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Abstract

This paper explores promises of satellite technology in creating high-quality agricultural
risk information necessary for unlocking market inefficiencies that have precluded
sustainable development of insurance markets and overall risk management in agricultural
sector, where uninsured risk remains a leading impediment of economic development.
Using pixel-level, high resolution, high frequency and longitudinal satellite data together
with a combination of geographical information system (GIS) data, administrative and
household-level agricultural data, this paper answers three questions: (1) Can satellite data
be used to generate high-quality risk information for Thai rice farmers? (2) How might the
satellite-based risk information be used to crowd in sustainable markets for agricultural
finance? And (3) What are potential economic impacts of having high quality agricultural
data on farmers, agricultural banks and government? After illuminating the potential values
of investing in high-quality agricultural data, this paper also discusses key challenges and
ways forward in bringing this research into real action to enhance financial stability of
farmers, financial system and government.
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Introduction

Sustainable agricultural finance is critical for economic development of farming
households. With less than 1% insured, recent research shows that Thai farmers still could
not smooth their consumption against increasing covariate shocks, most of which are
driven by climate and directly affect agricultural production. Most farmers rely on income
diversification and risk-sharing mechanisms (which appear ineffective in dealing with most
agricultural shocks that often affect wider economy) and government’s disaster relief
(which are largely inadequate and delayed, albeit increasing public spending every year).
Large agricultural shocks, like the current drought, thus not only directly result in sharp
drop of farmers’ consumption and rising debt accumulation and non-performing loans of
agricultural credit portfolios, but also indirectly affect farmers’ long-term prospects by
reducing their investment incentives and ability. Uninsured shocks thus reduce credit
market deepening by reducing both credit demand and supply — leaving the government
supported Bank of Agriculture and Agricultural Cooperatives (BAAC) the only player in

the market with significant portfolio losses and increasing budget burden to government.

Sustainable agricultural finance requires healthy risk market, development of which
could face many challenges, most of which can only be resolved using high-quality risk
information (accurate, transparent, long history, fast and low cost). Sustainable insurance
market relies on capacity of insurers to transparently monitor and obtain true risk
information of insured farmers at low cost to ensure of effective risk-based pricing and in
near real time so to ensure value to farmers. This can resolve the common information
asymmetry, which could otherwise result in market failure when insurers are forced to
charge prohibitive premium to protect themselves from the potential moral hazard and
adverse selection problems. But resolving information asymmetry rather comes with
extremely high transaction cost (which again could result in prohibitive premium per
contract given that plots are small but remote and scattered in Thailand) and long delay
(which could further reduce the value of insurance to farmers and market demand). Given
the covariate nature of agricultural risk, sustainable agricultural insurance also relies on
capacity of local insurers to cost-effectively transfer extreme risk to international market,

which again could be possible with transparent insured risk information.

Agricultural insurance in Thailand is still in early stage of development with a well-
established nationwide program for rice farmers distributed by BAAC since 2011, but still

face a great deal of challenges. The program is more than 50% subsidized by government



and relies on declaration of disaster areas and farm-level loss verification by local
government (which is already in place for public disaster relief) to determine insurance
payouts, and thus could reduce transaction cost accordingly. To the extent that
government’s loss verification could be less transparent to insurers (e.g., could be in favor
of farmers especially during election period) and with the lack of transparent historical risk
profile of insured farmers, the program thus still largely suffers information asymmetry,
resulting in extremely high premium. The program could further suffer from long delay in
loss verification affecting insurance demand. And so overall, less than 1% of rice growing
areas has been insured to date despite the extremely high public subsidization. Sustainable

agricultural insurance in Thailand will need better risk information.

Satellite technology has great promise in providing necessary risk information for
unlocking challenges underpinning sustainable development of agricultural insurance and
credit markets. Satellite data are derived from signals and imagery received from earth
observatory satellites. These data exist for quite a period of time but recent revolution in
data analytics makes it possible for researchers, policy makers and businesses to take
advantage of their key features. They can thus best reflect geographical conditions at
granular level with high frequency and in near real time. And more importantly, they could

be obtained at low cost.

Satellite data could thus provide insurers with good and transparent proxy for risk
information of representative farmers at very localized area in near real time and with long
historical profile. Thus index-based agricultural insurance products designed to trigger
payouts in each localized area based on these data could hold great potential in resolving
various market failures in agricultural insurance market allowing for risk-based pricing, cost
effective risk transfer and timely payouts to farmers with low transaction cost. These
potentials however rest upon the extent to which satellite data can reflect true agricultural
risk faced by insured farmers in each localized insured area and how farmers understand
and trust this technology. These promises rely on the potential that satellite data could be
transparent, long history, near real time, relatively low cost. But like other data, still

contains errors, to what extent can they accurately reflect actual risk faced by farmers?

