,t i = 1, . . . , n, t = 1, 2, . . . . (1)

Conditional on the current regime Yt = y, Zt = [Z1,t, . . . , Zn,t]
′ is an n−dimensional Gaussian random

vector representing the diffusion component with mean vector µ(y) = [µ1(y), . . . , µn(y)]′, and variance-

covariance matrix Σ(y) = [σΣ
ij(y)], ∆Nt is the random number of jumps that occur during time period t

whose distribution follows a Poisson distribution with a scalar parameter λ(y) representing the expected

number of jumps, and δmt = [δm1,t, . . . , δ
m
n,t]
′ is the vector of random jump sizes from the mth jump whose

distribution is Gaussian with mean vector η(y) = [η1(y), . . . , ηn(y)]′ and variance-covariance matrix Ω(y) =

[σΩ
ij(y)]. The jump sizes δmt are assumed to be conditionally independent across m given Yt. That is, the

distributions of the diffusion, the number of jumps, and the jump sizes depend on the market regime. We

assume further that the random vector Zt, the number of jumps ∆Nt and the jump sizes δt are conditionally

independent given Yt.

Jumps are assumed to be systemic or global-wide. That is, an arrival of a jump affects returns of all

13The detail of a continuous-time counterpart is available upon request.
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assets at the instant of the arrival, but the jump size of each asset can be different14. It is technically easy

to augment the model to include additional types of jumps whose arrivals affect the returns of a subset

of assets. This can be used, for example, to model country-specific or region-specific jumps. However, we

find that including country-specific or region-specific jumps, in addition to the global-wide jumps, leads to

over-fitting (Section 4.4).

Our model can be viewed as a generalized discrete-time version of Das and Uppal (2004) who consider

these types of Gaussian systemic jumps. They, however, assume that the jump sizes δi are perfectly

correlated while we estimate the correlations of jump sizes from the data. They also assume a single

regime, but allow the jump intensity to be regime-dependent in their earlier working paper. In contrast,

all model parameters are regime-dependent in this paper.

Note that correlations between asset returns come from two components: the vector of correlated

Gaussian random variables Z, and the systemic jump with correlated jump sizes δ. The correlations due

to Z can be viewed as a measure of the degree of small co-movements between asset returns (the frequent-

but-small or diffusion component)15. On the other hand, the correlations due to δ can be viewed as a

measure of the degree of large co-movements between asset returns (the infrequent-but-large component

or jumps). This enables us to explicitly investigate the regime shifts of different types of correlations. As

a result, the correlation asymmetries of small and large co-movements can be examined separately. To

summarize, our model is fully characterized by the following set of parameters Θ = {%, p, µ,Σ, λ, η,Ω}.

Finally, the mean, standard deviation and correlation of log-returns can be derived from Θ as follows.

The conditional mean return of asset i is

µ̄i(y) = µi(y) + λ(y)ηi(y), (2)

the conditional standard deviation of asset i is

σ̄i(y) =
√
σΣ
ii(y) + λ(y)[σΩ

ii(y) + ηi(y)2], (3)

14If jumps were primarily country-specific jumps rather than systemic (global), with only one country δi,t being non-zero

at any arrival time, our model with a single systemic jump would be poorly specified. Nevertheless we would find that the

correlation of jump sizes is very small. However, we do find high correlation suggesting systemic jumps. Furthermore, we

reject the need to add country-specific jumps to significantly improve the fit of the model.

15In our approach we model the full covariance structure of returns, and do not impose any factor structure such as global

or regional factors. Empirical comparisons with factor models provided in Section 5 show that our model captures observed

extreme correlation asymmetries much better than the factor models.
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and the conditional correlation between assets i and j is

ρ̄ij(y) =
ρΣ
ij(y)σΣ

i (y)σΣ
j (y) + λ(y)[ρΩ

ij(y)σΩ
i (y)σΩ

j (y) + ηi(y)ηj(y)]

σ̄i(y)σ̄j(y)
. (4)

where σΣ
i =

√
σΣ
ii , σ

Ω
i =

√
σΩ
ii , and ρΣ

ij and ρΩ
ij are the correlations implied from the covariance matrices Σ

and Ω respectively16.

The model defined by (1) is a hidden Markov model (HMM) with unobservable states Yt and observable

variables Ri,t which are log-returns of asset i, i = 1, . . . , n. Note that given the current state Yt, the

distribution of Ri,t is an infinite mixture of normal distributions due to the randomness of the number

of jumps with Gaussian jump sizes. Maximizing the unconditional log-likelihood function of these non-

i.i.d. infinite-mixture returns using a search algorithm for a large number of assets is computationally

infeasible. In the next section, we derive a powerful estimation method that allows us to obtain the

maximum likelihood estimators of this model.

3 Estimation Method

We derive an efficient estimation method based on the framework of the expectation maximization

(EM) algorithm for our model. Although tractable EM algorithms for certain regime-switching models

have been proposed in the literature, deriving a tractable EM algorithm for multivariate models with

regime-switching and jumps is nontrivial. Nevertheless, we are able to obtain a tractable algorithm for a

large number of assets as described below.

The general framework of the EM algorithm is first proposed by Dempster, Laird, and Rubin (1977).

The EM algorithm is an iterative method for computing maximum likelihood estimators of model param-

eters when some variables are missing or unobservable. More specifically, let Xt denote the observed or

incomplete data up to time t, Yt the unobserved data up to time t, and Ct = Xt ∪ Yt the complete data

up to time t. Given a set of parameters Θ(p) at iteration p, the algorithm finds the expected value of the

complete-data log-likelihood given XT (E-step):

Q(Θ,Θ(p)) = E
[

logL(CT | Θ)
∣∣∣ XT ,Θ(p)

]
(5)

where L(CT | Θ) is the likelihood of the complete data with parameter Θ. The conditional expectation is

taken over the random unobserved data YT whose distribution is specified by parameter Θ(p). Then the

16The terms ηi(y)2 in (3) and ηi(y)ηj(y) in (4) come from the randomness of the number of jumps ∆Nt.
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expectation is maximized to obtain a new set of parameter estimates (M-step):

Θ(p+1) = arg max
Θ

Q(Θ,Θ(p)). (6)

These two steps are performed alternately until convergence. It can be shown that the log-likelihood of the

observed data L(XT | Θ(p)) is non-decreasing in each iteration p (see Dempster, Laird, and Rubin, 1977)

and that under regularity conditions the algorithm converges to a local maximum solution (see, Wu, 1983).

Initializing the parameters at various points throughout the parameter space may increase the chance of

getting to a global maximum solution.

In this paper, the set of the parameters of our model is Θ = {%, p, b,Σ, λ, η,Ω}, and we set Xt =

{r1, . . . , rt}, and Yt = {Y1, . . . , Yt, Z1, . . . , Zt, ∆N1, . . . ,∆Nt, δ1, . . . , δt} where rt denotes the observed

vector of asset returns at time t. That is, we treat returns as observable variables, but treat the regime,

diffusion components, number of jumps, and jump sizes as unobserved variables17. Generally one has

to compute conditional expectations in the E-step (5) and solve maximization problems in the M-step

(6) which are model-specific and often require simulations and numerical optimization especially when

observations are non-i.i.d. and infinite-mixture, leading to computationally demanding algorithms for

multivariate models. With our choice of unobserved variables, we are able to derive analytically the

explicit equations for computing related conditional expectations in the E-step, and obtain closed-form

solutions for maximization problems in the M-step. In addition, we obtain the filtered and smoothed

probabilities of the market regimes, as well as those of the diffusion and jump components as by-products

of our method. The details of the estimation method are given in Appendix A.

Our model have a large number of parameters, especially when the number of assets is large. So the

identification of our model should be discussed. In Appendix B we provide an outline of a proof that our

model is indeed identified. The identification of our model lies in the facts that any finite mixture of the

return distributions within each regime is identified, and that the regime switching provides structure to

the model. To illustrate the identification of our model, first consider a single-regime model with ten assets.

The diffusion component captures 10 means and 55 variances/covariances with 65 parameters. Introducing

jumps adds 66 more parameters (10 means, 55 variances/covarainces, and 1 jump arrival rate) but allows

17Pickard, Kempthorne, and Zakaria (1986) propose to include only the number of jumps (∆N) in the unobserved data,

while Duncan, Randal, and Thomson (2009) propose to include the diffusion components (Z), number of jumps (∆N) and

jump sizes (δ) in the unobserved data which leads to simpler implementation. However, both consider univariate jump diffusion

models without regime switching.
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a better match to additional 220 skewness/co-skewness18. With two regimes, the number of parameters

from the two regimes doubles to 262, and the initial and transition probabilities add 3 more, making it

equal to 265 in total. The number of the first three unconditional moments remains at 285 (65 + 220) for

ten assets, which is still higher than the number of parameters. When the number of regimes increases,

our model provides a better match to higher unconditional moments such as kurtosis/co-kurtosis. Having

more moments than parameters is merely a necessary condition for identifiability, but our proof confirms

it.

4 Empirical Results

4.1 Data

We use weekly log-return data from ten Morgan Stanley Capital International (MSCI) country indices:

Australia (AU), Canada (CA), France (FR), Germany (GE), Hong Kong (HK), Japan (JP), Spain (SP),

Switzerland (SW), the United Kingdom (UK), and the United States (US). The data are obtained from the

Thomson Reuters Datastream database from January 2001 to March 2013 (639 observations). In terms of

market capitalization, these ten markets are among the largest investable markets in the world as described

in the MSCI Global Investable Market Index methodology. Some countries, such as India or China, are

not included because their domestic markets are not open to foreign investors. However, Hong Kong

companies are strongly linked to the Chinese economy and many mainland Chinese companies are listed

in Hong Kong. Weekly returns are used instead of daily returns to reduce the effect from non-synchronous

data19. Past research has often used monthly data over a long period. For example, Ang and Bekaert

(2002) have 335 monthly return observations from 1970 to 1997. Although the number of data points is

smaller because of the monthly frequency, the likelihood of extreme events and different regimes is higher

over a longer period. However, the stability of these regimes over several decades is more questionable. We

use total returns in U.S. dollars to take a viewpoint from a U.S. investor.

Table 1 shows the summary statistics of weekly returns of each index. All index returns have negative

skewness, confirming the asymmetric distributions of log-returns. This negativity is well known in equity

index returns. The minimum and maximum values show that negative shocks could be much larger than

18By skewness and co-skewness, we mean the cross-moments of the form E[R3
i ],E[R2

iRj ] and E[RiRjRk] where Ri, Rj and

Rk are returns of three different assets i, j and k. For ten assets, we have 10 terms for E[R3
i ], 90 terms for E[R2

iRj ], and 120

terms for E[RiRjRk].

19Christoffersen et al. (2012) also used weekly returns.
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Table 1
Summary statistics of weekly log-returns of country equity indices

Average (%) Std Dev (%) Skewness Excess Kurt Median (%) Min (%) Max (%)

AU 0.252 3.682 −1.787 13.856 0.621 −34.30 14.94

CA 0.155 3.416 −1.181 8.915 0.444 −26.05 17.76

FR 0.048 3.610 −1.005 5.923 0.420 −26.69 13.88

GE 0.083 3.873 −0.868 4.905 0.493 −26.06 15.20

HK 0.142 3.037 −0.300 2.293 0.290 −17.11 10.32

JP 0.024 2.771 −0.399 2.207 0.091 −16.40 11.02

SP 0.097 3.992 −0.970 5.016 0.329 −26.07 13.43

SW 0.127 2.920 −1.118 9.612 0.333 −23.91 13.12

UK 0.076 3.125 −1.295 12.281 0.389 −27.57 16.28

US 0.065 2.649 −0.846 7.119 0.195 −20.05 11.58

This table provides summary statistics of weekly log-returns of ten MSCI country equity indices including Australia (AU),

Canada (CA), France (FR), Germany (GE), Hong Kong (HK), Japan (JP), Spain (SP), Switzerland (SW), United Kingdom

(UK), and United States (US). The log-returns are computed from the total return indices in the U.S. dollars. The data cover

the period from January 2001 to March 2013 (639 observations).

positive shocks. In particular, during the study period of January 2001 to March 2013, the most severe

minimum weekly return is −34.30%, while the largest positive weekly return is +17.76%. Such extreme

returns, say beyond three standard deviations, have an extremely small probability to occur under the

normal distribution (0.27%), but we do observe them repeatedly during crises. Jumps can help explain

those extreme returns. The returns also exhibit large positive excess kurtosis (fat tails). The value of excess

kurtosis ranges from 2.21 for Japan to 13.86 for Australia. These very large values of excess kurtosis could

be due to large movements in the equity indices and the nonstationarity of the return time series. These

two possibilities are modeled by jumps and regime switching in our model. Regime switching addresses

nonstationarity by including a bad/crisis regime and it is well known that a jump component can be used

to model fat-tail distribution (see, for example, Liu, Longstaff, and Pan, 2003).

4.2 Model Selection: Do We Need Global Regimes and Systemic Jumps?

Before presenting detailed results of our model, we test whether a regime switching model with jumps

brings significant improvement over the models used in the past literature. We fit the model using the

EM-based algorithm developed in Section 3 for the ten equity index returns. We run the model with four
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specifications: (i) one regime without jumps, (ii) one regime with jumps, (iii) two regimes without jumps,

and (iv) two regimes with jumps.

To choose the best among models with a different number of regimes and return stochastic processes,

the usual likelihood ratio test is not applicable because the parameters associated with additional regimes

of the model with a higher number of regimes are unidentified under the null hypothesis of the model

with a lower number of regimes (see, for example, Hansen, 1992). Similarly, parameters associated with

jumps are unidentified under the null hypothesis of the model without jumps. To identify the number

of regimes and the existence of jumps, we use the upper bound of the p−value derived by Davies (1987)

for the hypothesis testing of the nested case and we apply the test of Rivers and Vuong (2002) for the

non-nested case. The details of the tests are given in Appendix C.

We also compute the Akaike information criterion (AIC) given by AIC = −2(log-likelihood − number

of parameters) which is a model selection criterion that relies on the trade-off between the goodness of fit

(log-likelihood) and the complexity of the models (number of parameters). AIC values and the results of

the p-values of hypothesis testing are provided in Table 2. According to the values of the AIC reported in

panel A, our two-regime model with jumps is the most preferred (lowest AIC), while the two-regime model

without jumps is preferred to the one-regime model with jumps, and the one-regime without jumps (i.e.

multivariate-normal model) is, as expected, the least preferred.

Panel B reports the upper bounds of the p-value of various Davies’ hypothesis tests for the nested case

(top row and rightmost column), and that of Rivers and Vuong’s test for the non-nested case. The results

strongly reject the null hypothesis of a single regime, as well as the null hypothesis of the models without

jumps against our model with two regimes and jumps. A single-regime model with jumps, as suggested by

Das and Uppal (2004), or a two-regime model without jumps, as suggested by Ang and Bekaert (2002), are

both rejected at 0.01% significance level. The test of Rivers and Vuong strongly rejects the single-regime

model with jumps in favor of the two-regime model without jumps, although both are dominated by our

two-regime model with jumps. Hence, our results imply the existence of global regimes and of systemic

jumps among these ten markets.

Previous tests rely on statistical significance. But it is also important to study whether the model

improves our understanding of the observed data and is economically meaningful. A first step below is

to show that our model yields a better fit to the moments of the unconditional distribution of observed

returns. In Section 5 we will also show that our model provides a much better description of the ob-

served international correlation structure, especially for extreme returns. Finally, Section 6 will discuss the
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Table 2
Model selection

Panel A: Model Selection Criteria

Criteria Model

One Regime One Regime Two Regimes Two Regimes

without Jumps with Jumps without Jumps with Jumps

Number of parameters 65 131 133 265

Log-likelihood 16,632 17,082 17,188 17,396

AIC -33,135 -33,903 -34,111 -34,261

Panel B: Upper Bound of p-value

Null Hypothesis Alternative Hypothesis

One Regime Two Regimes Two Regimes

with Jumps without Jumps with Jumps

One Regime 0.0000 0.0000 0.0000

without Jumps

One Regime 0.0001 0.0000

with Jumps

Two Regimes 0.0000

without Jumps

Panel A of this table provides the number of parameters, log-likelihood and Akaike information criterion (AIC) for four

different models: one regime without jumps, one regime with jumps, two regimes without jumps, and two regimes with jumps.

The upper bounds of the p-value of the null hypothesis against the alternative hypothesis are provided in Panel B. When the

model under the null hypothesis is nested in the model under the alternative hypothesis (top row and rightmost column), the

upper bounds are based on Davies (1987). For the non-nested case (one regime with jumps vs. two regimes without jumps),

the upper bound is based on the test statistic of Rivers and Vuong (2002).

economic importance in terms of asset allocation implications.

We examine the moments implied from the estimates of each model specification by computing the

averages of unconditional values of mean, standard deviation, correlation, skewness and excess kurtosis of

the data, and those implied from the fitted models. The averages are computed across all ten countries,

or forty-five country pairs for the correlation20, and are reported in Table 3. The maximum likelihood

20The formula of unconditional covariances, skewness and kurtosis for the models with two regimes are available from the

authors.
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Table 3
Averages of unconditional moments

Data One Regime One Regime Two Regimes Two Regimes

without Jumps with Jumps without Jumps with Jumps

Mean (%) 0.107 0.107 0.107 0.109 0.107

Std Dev (%) 3.307 3.305 3.318 3.298 3.327

Correlation 0.709 0.709 0.711 0.709 0.712

Skewness −0.977 0.000 −0.586 −0.321 −0.931

Excess Kurt 7.213 0.000 5.928 2.023 8.289

This table provides the unconditional moments of returns computed from the data, and those implied from the estimates of

four different models: one regime without jumps, one regime with jumps, two regimes without jumps, and two regimes with

jumps. The values are the averages across all ten countries for the mean, standard deviation, skewness and excess kurtosis,

and across all forty-five country pairs for the correlation.

estimates from all four model specifications obtained from the EM-based algorithm can very well match

the first and second moments (mean, standard deviation, and correlation) of the data. The one-regime

model without jumps is simply a multivariate normal model and naturally fails to produce the observed

negative skewness and positive excess kurtosis. The one-regime model with jumps does detect return

asymmetries and fat tails but it strongly underestimates the negative skewness and kurtosis. The two-

regime without jumps fares even more poorly (despite a larger number of estimated parameters). Our two-

regimes with jumps model provides the best match for the negative skewness and kurtosis. These results

highlight the importance of including jumps to properly model return moments. But the complexity of the

international return distribution does not stop at the first few unconditional moments. All models seem

to fit the observed unconditional correlation, but international correlation exhibit breaks during crises, an

observation of great importance in asset allocation.

4.3 Number of Regimes

In our model we assume that all of the ten equity markets share the same global regime. This assumption

provides parsimony of our return generating process and hence allows us to deal with a large number of

markets21. This assumption is consistent with the two-country analysis of Ang and Bekaert (2002). They

21If we allow each country to have two regimes of its own, the multivariate model will contain 210 = 1024 distinct regimes.

This extremely large number of regimes is obviously not practical, and its marginal contribution will never outweight the

computational burden and estimation error.

17



fail to reject the common regime model against the country-specific regime model. Similarly, Okimoto

(2008) finds that the U.S. regime and the U.K. regime mostly coincide in his two-country model, and

assumes the common regime classification in the estimation of his joint models.

To check whether our model needs more than two regimes, we fit a three-regime model without jumps.

Using the test of Rivers and Vuong (2002), we can reject the three-regime model in favor of our model at

0.35% significance level. Based on the estimated model, one of the three regimes is not persistent with

expected duration of only less than 3 weeks, and the markets are in this regime less than 2% of the time.

We also find that this regime tries to capture a few outliers, and some of its associated parameters have

large standard errors. Similar problems are found for a three-regime model with jumps. See also Ryden,

Terasvirta, and Asbrink (1998), and Alexander and Lazar (2006) for similar findings. Therefore, we keep

our model parsimonious with two regimes.

4.4 Country-Specific and Region-Specific Jumps

Our model allows systemic jumps of different sizes for different markets. This model can be generalized

to include country-specific or region-specific jumps in a subset of countries. To check whether our two-

regime model with systemic jumps further needs country-specific or region-specific jumps, we fit the two-

regime model with (i) both systemic and ten country-specific jumps, and (ii) both systemic and three

region-specific (Asia Pacific, Europe, North America) jumps. The tests fail to reject our model (with

only systemic jumps) against each of the other two models at 10% significance level. In other words, the

systemic jump component in our two-regime model is statistically sufficient to capture jumps among these

ten countries.

4.5 Characteristics of Global Regimes and Systemic Jumps

Recall that returns as given by model (1) are the combinations of diffusion and jump components.