The goal of this paper is to explore the promises of satellite technology and GIS data
in creating high-quality risk information for farmers so to unlock inefficiencies that plague
the development of agricultural insurance and credit markets and overall risk management

program of the country. Using pixel-level data from two satellites with moderate-high



resolution, high frequency and long historical series combined with a combination of
geographical information system (GIS) data, administrative data and household-level
agricultural data, this paper answers three research questions: (1) Can satellite data be used
to generate necessary risk information for Thai rice farmers? (2) What are potential values
of satellite-based risk information? How the satellite-based risk information be used to
create sustainable insurance and credit markets? And (3) What are potential economic
impacts on farmers, agricultural banks and government? How can this be compared with

existing scheme?

The paper starts by reviewing currently available agricultural data and reflects on
nature and vulnerability of rice production and on current inefficiencies that impede
development of sustainable agricultural risk management. Section 2 reviews recent
development in satellite technology and their applications in agriculture emphasizing on
the products, current applications and initiatives in Thailand. Section 3 then explores the
use of satellite data to construct risk data and explore their performance using household-
level data. The section also illustrates various kinds of risk information that can be reviewed
using satellite data. Using this newly constructed satellite-based risk data, section 4 then
designs various insurance contracts for farmers, groups of farmers and BAAC to better
manage agricultural risk, explores risk-based pricing and diversification and explores
public-private partnership arrangements, where support from government can crowd in
healthy insurance market and risk management incentives of farmers. Section 5 conducts
simulation-based assessment of potential impacts of these market arrangements,
illuminating the potential benefit in enhancing financial stability of farmers, BAAC and
government. Section 6 concludes with lively discussion on ways forward, key challenges
and the required institutional and policy arrangements that might be needed in bringing
the promises of satellite data illuminated in this research into real action toward sustainable

development agricultural finance and livelihoods.

1. Current agricultural risk data, rice production and inefficiencies in
agricultural finance

This paper begins by exploring the wealth of available agricultural data in Thailand to
understand the rice production system, the values and pitfalls of existing data and the

current inefficiencies in credit and insurance market, which are due mainly to information



asymmetry. These data would then be used either to combine with satellite data in creating

better risk information or to verify the predictive performance of the satellite data.

Current agricultural data

We first turn to available GIS information that can illuminate the nation’s rice
production. Figure 1 shows rice production areas constructed from both imagery analysis

and extended ground trothing, irrigation map, altitude and rice species.

Figure 1: Available GIS data on Thailand’s rice production
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There are great variations in rice production across more than 70 million rai growing
areas, with less than half of area having irrigation. Majority of rice areas are low land with
some exception in the north and relatively higher flat plan in the northeast. Species also

vary geographically.

Figure 2 further shows that rice yield also varies geographically. Yield data has been
collected with more than 30 years of historical profile but at provincial level from the
Office of Agricultural Economics. So less is known about what happen within province
or how risk exposure and production could vary within province each year. Amphoe-level
yield data just recently become available from 2554-2557 making it more possible to
understand agricultural risk profile at more micro level. Unfortunately, the series is not yet
long enough. Moreover, these yield data are based on field data collection and reports from
local agricultural offices, which could take great amount of time (at least a year lag) until
the arrival of the new season rice. So though they review great geographical differences in
term of yield, the data would be less useful in term of production monitoring, disaster

detection and intetrvention and/or insurance, which requires more near-real time measutes.

Figure 2: Rice yield by Amphoe (30 years until 2557)
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Historical statistics of rice areas affected by various types of disasters have been
collected by the Department of Agriculture and Agricultural Extension (DOAE), who are
also responsible for delivering disaster relief from the government. The data records total
areas, affected farmers, number of affected tambons and total disaster budget spent by

province. With the new data management system starting from 2554, it is also possible to



digitalize and extract these loss statistics by Amphoe, though the data availability at that
level are still largely inconsistent. Figure 3 thus summarizes loss statistics by province given

10-year historical data since 2548.

Figure 3: 10-year statistics of disaster losses by key risks

When disaster occurs, local government quickly check for large farm losses at their
areas and report to provincial government for an announcement of disaster affected areas
by the National Disaster Relief Program in accordance with the regulation of Ministry of
Finance. Farmers in the affected areas declared disaster area are eligible to submit loss
form to request for disaster relief. The loss is then verified by local government for

requesting of relief. But since disaster occurs, it takes at least 30 days for loss verification



to finish, another 15 days to report to Amphoe government and provincial government.

If government budget is available at provincial level, relief disbursement can be done with

in 15 days, making it possible to receive relief in 60 days after disaster. But the time usually

is longer especially for the large disasters which would need budget from central

government. Overall, a survey by Ministry of Finance reviewed that farmers felt that the

relief suffer great delay (in some cases up to a year) and inadequate with relief payment of

1,113 baht per rai of up to 30 rais of affected areas covering about 30% of input cost.