These two components are estimated by the EM-based algorithm22, then the implied means, standard

deviations, and correlations of returns, defined by (2) - (4), are computed from these quantities. To

characterize the regimes, we first look at return statistics as provided in Table 4. We find that returns

in regime 1 have lower means, higher volatilities, and are more correlated than those in regime 2. We

choose to call regime 1 the “bad” or “bear” regime, and regime 2 the “good” or “bull” regime. For all

countries, mean returns are negative in the bad regime and positive in the good regime. The standard

22Detailed parameter estimates are available from the authors.
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Table 4
Estimates of means, standard deviations and correlations of weekly log-returns

Panel A: Mean and Standard Deviation (%)

Mean (µ̄) Standard Deviation (σ̄)

Regime 1 Regime 2 p-value Regime 1 Regime 2 p-value

(Bad Regime) (Good Regime) (Bad Regime) (Good Regime)

AU -0.137 0.431 0.1843 5.251 2.721 0.0000

(0.399) (0.135) (0.515) (0.149)

CA -0.314 0.371 0.0883 5.025 2.358 0.0000

(0.380) (0.116) (0.471) (0.103)

FR -0.412 0.260 0.0996 5.049 2.712 0.0000

(0.380) (0.133) (0.423) (0.129)

GE -0.557 0.378 0.0382 5.650 2.678 0.0000

(0.426) (0.131) (0.478) (0.111)

HK -0.388 0.386 0.0198 4.173 2.313 0.0000

(0.310) (0.113) (0.294) (0.091)

JP -0.419 0.228 0.0191 3.262 2.505 0.0012

(0.244) (0.121) (0.212) (0.090)

SP -0.178 0.223 0.3510 5.143 3.369 0.0004

(0.389) (0.167) (0.452) (0.187)

SW -0.291 0.320 0.0731 4.271 2.008 0.0000

(0.323) (0.098) (0.386) (0.081)

UK -0.317 0.257 0.1197 4.610 2.110 0.0000

(0.351) (0.104) (0.459) (0.092)

US -0.295 0.232 0.0878 3.936 1.744 0.0000

(0.294) (0.087) (0.304) (0.082)

This table provides the estimated means, standard deviations (Panel A) and correlations (Panel B) given by equations (2) -

(4). They are estimated from the weekly log-returns using the developed EM-based algorithm. Standard errors are given in

the parentheses.
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Table 4 (Cont.)
Estimates of means, standard deviations and correlations of weekly log-returns

Panel B: Correlation (ρ̄)

Regime 1 (Bad Regime)

AU CA FR GE HK JP SP SW UK

CA 0.8555

(0.0290)

FR 0.8313 0.8584

(0.0320) (0.0273)

GE 0.7945 0.8211 0.9475

(0.0385) (0.0339) (0.0103)

HK 0.7559 0.7378 0.6990 0.6859

(0.0410) (0.0432) (0.0486) (0.0500)

JP 0.6704 0.5974 0.6023 0.5612 0.5942

(0.0509) (0.0603) (0.0589) (0.0637) (0.0569)

SP 0.8196 0.8009 0.9083 0.8991 0.6728 0.5693

(0.0346) (0.0380) (0.0175) (0.0191) (0.0522) (0.0631)

SW 0.7834 0.7767 0.8856 0.8528 0.6733 0.5604 0.8722

(0.0418) (0.0420) (0.0219) (0.0287) (0.0518) (0.0636) (0.0248)

UK 0.8479 0.8663 0.9240 0.8860 0.7089 0.5641 0.8576 0.8614

(0.0316) (0.0277) (0.0149) (0.0224) (0.0484) (0.0647) (0.0281) (0.0284)

US 0.7477 0.8030 0.8215 0.8326 0.6534 0.5180 0.7495 0.7742 0.8240

(0.0446) (0.0378) (0.0325) (0.0306) (0.0526) (0.0664) (0.0434) (0.0394) (0.0326)

Regime 2 (Good Regime)

AU CA FR GE HK JP SP SW UK

CA 0.7271

(0.0284)

FR 0.6735 0.7212

(0.0350) (0.0289)

GE 0.6473 0.7134 0.9383

(0.0345) (0.0275) (0.0066)

HK 0.6019 0.4546 0.4909 0.4951

(0.0368) (0.0439) (0.0447) (0.0431)

JP 0.5424 0.4663 0.4427 0.4843 0.5139

(0.0373) (0.0407) (0.0426) (0.0396) (0.0377)

SP 0.5485 0.5758 0.8596 0.8076 0.3481 0.3263

(0.0507) (0.0447) (0.0179) (0.0220) (0.0555) (0.0491)

SW 0.6634 0.6513 0.8420 0.8262 0.4885 0.4631 0.6939

(0.0320) (0.0321) (0.0165) (0.0172) (0.0417) (0.0405) (0.0325)

UK 0.7246 0.7535 0.8737 0.8455 0.5338 0.4613 0.7229 0.8238

(0.0283) (0.0245) (0.0144) (0.0161) (0.0395) (0.0408) (0.0326) (0.0175)

US 0.5982 0.7515 0.7947 0.7914 0.4772 0.4413 0.6427 0.6692 0.7758

(0.0407) (0.0252) (0.0236) (0.0218) (0.0449) (0.0426) (0.0408) (0.0315) (0.0232)

This table provides the estimated means, standard deviations (Panel A) and correlations (Panel B) given by equations (2) - (4). They

are estimated from the weekly log-returns using the developed EM-based algorithm. Standard errors are given in the parentheses.
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Figure 1

Probabilities of bad regime.

This figure shows the filtered (dotted line) and smoothed (dashed line) probabilities of being in the bad regime.

deviations of returns (volatility) are roughly twice as high in the bad regime than in the good regime.

All cross-country correlations are higher in the bad regime. These findings tend to be consistent with the

empirical literature in asymmetries of returns in equity markets . But two-regime models of return without

jumps have a difficult time distinguishing between good and bad markets. For example, Ang and Bekaert

(2002) fail to reject the equality of correlation across regimes at a 20% confidence level for their joint test.

With two regimes and jumps, we find a better characterization of the regimes. All correlations are higher

in the bad regime than in the good regime. A joint test over all correlation pairs rejects the null hypothesis

of equal correlation in both regimes at a 0.02% confidence level. Similarly we reject the null hypothesis of

equal volatilities in both regimes at a 0.00% confidence level. However, any model faces the difficulty of

estimating conditional mean returns as their standard errors are large. We find that all countries exhibit

mean returns of opposite signs in the two regimes with large standard errors. We only reject the hypothesis

of equal means against that of mean returns being lower in bad regimes at the 11% confidence level in

a joint test. The difference is more significant for jump means. The mean jump size is lesser in the bad

regime (average −2.8%) than in the good regime (average −1.0%) with a p−value of 4.71%. To alleviate

this common problem of large standard errors in mean, we will use Bayesian mean shrinkage estimators

for the conditional means in our asset allocation study. Nevertheless, the introduction of jumps allows a

better characterization of the risk parameters, correlation and volatility asymmetries. We will refine the

discussion when we look at correlation breaks in Section 5.

Figure 1 shows the filtered (dotted line) and smoothed (dashed line) probabilities of being in the bad

21



Table 5
Regime and jump statistics

Probability of Staying Expected Jump Averages of Jump Size

in the Same Regime Duration Arrival Rate Mean Std Dev Correlation

(per week) (weeks) (per week) (%) (%)

Bad Regime 0.967 30.71 0.203 -2.829 6.446 0.903

(0.015) (13.98) (0.040) (1.270) (0.925) (0.037)

Good Regime 0.985 66.47 0.187 -1.006 2.802 0.669

(0.007) (30.00) (0.020) (0.401) (0.296) (0.078)

This table provides the estimates of weekly transition probabilities, expected durations, jump arrival rates, and jump size

statistics of both regimes obtained from the EM-based algorithm. Standard errors are given in the parentheses. The expected

duration for a given regime is computed from the inverse of the rate at which the regime will shift to another regime.

regime. Table 5 shows that both regimes are persistent with a high probability of remaining in the same

regime. The expected duration is 31 weeks for the bad regime (low return, high volatility, high correlation)

and 67 weeks for the good regime (high return, low volatility, low correlation). The results also show that

the arrival rate of jumps is significantly different from zero confirming the existence of systemic jumps in

both regimes. Jump sizes are quite different in the bad and good regimes, with strong negative mean and

high standard deviation and correlation in the bad regime.

The persistence of the regimes is an important feature. It shows that markets go through prolonged

periods of good and bad regimes. The probability to stay in the same regime is high and the expected

regime duration is long. Estimating that markets enter a regime gives useful information for the future,

providing support for a regime-switching model. Jump sizes are quite different in the two regimes. A

large negative jump can lead to a rapid transition to the bad regime and the jump regime is persistent.

In other words, a bad regime can be quickly detected and that is useful information for asset allocation as

the regime is persistent and all parameters, including international correlation, change drastically. This is

confirmed by the out-of-sample results in Section 6.

4.6 Economic Insights on Regimes

Some indications of how well our model detects bear and bull markets can be gleaned in Figure 2.(a)

which charts the period of bad regime and the return on an equal-weight global portfolio. As stated above,

mean returns are of opposite signs in bad and good regimes, but with rather low statistical power to

22



2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e
 R

e
tu

rn

 

 

Bad Regime

Cumulative Return

(a) Period of Bad Regime and Cumulative Return of Equally Weighted Portfolio

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
−2

−1

0

1

2

3

4

5

6

7

S
T

L
F

S
I

 

 

Bad Regime

STLFSI

(b) Period of Bad Regime and STLFSI

Figure 2

Global portfolio, STLFSI and bad regime periods.

This figure shows the cumulative return of an equally weighted portfolio of the ten countries (Panel (a)) and STLFSI (Panel

(b)) in solid lines. The bad regime periods are represented by the shaded areas.

differentiate. Nevertheless, we can see from the figure that the model detects quickly the start of a bad

regime. This is true in all six bad periods detected in the model.

Systemic jumps are a major determinant in our model. Large systemic shocks lead to high international

market correlation and volatility. The increased correlation and volatility due to persistent big jumps allow

an early detection of bad regimes. One weakness of our model lies in its lesser ability to quickly detect the

return to a bull market, such as after the 2003 and 2009 crises. At the start of a market recovery, observed

returns, although generally positive, still exhibit a fairly large volatility and correlation for a while. It

takes time for the model to confirm that observed returns are smoother and less correlated. On the other

hand, large negative shocks easily signal a bad regime.
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We now study whether the bad regimes are detected by some other early financial indicators. There

are few high-frequency (weekly) indicators of financial crisis and they are domestic ones, primarily U.S. We

focus on the STLFSI (Saint Louis Fed’s Financial Stress Index) which is a broad weekly index of financial

stress derived from a principal components analysis of 18 financial indicators based on market prices.

VIX (Chicago Board Options Exchange Market Volatility Index) is a major component of STLFSI with a

correlation of 0.9. Figure 2.(b) charts the period of bad regime and STLFSI. We can see that STLFSI is

correlated with the regime, which is not surprising (the regression R2 is 0.45 and the slope coefficient is

highly significant). But its indications tend to lag the start of bad regime. Our regime probability shoots

up quickly at the start of crises, while STLFSI takes a longer time to reach a high value. To confirm, we

run Granger causality tests between STLFSI and the filtered regime probability. We find that the regime

probability explains future values of STLFSI (p−value of 0.10%), but not the other way around. Thus,

simply looking at implied volatility from option prices, or more comprehensive market indicators such as

STLFSI, provides less information than our model including systemic jumps and international correlation

breaks.

5 Asymmetries in Correlations

Conditional correlation got a lot of attention with the recent financial crises. A stylized fact about

equity returns is that correlation is higher in bad markets than in good markets. In this section we

explain how our model naturally captures the asymmetries in correlations, and show empirically that it

indeed provides much better fit than the models with a single regime or without jumps, and than many

other classes of standard multivariate models including CCC and DCC GARCH models, asymmetric factor

copula models, and multivariate factor stochastic volatility models.

5.1 Correlation Breaks in Bad Regimes

In this section we investigate the source of correlation asymmetries, which will be helpful in explaining

why our model captures the asymmetries much better than the other models in the next section. Panel A

of Table 6 provides the averages of correlations of returns (ρ̄), of diffusion (ρΣ), and of jump sizes (ρΩ) over

the forty-five country pairs for each regime. For the two-regime model with jumps, we find that the average

return correlation increases from 0.64 in good markets to 0.76 in bad markets. A joint test indicates that

we can reject the null hypothesis of no increase in correlation at the 0.01% significance level (one-sided

test).
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Table 6
Average correlations, means and standard deviations of diffusion, jump sizes, and returns

One Regime One Regime Two Regimes Two Regimes

without Jumps with Jumps without Jumps with Jumps

Bad Regime Good Regime Bad Regime Good Regime

Panel A: Correlation

Diffusion (ρΣ) 0.709 0.629 0.745 0.631 0.668 0.636

Jump Size (ρΩ) 0.813 0.903 0.669

Return (ρ̄) 0.709 0.711 0.745 0.631 0.763 0.638

Panel B: Mean (%)

Diffusion (µ) 0.107 0.394 −0.561 0.414 0.243 0.497

Jump Size (η) −1.369 −2.829 −1.006

Return (µ̄) 0.107 0.107 −0.561 0.414 −0.331 0.309

Panel C: Standard Deviation (%)

Diffusion (σΣ) 3.305 2.325 4.832 2.187 3.339 2.055

Jump Size (σΩ) 4.911 6.446 2.802

Return (σ̄) 3.305 3.318 4.832 2.187 4.637 2.452

This table provides the averages of the estimated correlations (Panel A), means (Panel B), and standard deviations (Panel C)

of diffusion components, jump sizes and log-returns for each of the four models: one regime without jumps, one regime with

jumps, two regimes without jumps and two regimes with jumps. The averages are provided for each regime for the two-regime

models.

A major contribution of our paper is to introduce both diffusion and jump processes in the two regimes.

As we estimate the parameters of the diffusion and jump processes in the two regimes, we can look at the

relative contribution of each process to the increase in correlation in bad markets. As seen in Panel A of

Table 6, the correlation between diffusion does not increase much between the good and bad regimes; the

average correlations of diffusion are 0.64 in good markets, and 0.67 in bad markets. On the other hand,

the average correlation of jump sizes increases from 0.67 in the good regime to 0.90 in the bad regime.

The jump sizes are highly correlated in the bad regime, with the correlations above 0.80 for each of the

forty-five country pairs. Hence the correlation asymmetry of returns between the two regimes is caused by

the jump component and not the diffusion component. We can also see from Panels B and C of Table 6

that diffusion provides higher means and lower volatility in the good regime. Both regimes are subject to
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jump risk, but jumps have much larger negative expected size and higher correlation and volatility in the

bad regime. So jumps in bad regimes bring large negative returns to all markets with high correlation.

Now we focus on the difference of average correlations between the diffusion component and jump

component within a given regime. In the good regime, the average correlations of diffusion and jump

components are similar, and are equal to 0.64 and 0.67, respectively. On the contrary, we find that the

average correlation of diffusion (0.67) is much lower than that of jump (0.90) in the bad regime. We refer

to this drastic increase in correlation during the bad regime conditional on a jump arrival as correlation

breaks. To further illustrate, let’s take the case of the Hong Kong market. Systemic jumps are common

to all countries but infrequent and have a random jump size for each country. In the good regime, the

correlation of jump sizes between Hong Kong and the other countries is rather small (on average 0.47),

providing good risk diversification benefits and illustrating the Chinese-diversification property of Hong

Kong. But in the bad regime, systemic jumps affect all countries in a similar fashion and jump sizes

are highly correlated (on average 0.92). On the other hand the correlations of the diffusion components

are around 0.5 in both regimes. In bad markets, systemic jumps lead to a correlation break for Hong

Kong, making it less attractive as a diversification investment. These results also explain intuitively why

introducing systemic jumps allows a better characterization of the return process compared to a two-regime

model without jumps.

5.2 Correlation of Extreme Returns

Using extreme-value modeling, Longin and Solnik (2001) find that correlations conditional on returns

being lower than a negative threshold increase as the threshold becomes more negative, while those condi-

tional on returns being higher than a positive threshold decrease somewhat as the threshold becomes more

positive. This asymmetric exceedance correlation is also documented by Ang and Bekaert (2002), Ang and

Chen (2002), and Okimoto (2008). The conclusion that correlation is higher in bad markets and increases

for extreme negative returns is very important in risk management and asset allocation. With non-normal

distributions, portfolio risk management has to focus on what happens in periods of extreme negative

returns. As an anecdote, LTCM was badly hit in the 1998 crisis because its extensive diversification across

countries and markets failed to provide benefits due to the drastic rise in correlation. A similar scenario

occurred in the 2008-2009 crisis.

Models for risk management and asset allocation optimization should be able to deal with extreme

returns, and lead to useful asset allocation implications for periods of crisis. We now focus our discussion
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on correlation during extreme bad markets and will turn to asset allocation implications in Section 6.

We first investigate how important regime switching and jumps are for reproducing the exceedance

correlation structure observed in the data, especially for extreme negative returns. We estimate four dif-

ferent models: one-regime model without jumps, one-regime model with jumps, two-regime model without

jumps, and two-regime model with jumps, and compute the exceedance correlations implied by the models.

If jumps alone can capture the increase in the correlation during bad markets, the one-regime model with

jumps should provide a good fit. Likewise, if the increase in the correlation of the diffusion in bad regimes

is the only source of the correlation asymmetries, the two-regime model without jumps should provide a

good fit. As we will see below, neither is true. It is crucial to note that every model is estimated based

on the EM-based algorithm which maximizes the likelihood function, so there is no guarantee that models

with a larger number of parameters will better reproduce the observed exceedance correlations.

Let’s denote returns r1 on market of country 1 and r2 on market of country 2 with unconditional

means r̄1 and r̄2, and unconditional standard deviations s1 and s2. The normalized return of country

i is defined by r̃i = (ri − r̄i)/si. We compute the exceedance correlation for a positive threshold φ as

Corr(r̃1, r̃2 | r̃1 > φ, r̃2 > φ), and for a negative threshold φ as Corr(r̃1, r̃2 | r̃1 < φ, r̃2 < φ). For each

model, we simulate 500,000 returns, and compute the exceedance correlations. The results for the average

of all country pairs are presented in Figure 3 which plots the average exceedance correlation computed

from the actual data as well as those estimated from the four models. Note that the actual exceedance

correlation data is not smooth when we increase the magnitude of the threshold because we have few data

points once we consider extreme returns. We limit the calculation to have at least 20 data points for every

country pair.

To understand this figure, let’s consider the case of a multivariate normal distribution (dashed line).

As stressed in Galambos (1978) and Longin and Solnik (2001), the conditional correlation of a multivariate

normal distribution decreases with the threshold and reaches zero for extreme returns. In Figure 3, the

correlation of the multivariate normal process conditional on both returns being below (or above) their

means is equal to the exceedance correlation measured at a zero threshold (e.g., 0.50 for the average

exceedance correlation) and the conditional exceedance correlation decreases as the absolute size of the

threshold increases, hence the symmetric inverted V shape. The conditional correlation goes asymptotically

to zero for extreme returns.

We focus the discussion on negative exceedances as risk lies in extreme negative returns, not positive

returns. On average, the two-regime model with jumps captures well the exceedance correlation for negative
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Figure 3

Exceedance correlations.

This figure shows the average exceedance correlations from forty-five country pairs. It contains the average exceedance

correlations computed from observed data (circles), one-regime model without jumps (dashed line), one-regime model with

jumps (dot-dashed line), two-regime model without jumps (dotted line), and two-regime model with jumps (solid line).

thresholds observed in the data in both direction and magnitude. On the other hand, the other three

models do a poor job at capturing the observed exceedance correlations for negative thresholds; this failure

increases as the thresholds become more negative (extreme negative returns). All models (except the

one-regime model without jumps) yield fairly similar results for positive exceedances.

Now we provide some intuitive explanation for the success of our two-regime model with jumps in

capturing asymmetries in extreme correlations. As mentioned above, correlation breaks occur during bad

markets and are associated with jumps. Observing large negative returns, investors would form a strong

belief that markets are in the bad regime and those returns come from jumps. Because jumps in the bad

regime have the highest average correlation of 0.90 (Panel A of Table 6), when returns becomes more

negative, the conditional correlation increases, generating increasing negative exceedance correlation as

observed in the data. However, when jumps are ignored in the two-regime model, one has to rely on

the less-correlated diffusion in the bad regime, whose average correlation is only 0.75. Similarly, if only

jumps but not regime-switching are accounted for, less-correlated good-regime jumps and more-correlated

bad-regime jumps are mixed into one jump component, reducing the average jump correlation to only

0.71. The values for the latter two cases are too low to match the observed correlation breaks during bad

markets.
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Overall, jumps or regime switching alone is not enough to model asymmetric exceedance correlations

observed among these ten countries during the past decade, while the model with both jumps and regime

switching significantly improves the fit of the observed extreme correlation, particularly for the negative

thresholds. As stressed before, risk is really about negative returns and our model seems to do better than

the others for negative returns. Indeed, we show in Section 6 that our richer modeling leads to superior

out-of-sample portfolio performance.

5.3 Comparison with Other Benchmarks

In this section we conduct an extensive empirical study to investigate how well other standard volatil-

ity models in the finance literature can capture the observed exceedance correlations of extreme returns

compared to ours. We consider three main classes of multivariate models: multivariate GARCH, factor

copula, and multivariate factor stochastic volatility. As in the previous section, each model is fitted to

the data by its standard estimation method (e.g. maximum likelihood estimation for GARCH models)

rather than trying to minimize the exceedance correlation fitting errors. This allows us to understand how

much the asymmetries of extreme correlations implied by the return data each of these benchmark models

can capture. In Figure 4, we provide the plots of exceedance correlations implied from data (circles) and

from our two-regime model with jumps (solid line) compared to those implied from the benchmark models.

Appendix D provides the details of each benchmark model.

We first consider the standard multivariate GARCH models with constant conditional correlation

(CCC) of Bollerslev (1990) and dynamic conditional correlation (DCC) of Engle (2002). The returns

of each country is assumed to follow a univariate GJR-GARCH model of Glosten, Jagannathan, and Run-

kle (1993) with normal residuals. Panel (a) of Figure 4 shows the exceedance correlation plots of the CCC

and DCC models. Both CCC and DCC models generate symmetric inverted V-sharp plots similar to the

multivariate normal model, and significantly underestimate the exccedance correlations for both positive

and negative returns. This emphasizes the undesirable conditionally normal joint distribution of these

GARCH models.

Next we consider the factor copula models of Oh and Patton (2012) in which the joint distribution is

constructed using the copula implied from a factor model. Following Oh and Patton (2012), we consider

three variants of factor models: one-factor model with the same factor loading, one-factor model with

different factor loadings, and four-factor model with one global factor, and three regional factors (Asia-

Pacific, Europe, and North America), and assume that factors have skewed-t distribution which allows
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(a) Multivariate GARCH models
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(b) Factor Copula Models
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Figure 4

Exceedance correlations of GARCH, factor copula and factor stochastic volatility models.

This figure shows the average exceedance correlations from forty-five country pairs implied from data, our two-regime model

with jumps and the benchmark models: GARCH (Panel (a)), factor copula (Panel (b)) and factor stochastic volatility (Panel

(c)).
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asymmetries between upturn and downturn movements, and correlated crashes. The implied exeedance

correlations from the factor copula models are shown in Panel (b) of Figure 4. Although all of the models

generate asymmetries between positive and negative exceedance correlations, they poorly match the ob-

served ones. The implied exceedance correlations for negative returns decrease as the threshold becomes

more negative, sharing the same undesirable property as the GARCH models, consistent with what the

authors mentioned in their paper: “The combination of time-varying conditional means and variance and a

constant conditional copula makes this model similar in spirit to the CCC model of Bollerslev (1990).” So

introducing asymmetries in the factor copula seems to be not enough to capture the observed exceedance

correlations. Furthermore, using additional factors that are region/country specific does not seem to im-

prove the results. This would confirm our findings about adding region/country specific jumps in our

model.

Third we consider the multivariate factor stochastic volatility models of Omori and Ishihara (2012) in

which returns are driven by a set of factors and a vector of innovations with multivariate-t errors, and

each of the factors and innovations follows a univariate stochastic volatility model. Panel (c) of Figure 4

shows the implied exceedance correlations of models with one, three and five factors. The models generate

asymmetries of exceedance correlations for positive and negative returns. Unlike the multivariate GARCH

and factor copula models, the exceedance correlations increase as the threshold becomes more positive

or more negative. However, all of the multivariate factor stochastic volatility models underestimate the

exceedance correlations for both positive and negative returns.

Exceedance correlation measures dependency of extreme returns based on conditional correlations. It

depends on the choice of marginal and joint distributions of returns. Quantile dependence is an alternative

dependence measure based on conditional probabilities. It depends only on the copula, but not the marginal

distribution. We provide results in Appendix E. They lead to conclusions similar to those obtained with

exceedance correlation.

Modeling and fitting multivariate models is a very challenging task. Most of multivariate models impose

some structures or rely on factor models in order to make estimation possible, while having to sacrifice

their flexibility. As we have seen, by imposing certain structures, the multivariate GARCH, factor copula,

and multivariate factor stochastic volatility models fail to capture the observed exceedance correlations

and quantile dependence of returns. On the other hand, our two-regime model with jumps captures the

observed values much better than those models. At the same time, using the powerful EM-based estimation

method we derive, estimating our model is easy because our model relies on simple distributions such as
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normal and Poisson. The results of this section clearly show that our model, which requires less compromise

between estimation feasibility and model flexibility, provides a better solution for modeling and capturing

extreme dependency in international equity markets.

6 Asset Allocation Implications

In this section we formulate and solve dynamic portfolio choice problems when returns are subject

to correlation asymmetries and breaks modeled by regime-switching and jumps. We assume that the

underlying market regimes are unobservable, and investors dynamically update their beliefs of the market

regimes based on the observed asset return history. We compare our optimal portfolio weights and those

of the investors who ignore regime switching and/or jumps. We also test our portfolio model out-of-sample

against various models including the näıve 1/N model. The results show that our model outperforms the

other models out-of-sample, especially during crisis periods.

6.1 Optimal Portfolio Choice

This section considers an optimal portfolio choice problem for an agent with constant relative risk

aversion. Consider a U.S. investor who invests her wealth in the international equity markets whose log-

returns follow process (1), and a risk-free asset with continuously compounded rate of return rf . Let xi,t

denote the portfolio weight in market i at time t for i = 1, . . . , n and t = 0, 1, . . . , T − 1. It can be shown

that the wealth process Wt satisfies:

Wt+1 = Wt

(
erf + x′t(e

Rt+1 − erf1)
)

(7)

where xt = [x1,t, . . . , xn,t]
′ denotes the vector of portfolio weights, Rt = [R1,t, . . . , Rn,t]

′ is the vector of

market returns with eRt ≡ [eR1,t , . . . , eRn,t]′, and 1 is the vector of ones. We assume that her objective is

to maximize her expected power utility of terminal wealth at time T :

max
x

E [U(WT )] where U(W ) =


W 1−γ

1− γ
W > 0

−∞ W ≤ 0

(8)

and γ > 0 is the relative risk aversion coefficient. For γ = 1, the utility is logarithmic. We assume further

that the investor’s information set at time t contains the history of asset prices and her wealth, but not the

market regimes. That is, the regime Yt is unobservable. Using the observed historical returns, the investor
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derives her belief about the likelihood of the market regime qt = [q1,t, . . . , qK,t]
′ where

qy,t = P (Yt = y | R1, . . . , Rt) (9)

is the probability that the current regime is y conditional on all historical market returns. The investor

updates her belief qt+1 upon observing new market returns rt+1 using the Bayes’ rule. The following

theorem provides the optimal weights, whose derivation is given in Appendix F.

Theorem 1. The optimal portfolio weight at time t when the regime probability vector is q = [q1 . . . , qK ]′

is the maximizer of the following problem

x∗(t, q) = arg max
x

K∑
z=1

K∑
y=1

qzpz,yE

[(
erf + x′

(
eRt+1 − erf1

))1−γ
1− γ

h(t+ 1, qt+1(q,Rt+1))

∣∣∣∣∣ Yt+1 = y

]
(10)

where the functions qt+1(q, r) and h(t, q) are given by (F.1) and (F.5) in Appendix F, respectively.

Optimal portfolio weights obtained from equation (10) are used to study the diversification effects of

asymmetries in systemic jumps on the portfolio choice problem. Observe that the optimal portfolio weights

depend on time t and the probability q, but not wealth W .

6.2 Optimal Portfolio Weights

We first illustrate optimal portfolio weights in-sample. It is well known that simple estimates of mean

returns are subject to relatively large estimation errors and are poor estimators of expected returns. Our

contribution is on risk modelling, not better models of expected return. Hence we constrain the means

to be equal for each country. In this section, we simply illustrate how different risk models would affect

portfolio decisions in the presence of crises, and this constrained-mean model serves our purposes. When

studying performance out-of-sample, we introduce a Bayesian shrinkage estimator for expected returns.

We restrict our study to the case where short-selling is not allowed. This is consistent with most mutual

funds that are not allowed to short sell, but are allowed to borrow (Almazan et al., 2004). It rules out

some hedge fund strategies arbitraging across markets, but these strategies are primarily based on country

market valuation (expected return) which is not our focus.

The optimal portfolio weights of models with one regime are constant. For the two-regime models, the

portfolio weights, conditional on a bad-regime probability q, depend on the investment horizon. We find

that those weights are almost identical for horizons over a year, so we select one year as the investment

horizon. The optimal weights obtained from the four models for different probabilities of bad regime (q)
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are provided in Table 7 for a risk aversion coefficient of five23. The weights of the ten countries are grouped

and reported by regions: Asia-Pacific (AU, HK, and JP), Europe (FR, GE, SP, SW and UK), and North

America (CA and US). These regional weights are the weights within the risky-asset portfolio, and hence

sum to one. These weights allow us to study diversification across regions, while the total risky weights

and the risk-free weights allow us to study the leverage positions. We use the Federal funds rate as the

risk-free rate. The top panel of Table 7 reports portfolio weights of the models without jumps and the

bottom panel the weights of the models with jumps. Figure 5 provides the same regional weights in a more

detailed fashion.

Let’s first look at the portfolio weights of the models with one regime, without jumps (mean-variance)

and with jumps. Interestingly, modelling jumps leads investors to take larger positions in the risky assets.

The risky weight of the one-regime model with jumps is 58.7% while the risky weight of the one-regime

model without jump is only 39.3%. This seems to suggest that more-precise risk modeling allow investors

to take more aggressive positions for a similar risk level. The regional weights of the equity portfolio

composition differ slightly at around 3%− 8%.

Next we compare the two-regime models without and with jumps. Unlike the one-regime models, the

two-regime models suggest investors to change the compositions within the risky portfolio as well as the

leverage position based on the current probability of bad market regime (q). We start with a summary of

the asset allocation implications of our model with jumps. If an investor is certain that the current regime is

good (q = 0), she will hold a leveraged position in equity. The equity allocation is 46% to America, 18% to

Europe and 36% to Asia-Pacific. As q increases, the investment in the risky assets drops, and Asia-Pacific

replaces America while Europe is stable within the risky portfolio. Investors keep holding risky assets until

q = 0.7. As the expected return decreases with the higher probability of a crisis, risk focus becomes more

important. That is achieved both by a reduced leverage and a higher allocation to the region providing the

best diversification benefit (lower correlation). But when the probability of a bad regime looms large (say q

over 0.4), the proportion of the risky assets gets smaller and a correlation break becomes more likely. That

leads to a drastic reduction to the Asia-Pacific allocation as the correlation break is most pronounced for

this region. The allocation to Europe goes up as some European countries are less sensitive to correlation

breaks, while America allocation keeps dropping. For q = 0.5, the portfolio only has a 14% investment

in risky assets with roughly equal weights between Asia-Pacific and Europe. For higher q’s, the weight

23Results for other levels of risk aversion are available from the authors. The composition of the risky portfolios do not

change much for different levels of risk aversion, but the amount of leverage does as expected.
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Table 7
Optimal portfolio weights

One Regime Two Regimes without Jumps

without Jumps q = 0 q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.5 q = 0.6 q = 0.7 q = 0.8 q = 0.9 q = 1

Risky-Asset Port (x/x′1)

Asia-Pacific 0.560 0.362 0.442 0.506 0.570 0.317 0.000 − − − − −

Europe 0.182 0.176 0.150 0.143 0.220 0.684 1.000 − − − − −

North America 0.258 0.462 0.408 0.351 0.211 0.000 0.000 − − − − −

Total Risky Wgt (x′1) 0.393 1.739 1.103 0.670 0.329 0.093 0.012 0.000 0.000 0.000 0.000 0.000

Risk-free Wgt (1− x′1) 0.607 −0.739 −0.103 0.330 0.671 0.907 0.988 1.000 1.000 1.000 1.000 1.000

One Regime Two Regimes with Jumps

with Jumps q = 0 q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.5 q = 0.6 q = 0.7 q = 0.8 q = 0.9 q = 1

Risky-Asset Port (x/x′1)

Asia-Pacific 0.522 0.368 0.450 0.502 0.549 0.606 0.511 0.329 0.000 − − −

Europe 0.155 0.180 0.160 0.155 0.172 0.214 0.489 0.671 1.000 − − −

North America 0.322 0.452 0.391 0.343 0.279 0.180 0.000 0.000 0.000 − − −

Total Risky Wgt (x′1) 0.587 2.419 1.463 0.952 0.599 0.331 0.138 0.052 0.001 0.000 0.000 0.000

Risk-free Wgt (1− x′1) 0.413 −1.419 −0.463 0.048 0.401 0.669 0.862 0.948 0.999 1.000 1.000 1.000

This table provides optimal portfolio weights under four different models: one regime without jumps, one regime with jumps, two regimes

without jumps, and two regimes with jumps. The investment universe consists of the ten country indices and the risk free asset. The

weights are presented by regions (Asia-Pacific, Europe, and North America). These regional weights are weights within the risky-asset

portfolio, and hence sum to one. The total weight for the risky-asset portfolio (Total Risky Wgt) and the risk-free weights (Risk-free

Wgt) are also provided. Means of diffusion and jumps are constrained to be equal across countries for each regime. The investment

horizon is 1 year, and the relative risk aversion coefficient (γ) is 5. The weights are provided for the probability of starting in the bad

regime (q) of 0, 0.1, . . ., 1. Shortselling is not allowed.

of risky assets gets slowly reduced and with a concentration in Europe till q = 0.7 where the portfolio

becomes fully invested in the risk-free asset. In comparison, the two-regime model without jumps investors

take less leverage for all probabilities q and the model without jumps stops investing in equity for q around

0.5 (compared to 0.7 for our model). The equity allocations of both models are fairly similar when there

is a large probability of a good regime (low q), but quite different when q gets above 0.3.

This suggests that correlation asymmetries between good and bad regimes have substantial impacts

on the composition within the equity portfolio. Better risk modelling (including jumps) allows a better

differentiation between the regimes. It also allows taking more aggressive positions for a similar perceived

risk level.
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Figure 5

Optimal portfolio weights.

This figure shows the optimal weights of the constrained-mean portfolios as functions of the bad regime probability of the four

models: one-regime without jumps (dashed line), one-regime with jumps (dot-dashed line), two-regime without jumps (dotted

line), two-regime with jumps (solid line). Panels (a), (b) and (c) provide the weights in the Asia-Pacific, Europe and North

America regions, respectively. They are the weights in the risky portfolio. The total risky weights are in Panel (d). The risk

aversion coefficient (γ) is 5 and the investment horizon is 1 year.

36



6.3 Out-of-Sample Tests

Our model with regime switching and jumps has a large number of parameters that may be subject to

overfitting and estimation risk, so it is important to test the model out-of-sample. DeMiguel, Garlappi, and

Uppal (2009) analyze out-of-sample portfolio performance of numerous mean-variance models, with and

without taking into account estimation error, against the näıve 1/N model24. They find that none of the

models consistently outperforms the 1/N model, and conclude that the gain from optimal diversification

is more than offset by estimation error. In this section our model is tested out-of-sample against simpler

models, including the robust 1/N model. Our out-of-sample period starts from January 2008 to December

2013, a total of 6 years. This period covers various market conditions, including the crisis in 2008, global

stock rally in 2009, and other up and down years during 2010 to 2013.

As both expected return and risk play an important role in portfolio performance, we take care of

the estimation errors in the mean parameters using the Bayesian shrinkage method of DeMiguel, Martin-

Utrera, and Nogales (2013) in which the estimate of the mean return of each asset is shrunk toward its

grand mean (average of the means across assets). They show that out-of-sample Sharpe ratios for various

mean-variance portfolios are improved under their shrinkage method. We apply their method to each

mean parameter (mean of diffusion and mean of jump size) in each regime, and refer to that case as a

shrinkage-mean model. Our analyses in this section rely on the shrinkage-mean models, but the results

are qualitatively similar for constrained-mean and unconstrained-mean models.

At the beginning of each year, the investors are allowed to re-estimate their models based on the data

from 2001, and upon the new estimates they solve dynamic portfolio optimization problems to obtain the

optimal weights, which are functions of the market regime probability and the investment horizon.

Table 8 provides the portfolio performance of five models: 1/N , one regime without jumps, one regime

with jumps, two regimes without jumps, and two regimes with jumps. We report the annualized mean of

excess returns (Mean), the annualized standard deviation of excess returns (Std Dev), and the annualized

Sharpe ratio (Sharpe Ratio). The values in Table 8 are based on γ = 5. The results for γ = 3 and 10 are

similar, and are not reported here.

We find that our model with regime switching and jumps strongly outperforms the other four models in

many aspects. That is, it provides the highest excess return (9.82% per year), the lowest standard deviation

(18.71% per year), and the highest Sharpe ratio (0.525). The one-regime models perform poorly with

24The 1/N model is an equally weighted portfolio in which each risky asset has the same portfolio weight and no weight is

given to the risk-free asset.
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Table 8
Out-of-sample portfolio performance

Mean Std Dev Sharpe Ratio p−value

1/N 2.24% 25.00% 0.090 0.1094

One Regime without Jumps −8.59% 20.28% −0.424 0.0092

One Regime with Jumps −10.15% 27.16% −0.374 0.0126

Two Regimes without Jumps 1.74% 18.87% 0.092 0.0474

Two Regimes with Jumps 9.82% 18.71% 0.525

This table provides out-of-sample portfolio performance under five different models: 1/N , one regime without jumps, one

regime with jumps, two regimes without jumps, and two regimes with jumps. The results are based on the shrinkage-mean

models. The entire sample data is from January 2001 to December 2013, and the out-of-sample data is from January 2008 to

December 2013. The models are re-fitted at the beginning of each year. The trading frequency is weekly. The performances

are measured by the annualized mean of excess log-returns (Mean), the annualized standard deviation of excess log-returns

(Std Dev), and the annualized Sharpe ratio (Sharpe Ratio). The last column (p−value) provides the one-sided p−value for

the null hypothesis of equal Sharpe ratio between a given model and the two-regime model with jumps, against the alternative

hypothesis of higher Sharpe ratio for the two-regime model with jumps. The p−values are computed based on the method of

Ledoit and Wolf (2008). The risk aversion coefficient (γ) is 5, and no shortselling is allowed.

negative excess returns and higher standard deviations. The two-regime model without jumps has a Sharpe

ratio comparable to the 1/N strategy (0.092 vs 0.090). Interestingly, our model strongly outperforms the

1/N strategy with much higher excess return (9.82% vs 2.24%), lower standard deviation (18.71% vs

25.00%) and hence a much higher Sharpe ratio (0.525 vs 0.090). We further test the statistical significance

of the differences in the Sharpe ratios of each model compared to our model. We use the test of Ledoit

and Wolf (2008), which requires no assumptions of normal distribution and i.i.d. property of returns, to

test the null hypothesis of equal Sharpe ratio against the alternative hypothesis that our model has a

higher Sharpe ratio25. The one-sided p−values of the tests against our model are given in the last column

of Table 8. As we can see, we can reject the null hypothesis for both one-regime models with p−values

around 1%. The p−value for the two-regime model without jumps is below 5%. The p−value for the 1/N

strategy is around 10%. The out-of-sample period is only 6 years, so it is not surprising that testing power

is a bit limited, even if the difference in point estimates is large in economic terms.

Now we investigate in more details how our model provides superior out-of-sample performance.

25This test relies on fewer distribution assumption than the test of Jobson and Korkie (1981) with correction by Memmel

(2003), or the JKM test, used in DeMiguel, Garlappi, and Uppal (2009). We also used the JKM test, but results are quite

similar on our data and not reported here.
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Figure 6

Out-of-sample wealth processes.

This figure shows the out-of-sample wealth processes corresponding to five different trading models: 1/N (circles with dashed

line), one-regime model without jumps (dashed line), one-regime model with jumps (dot-dashed line), two-regime model

without jumps (dotted line), two-regime model with jumps (solid line). The results are based on the shrinkage-mean models.

The entire sample data is from January 2001 to December 2013, and the out-of-sample data is from January 2008 to December

2013. The models are re-fitted at the beginning of each year. The trading frequency is weekly. The risk aversion coefficient

(γ) is 5, and no shortselling is allowed.

Figure 6 shows the wealth processes during the out-of-sample period for each model. We end up with

a total wealth increase of slightly more than 85% over the six-year period. The 1/N strategy and the two-

regime model without jumps end up with slightly less than 18% wealth increase. That is a large financial

difference and with lower volatility in our model. The difference mostly comes from detecting crises early.

Our model is able to recognize bad regimes and suggests increasing money into the risk-free asset and

altering the allocation within the remaining equity portfolio as the probability of a correlation break rises.

Interestingly, after observing the start of the 2008 global market crash in August, detected in our model

by the high correlation of jumps in bad regimes, investors relying on our model are very confident that the

markets have gone into the bad regime, and hence put all or most of their wealth in the risk-free asset,

freezing the loss from the beginning of the year to about 20%. On the other hand, investors relying on the

other models still invest in the risky assets, and face much more losses during 2008. For those models, the

maximum losses range from 31% to 67%. A similar situation happens in the crises of the first quarter of

2009 or of late 2011.

As mentioned above, our model may have more difficulty detecting the return to a good regime char-

acterized by a succession of positive diffusion returns. This appears after April 2009. As good regimes
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are characterized by jumps of smaller magnitude, the return to the good regime is harder to detect. But

once confirmed, investors invest more in risky assets, yielding a higher growth (e.g. from mid 2012 to late

2013). It should be stressed that the contribution is not only a different allocation between risk-free and

risky assets. The composition of the equity portfolio also changes with the bad-regime probability. As the

international correlation structure changes drastically in bad regimes, due to breaks in jump correlation,

the asset allocation adopts a more effective diversification strategy. Although our out-of-sample period is

somewhat short, it is representative of periods with booming markets and crises, and clearly illustrates the

benefits of our risk modeling.

7 Conclusion

There is extensive evidence on asymmetries in international equity returns. In particular, extreme

negative returns are of much larger magnitude than extreme positive returns and tend to be much more

correlated across countries. At the beginning of crises, return correlations and volatility increase rapidly

and large negative returns are observed repeatedly during the crisis periods. This cannot be captured by

a smooth return distribution (such as normal or skewed-t) with slowly-changing volatility. Discontinuous

shocks and sudden shifts in parameters have to be considered. We propose a model that comprises diffusion

and jump processes with regime switching, and develop a powerful application of the EM algorithm that

allows a multivariate estimation for a large number of countries. Our model yields results that can replicate

the stylized facts while classes of models that we reviewed cannot (such as regime-switching without jumps,

DCC GARCH, factor copula and multivariate factor stochastic volatility).

Our model uses simple distributions (normal and Poisson) with well-known properties. We model

systemic jumps where country jump sizes are random but correlated. We find evidence for bad/crisis

regimes (high volatility, high correlation and negative mean return) and good regimes (low volatility,

low correlation and positive mean return), and evidence for periodic jumps (extreme returns or shocks),

especially in the bad regime. Bad regimes are characterized by large negative shocks with high correlation.

Regimes are persistent and can be detected early; observing large negative returns across all markets allows

an early detection of a persistent bad regime.

Bad regimes display a big increase in international correlation (“correlation break”). This is caused by

the much higher correlation of negative jumps while the correlation of the diffusion component of returns

remains stable. For example, the average jump correlation for Hong Kong increases from 0.47 in good

markets to 0.92 in bad markets, reducing the diversification benefit when it is most needed. Correlation is
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crucial in asset management. Asset managers rely on diversification, but diversification can fail during a

crisis due to a break in market correlation. The LTCM’s failure taught us that investments that appeared

well diversified, due to low correlation during good times, could become extremely risky when volatility

and correlation shot up during extreme bad markets.

Our findings have important asset allocation implications. We solve dynamic optimal portfolio assuming

that the underlying market regimes are unobservable, and investors dynamically update their beliefs of the

market regimes based on the observed asset return history. We conduct out-of-sample performance tests

and show that our model outperforms various models including the well-known robust “1/N” portfolio.

When the bad-regime probability increases, investors reduce their exposure to risky assets or even move

their entire investment to the risk-free asset. Investors also take advantage of the better estimation of

time-varying correlation to select better-diversified asset allocations with higher Sharpe ratio.

A regime-switching model with jumps is a fairly simple and intuitive model that should help improve

managing risk in international portfolios. Such risk models, featuring correlation asymmetries, are espe-

cially appealing when the occurrence of worldwide bad markets seem more frequent.
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Appendices

Appendix A EM-based Estimation Method

This section derives the complete-data log-likelihood function and describes the expectation and max-

imization steps for the hidden Markov model developed in Section 3. We first consider the complete-data

log-likelihood function:

logL(CT | Θ) = logL(Y1, Z1,∆N1, δ1 | Θ) + logL(Y2, Z2,∆N2, δ2 | C1,Θ)

+ · · ·+ logL(YT , ZT ,∆NT , δT | CT−1,Θ) (A.1)

Let 1(A) denote an indicator function taking value 1 if A is true, and 0 otherwise. Using the Markov

property, we have

logL(Yt, Zt,∆Nt, δt | Ct−1,Θ) =

K∑
y=1

K∑
k=1

1(Yt−1 = y, Yt = k) log pyk

+

K∑
k=1

1(Yt = k)

{
−n

2
log(2π)− 1

2
log |Σ(k)| − 1

2
(Zt − b(k))′Σ(k)−1(Zt − b(k))

}

+

K∑
k=1

∞∑
c=0

1(Yt = k,∆Nt = c) {−λ(k) + c log λ(k)− log(c!)}

+

K∑
k=1

∞∑
c=0

1(Yt = k,∆Nt = c)

c∑
l=1

{
−n

2
log(2π)− 1

2
log |Ω(k)| − 1

2
(δlt − η(k))′Ω(k)−1(δlt − η(k))

}
(A.2)

Substituting (A.2) into (A.1) and taking the expectation conditional on XT and Θ(p), we have

Q(Θ,Θ(p)) = E
[
logL(CT | Θ)

∣∣∣ XT ,Θ(p)
]

=

K∑
k=1

P (Y1 = k|XT ,Θ(p)) log %k +

T∑
t=2

K∑
y=1

K∑
k=1

P (Yt−1 = y, Yt = k|XT ,Θ(p)) log pyk

− nT

2
log(2π)− 1

2

T∑
t=1

K∑
k=1

P (Yt = k|XT ,Θ(p)) log |Σ(k)|

− 1

2

T∑
t=1

K∑
k=1

P (Yt = k|XT ,Θ(p))E
[
(Zt − b(k))′Σ(k)−1(Zt − b(k))

∣∣∣ Yt = k,XT ,Θ(p)
]

+

T∑
t=1

K∑
k=1

∞∑
c=0

P (Yt = k,∆Nt = c|XT ,Θ(p)) {−λ(k) + c log λ(k)− log(c!)}

− n

2
log(2π)

T∑
t=1

∞∑
c=0

cP (∆Nt = c|XT ,Θ(p))− 1

2

T∑
t=1

K∑
k=1

∞∑
c=0

cP (Yt = k,∆Nt = c|XT ,Θ(p)) log |Ω(k)|

− 1

2

T∑
t=1

K∑
k=1

∞∑
c=0

cP (Yt = k,∆Nt = c|XT ,Θ(p))E
[
(δ1
t − η(k))′Ω(k)−1(δ1

t − η(k))
∣∣∣ Yt = k,∆Nt = c,XT ,Θ(p)

]
(A.3)

In the expectation step (E-step), we need to compute the conditional probabilities and expectations in

Q(Θ,Θ(p)) for a given parameter set Θ(p). In the maximization step (M-step), we find Θ that maximizes
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Q(Θ,Θ(p)). Then we set Θ(p+1) = arg maxΘQ(Θ,Θ(p)). The algorithm starts with an initial set of

parameters Θ(0) and the E-step and M-step are run alternately until a termination (convergence) condition

is met.

We use a modified version of the forward-backward algorithm of Baum et al. (1970) to compute the

conditional probabilities and expectations in the E-step. In particular, we use the modified forward prob-

abilities of Lystig and Hughes (2002)

ω(t, k) = P (Yt = k, rt | Xt−1,Θ) (A.4)

and the backward (or smoothed) probabilities

γ(t, k) = P (Yt = k | XT ,Θ). (A.5)

With this choice of the forward and backward probabilities we can avoid the underflow problem and easily

compute the log-likelihood value of the incomplete data:

L(XT | Θ) =

T∑
t=1

log

(
K∑
k=1

ω(t, k)

)
. (A.6)

Due to the choices of our complete data, we are able to solve for Θ(p+1) in the M-Step explicitly, avoiding

the use of a computationally intensive search algorithm.

Finally, the asymptotic standard errors of the parameters can be obtained from the Fisher information

matrix. Specifically, the asymptotic distribution of the estimates of parameters in Θ is normal with mean

Θ0 and variance I−1
Θ where Θ0 is the set of the true parameters, and IΘ is the information matrix26. The

re-parameterization technique can be used to obtain the asymptotic distribution of the estimates of a new

set of parameters. Lystig and Hughes (2002) provide a recursive method to compute the first and second

derivatives of the log-likelihood function for hidden Markov models, which can be used to compute the

Fisher information matrix.

26In Appendix B we show that our model is identifiable so the Fisher information is nonsingular (see Rothenberg, 1971).
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Appendix B Model Identification

For a given parameter set for the diffusion and jump components θ = (µ,Σ, λ, η,Ω) , let Fθ : Rn → [0, 1]

denote the cumulative distribution function of the n−dimensional vector of returns

Rt = Zt +

∆Nt∑
m=1

δmt . (B.1)

That is, Fθ represents the distribution of the returns for a given regime characterized by the parameter

set θ. Let F denote the class of all distribution functions Fθ, and φ(s) = E[es
′Rt ], s ∈ Rn the moment

generating function of Rt. It is easy to show that

φ(s) = exp

(
1

2
s′Σs+ s′µ+ λ

(
e

1
2
s′Ωs+s′η − 1

))
. (B.2)

With the moment generating function above, one can show that any finite mixture of Fθ1 , . . . , Fθk is

identifiable for the univariate case (n = 1) using a similar approach as in the proof of Proposition 1 of

Teicher (1963), which derives the result for the Gaussian distribution. The identifiability of the finite

mixture of the multivariate case can be proved from the univariate case similarly to the proof of the

Gaussian distribution in Proposition 2 of Yakowitz and Spragins (1968). More specifically, by assuming

the finite mixture of the multivariate case is not identifiable, we can show along the line of the Gaussian

distribution case that it contradicts with the fact that the univariate case is identifiable. Finally, the

identifiability of the finite mixture of distribution Fθ can be extended to the identifiability of our hidden

Markov model using Theorem 2 of Teicher (1967). See also Section 12.4 of Cappe, Moulines, and Ryden

(2005) for detailed explanations of how to apply Theorem 2 of Teicher (1967) to prove the identifiability

of general hidden Markov models from finite mixtures.
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Appendix C Test Statistics for Model Selection

We identify the number of regimes and the existence of jumps based on Davies (1987) who derives the

upper bound of the p-value for the hypothesis testing when nuisance parameters (those associated with

jumps and additional regimes) are present only under the alternative hypothesis. We test the hypothesis

based on the assumption that the likelihood ratio defined by

LR = 2(log-likelihood under alternative− log-likelihood under null) (C.1)

has a single peak over the space of the additional parameters under the alternative hypothesis (see, for

example, Garcia and Perron, 1996) when the model under the null hypothesis is nested in the model under

the alternative hypothesis. Our model has a larger set of estimated parameters, but the test adjusts for the

number of parameters. For the non-nested case (one regime with jumps vs. two regimes without jumps),

we obtain an upper bound of the p−value from the test statistic of Rivers and Vuong (2002):

zT =

√
T

σ̂T

[
1

T

T∑
t=1

ln

(
lA(rt |Xt−1, Θ̂A)

lN (rt |Xt−1, Θ̂N )

)]
(C.2)

where lN and Θ̂N (lA and Θ̂A) are the one-period likelihood function and estimated parameters under null

(alternative) hypothesis, respectively, and σ̂T is the estimate of standard deviation of the difference of the

one-period log-likelihoods. We compute σ̂T based on Newey and West (1987) using the Bartlett weights

with various lag values, and choose the highest p−value as the upper bound.
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Appendix D Benckmark Models

This section describes the benchmark models used in Section 5. Throughout this appendix, let ri,t

denote the return of country i at time t for i = 1, . . . , n, t = 1, . . . , T .

D.1 Multivariate GARCH

We assume that each univariate process follows the GJR-GARCH(p, o, q) model of Glosten, Jagan-

nathan, and Runkle (1993):

ri,t = µi + σi,tεi,t (D.1)

σ2
i,t = ωi +

p∑
j=1

αi,jz
2
i,t−j +

o∑
j=1

γi,jη
2
i,t−j +

q∑
j=1

βi,jσ
2
i,t−j (D.2)

where zi,t = σi,tεi,t, ηi,t = zi,t1(zi,t < 0) and εi,t is normally distributed with mean 0 and variance 1. In

the CCC model, the correlation matrix of εt = [ε1,t, . . . , εn,t]
′ is a constant matrix S. In the asymmetric

DCC(m, l, k) model, the correlation matrix at time t of εt is St, which the implied correlation matrix of

Qt, where Qt satisfies

Qt =

1−
m∑
j=1

aj −
k∑
j=1

bj

 Q̄− n
l∑

j=1

gj +
m∑
j=1

ajzt−jz
′
t−j +

l∑
j=1

gjηt−jη
′
t−j +

k∑
j=1

bjQt−j (D.3)

and zt = [z1,t, . . . , zn,t]
′, ηt = [η1,t, . . . , ηn,t]

′. Note that aj , bj , gj are constants and Q̄ is a constant matrix.

We fit the models with various choices of p, o, q,m, l, k ∈ {0, 1, 2}. Based on the AIC, we select the CCC

model with GJR-GARCH(1,1,1), and the asymmetric DCC(2,0,2) model with GJR-GARCH(1,1,1).

D.2 Factor copula

Similar to Oh and Patton (2012), we assume that each univariate process follows the AR(1)-GJR-

GARCH(1,1,1):

ri,t = ai + bixi,t−1 + σi,tεi,t (D.4)

σ2
i,t = ωi + αiz

2
i,t−1 + γiη

2
i,t−1 + βiσ

2
i,t−1 (D.5)

where zi,t = σi,tεi,t and ηi,t = zi,t1(zi,t < 0). Note that ai, bi, ωi, αi, γi and βi are constants. εi,t is

assumed to be independent across t and has marginal distribution F̂i which is the empirical distribution

of estimated εi,t from the AR(1)-GJR-GARCH(1,1,1). Based on Oh and Patton (2012), the joint CDF of

εt = [ε1,t, . . . , εn,t]
′ is modeled by a copula C(F̂1, . . . , F̂n) implied from the copula of Y = [Y1, . . . , Yn]′ in
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the following factor model:

Yi =
k∑
j=1

ci,jfj + ui

where fj and ui are all independent, and ci,j are the parameters representing the factor loadings. We

assume that f1 follows the skewed-t distribution of Hansen (1994) with parameters (ν, λ), and f2, f3, f4 (in

the four-factor model) and ui follows the same Student-t distribution with ν degrees of freedom. For the

one-factor model with the same factor loading, we impose the condition ci,1 = c for all i = 1, . . . , n. For

the four-factor model, we impose no restriction on ci,1, i = 1, . . . , n, but impose ci,2 = c2 if country i is in

the Asia-Pacific region, and 0 otherwise; ci,3 = c3 if country i is in Europe, and 0 otherwise; and ci,4 = c4

if country i is in North America, and 0 otherwise. We use the simulated method of moments of Oh and

Patton (2013) to fit the copula models based on the Spearman’s rank correlation and quantile dependence

at quantiles 0.15, 0.20, 0.80 and 0.85 fitting criteria. Due to high sensitivity to the starting values, we

randomly choose the starting values and fit each model for at least 30 times, and select the best model.

D.3 Multivariate factor stochastic volatility

The returns are assumed to follow the multivariate factor stochastic volatility model of Omori and

Ishihara (2012) with q factors:

ri,t =

q∑
j=1

bi,jfj,t + λ−1
t eαi,t/2ε1,i,t i = 1, . . . , n (D.6)

fj,t = eαn+j,t/2ε2,j,t j = 1, . . . , q (D.7)

αk,t+1 = φkαk,t + ηk,t k = 1, . . . , n+ q, t ≥ 1 (D.8)

where λt is i.i.d. with gamma(ν/2, ν/2) distribution, αk,1 is normally distributed with mean 0 and variance

σ2
k,ε/(1 − φ2

k). Let εj,t = [εj,1,t, . . . , εj,n,t]
′ for j = 1, 2, εt = [ε′1,t, ε

′
2,t]
′ and ηt = [η1,t, . . . , ηn+q,t]

′. Assume

that the vector [ε′t, η
′
t]
′ is jointly normally distributed with mean 0 and variance-covariance matrix

Σ =

 Σεε Σεη

Σεη Σηη

 (D.9)
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where

Σεε = diag(σ2
1,ε, . . . , σ

2
n+q,ε) (D.10)

Ση,η = diag(σ2
1,η, . . . , σ

2
n+q,η) (D.11)

Σε,η = diag(ρ1σ1,εσ1,η, . . . , ρn+qσn+q,εσn+q,η) (D.12)

and diag(a1, . . . , an) is the diagonal matrix whose (i, i) entry is ai. For identification of the factor loadings,

assume that

bi,j = 0, i < j, i = 1, . . . , q (D.13)

bi,i = 1, i = 1, . . . , q (D.14)

Note that bi,j , φk, σi,ε, σi,η and ρi are constants. We estimate the model parameters for one, three and five

factors using the MCMC method described in their paper.
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Appendix E Quantile Dependence

Oh and Patton (2013), among others, use quantile dependence to illustrate the dependence between

stock returns. We now investigate how well our two-regime model with jumps fits the quantile dependence

implied from the data compared to the benchmark models. This provides a robustness check for a different

measure of extreme dependence. In particular, let r1 and r2 denote the returns of countries 1 and 2

whose marginal cumulative distribution functions are F1 and F2. The quantile dependence at quantile

φ ≤ 0.5 is P (F1(r1) < φ | F2(r2) < φ) and at quantile φ > 0.5 is P (F1(r1) > φ | F2(r2) > φ). Note

that it does not depend on the order of r1 and r2. For each model, we simulate 500,000 observations

and compute its empirical quantile dependence27. Figure E.1 shows the implied quantile dependences

of multivariate GARCH models (Panel (a)), factor copula models (Panel (b)), and multivariate factor

stochastic volatility models (Panel (c)) compared to those from the actual data, and the two-regime model

with jumps. Observe that the implied quantile dependence of our two-regime model with jumps matches

that of the data very well for all quantile levels. The quantile dependence from the multivariate GARCH

models fits well to the data for the upper tail (φ > 0.5) but underestimates those for the lower tail

(φ < 0.5). It is also symmetric due to conditionally normal assumption. The factor copula models, on

the other hand, generate asymmetric quantile dependence with higher values for the lower tail. However,

they underestimate the quantile dependences for both lower and upper tails, especially for the extreme

values of φ. The multivariate factor stochastic volatility models provide similar results as the factor copula

models except that they underestimate the quantile dependences for all values of φ. This emphasizes the

limitation of these models on capturing dependency of extreme returns.

27The empirical quantile dependence of observations (r1,t, r2,t), t = 1, . . . T at quantile φ is

q̂(φ) =


1
φT

∑T
t=1 1(F̂1(r1,t) ≤ φ and F̂2(r2,t) ≤ φ) φ ∈ (0, 0.5]

1
(1−φ)T

∑T
t=1 1(F̂1(r1,t) > φ and F̂2(r2,t) > φ) φ ∈ (0.5, 1)

where 1(A) is an indicator function equal to 1 if A is true, and 0 otherwise, and F̂i is the empirical CDF of return ri.
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Figure E.1

Quantile dependence of GARCH, factor copula and factor stochastic volatility models.

This figure shows the average quantile dependences from forty-five country pairs implied from data, our two-regime model

with jumps and the benchmark models: GARCH (Panel (a)), factor copula (Panel (b)) and factor stochastic volatility (Panel

(c)).
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Appendix F Optimal Portfolio Weight Derivation and Calculation

This appendix provides the derivation of Theorem 1 and how to compute the optimal portfolio weights

numerically. First, let Ft = {R1, . . . , Rt,W0, . . . ,Wt} denote the information set at time t. Based on Ft,

the investor forms her belief about the likelihood of the market regime qt = [q1,t, . . . , qK,t]
′, and optimally

chooses her portfolio weight xt. Then the returns Rt+1, whose distribution depends on the next-period

unobservable regime Yt+1, are realized, and the investor updates her belief using the Bayes’ rule

qy,t+1(qt, Rt+1) =

∑K
j=1 qj,tpj,yfy(Rt+1)∑K

z=1

∑K
j=1 qj,tpj,zfz(Rt+1)

(F.1)

where fy(r) is the likelihood function of the return Rt+1 at r given that the next-period regime Yt+1 is y.

Observe that qy,t+1 depends on probability vector qt and return vector Rt+1.

Using the Markov property, it can be seen that the investor requires only her current wealth Wt and

the regime probability vector qt to make her allocation. Let V (t, q, w) denote the value function at time t

when qt = q and Wt = w

V (t, q, w) = max
x

E

[
W 1−γ
T

1− γ

∣∣∣ qt = q,Wt = w

]
. (F.2)

The associated Bellman equation for the optimality condition is given by

V (t, q, w) = max
x

E[V (t+ 1, qt+1,Wt+1) | Ft]. (F.3)

It can be shown that the value function is of the form

V (t, q, w) = h(t, q)
w1−γ

1− γ
(F.4)

where h(T, q) = 1 for all probability vector q. Substituting (F.4) into (F.3), and using (7) and (F.1), we

obtain

h(t, q) = (1− γ) max
x

K∑
z=1

K∑
y=1

qzpz,yE

[(
erf + x′

(
eRt+1 − erf1

))1−γ
1− γ

h(t+ 1, qt+1(q,Rt+1))

∣∣∣∣∣ Yt+1 = y

]
(F.5)

where q = [q1, . . . , qK ]′. From the optimality condition for the Bellman equation (F.3), the maximizer in

(F.5) is the optimal portfolio weight. This proves Theorem 1. When a one-regime model is assumed, the
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resulting optimal portfolio weight reduces to a constant vector

x∗ = arg max
x

E

[(
erf + x′

(
eRt+1 − erf1

))1−γ
1− γ

]
(F.6)

as the hedging demand for stochastic regime disappears.

The optimal portfolio weights can be obtained from solving the optimization problem (10). In order to

make computation possible, the return distribution is discretized based on an approximate integral formula

provided in Stroud (1971). Specifically, we use an accurate approximation to an integral of the form∫ ∞
−∞
· · ·
∫ ∞
−∞

e−(r2
1+...+r2

n)g(r1, . . . , rn)dr1 · · · drn ≈
H∑
h=1

w̄hg(r̄1,h, . . . , r̄n,h) (F.7)

for some function g where the points r̄h = [r̄1,h, . . . , r̄n,h]′ and their associated weights w̄h, h = 1, . . . ,H

are chosen so that the approximation becomes exact for any multinomial g of degree 5 or less28. For 10

countries, we need H = 1, 044 points. This choice of approximation guarantees that all weights w̄h are

positive. Without this property, the expectation in (10) after the discretization may assign negative prob-

abilities to some discrete return realizations, and consequently the numerical algorithm for maximization

problem (10) will try to minimize the utility at those realizations causing undesired errors in the resulting

x. See also Haber (1970) for the reasons supporting positive weights in integral approximations. Other

approximations of the form as in (F.7) fail to ensure this positive-weight property for degrees higher than

5, while approximations of other forms such as a product-rule quadrature will generally require a much

larger number of points for the same level of accuracy29.

To approximate the expectation in (10), we first condition on the number of jumps ∆Nt so that the

conditional distribution of Rt given Yt = y and ∆Nt = m is normal with mean b(y)+mη(y) and covariance

matrix Σ(y) +mΩ(y)

E

[(
erf + x′

(
eRt+1 − erf1

))1−γ
1− γ

h(t+ 1, qt+1(q,Rt+1))

∣∣∣∣∣ Yt+1 = y

]

=
∞∑
m=0

e−λ(y)λ(y)m

m!
E

[(
erf + x′

(
eRt+1 − erf1

))1−γ
1− γ

h(t+ 1, qt+1(q,Rt+1))

∣∣∣∣∣ Yt+1 = y,∆Nt+1 = m

]
.

(F.8)

28A multinomial function of degree d only contains terms of the form rd11 rd22 · · · rdnn such that all d1, . . . , dn are nonnegative

integers, and d1 + . . .+ dn ≤ d with at least one term having the sum equal to d.

29See, for example, Cools (1999) and the update of the list of all available approximations of the same type as in (F.7)

on the author’s website. A product-rule such as the Gaussian-Hermite quadrature requires H =
(
d+1

2

)n
points for exact

approximation of multinomial of degree d, or 59,049 points for n = 10 countries with d = 5.
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Then we write conditional Rt+1 in terms of n i.i.d. standard normal random variables z1, . . . , zn using the

Cholesky decomposition of the covariance matrix Σ(y) +mΩ(y):

R
(y,m,z)
t+1 = b(y) +mη(y) + Lz (F.9)

where z = [z1, . . . , zn]′, and L is the lower triangular matrix obtained from the Cholesky decomposition of

Σ(y) + mΩ(y) = LL′. Applying approximation (F.7) to expectations on the right-hand-side of (F.8), we

have

E

[(
erf + x′

(
eRt+1 − erf1

))1−γ
1− γ

h(t+ 1, qt+1(q,Rt+1))

∣∣∣∣∣ Yt+1 = y,∆Nt+1 = m

]

≈ 1

πn/2

H∑
h=1

w̄hgy,m(
√

2r̄1,h, . . . ,
√

2r̄n,h;x) (F.10)

where

gy,m(z1, . . . , zn;x) =

(
erf + x′

(
eR

(y,m,z)
t+1 − erf1

))1−γ

1− γ
h(t+ 1, qt+1(q,R

(y,m,z)
t+1 )). (F.11)
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