Figure 4 Affected farmers, relief budget, loan portfolio outstanding and
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Loan portfolio of rice farmers by branch of the Bank of Agriculture and Agricultural

Cooperatives (BAAC) from 2551-present are also obtained to understand how

shocks/disasters could affect financial stability of the bank. Household production, losses



and economic condition of households are also obtained from Agricultural Household
Survey from the Office of Agricultural Economics covering about 3,000 rice farmers
nationwide per year for 11 years from the production year 2547-48 to 2557-58. The data
are repeated cross sectional at farmer level but with many villages being surveyed more

than one time making it possible to construct (unbalanced) village pseudo panel data.

At the first glance, Figure 4 contrasts more macro evidence of total number of farmers
affected by disaster, the corresponding government budget along with the growing loan
portfolio outstanding of BAAC and capacity of farming households in repaying debt,
proxy by debt to setvice ratio (total debt/total income) per yeat. This evidence review that
despite the large fluctuation of government budget for relief, which could increase to more
than 30,000 million baht in key disaster years, farm households still lack effective risk
management and coping tool, resulting in welfare losses and potentially decreasing ability
to relay their seasonal loan, which could in turn reduce financial stability of BAAC. The
total loan outstanding that grows over time at an increasing rate reviews the potential of
increasing loan default, delayed payment and government policy in debt

holiday/restructuring for disaster affected farmers.

Current inefficiencies in agricultural insurance

As of now, there is one agricultural insurance program for rice farmers. The
nationwide rice insurance which government subsidizes part of its premium is the micro-
level product. This so called “Rice Disaster Relief Top-Up Insurance Scheme”
(hereinafter Scheme) is the indemnity-based product. Two criteria must be met before a
claim can be paid. Firstly, the farm must lie within an area declared as a disaster area by
the local governor. Secondly, the entire farm or a proportion of it must be declared a total
loss under the loss assessment procedures for the National Disaster Relief Program in
accordance with the regulation of Ministry of Finance. Bank of Agriculture and

Agricultural Cooperatives (BAAC) has been the only distribution channel in this scheme.

The Scheme was first launched to farmers in 2011. Table 1A and 2A in Appendix
illustrate overview and historical performance of the Scheme respectively. In 2011, the
single premium rate was 120 baht for the maximum coverage of 1,400 baht for flood,
drought, windstorm, frost, hail, and fire perils. There were 8 private insurers participating
the scheme. The second year of the insurance scheme, the premium rate in 2012 was

maintained at 120 baht per rai, and the coverage was 1,111 baht per rai for the previous 6



natural perils, and 555 baht for pests and diseases. The only insurer for the 2012 scheme

was the National Catastrophe Insurance Fund (NCIF).

While the Scheme was still in its infancy insuring less than 2% of the main rice area
and experienced anti-selection together with severe flood in 2011 and drought in 2012, the
Scheme suffered high loss ratios over 500% in 2011 and 2012. Consequently, risk rating
for five zones were introduced. From 2013 to 2015, different premiums were applied for
each zone, depending on their historical damage ratio at provincial level under the National
Disaster Relief Program (Table 3A in Appendix). The premium rates for five zones ranged
from 11% to 43% for the coverage of 1,111 baht per rai. With this risk rating, the private
insurers and international reinsurance market regained confidence to take up the portfolio.
In 2016, the government decided to bundle the rice insurance produce to the BAAC
borrowers which totals 25 to 30 million rais. As a result of this huge increase in numbers
and better spread of risk, a single risk premium of 100 baht per rai will be charged for all
2016 policies.

In all years except 20106, the premium was partially subsidized by government (50-
75% and increasing in risky areas with higher premium) resulting in great reduction in
premium, which still however could not attract enough demand for the product. In 2016,
government and BAAC jointly pay for the full premium to all the farmers. Would this

support suitable and would this create reverse incentive to farmers to protect themselves?

Simplicity of the Scheme is the key strength that government decided to deploy.
However, there are rooms for improvement for sustainability. There are however many
challenges that create inefficiencies in the current program. First, the scheme lacks high
quality risk information of farmers with long historical profiles. As mentioned, the Scheme
solely relies on the data recorded by loss adjustors who performed the loss assessment
procedures for the National Disaster Relief Program in accordance with the regulation of
Ministry of Finance. For the premium ratemaking process, the longest data series on
historical loss reports recorded by Department of Agriculture and Agricultural Extension
(DOAE) are up to 2005 and are limited only at the provincial level. This creates obstacle
to accuracy in risk-based pricing of the insurers and potentially face adverse selection
problem when the program tends to attract risky farmers. And so the insurer (without
enough information) would have no choice but to charge high premium to protect

themselves from potential losses, hence making premium rate currently very high.
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Second, current loss verification process is less transparent (at least to the insurers)
and suffer great delay and potential basis risk problem (i.e. when insured farmers
experiencing losses but are not eligible to claim indemnity payment). For the claim
administration, insurers can only wait for the loss assessment reports recorded by DOAE.
The report process is timely and cannot be monitored by insurers. For insurance policy
design, since the Scheme ties with the National Disaster Relief Program, a farm where it
does not lie within an area declared by the local governor as a disaster area will not be
eligible for payouts. It creates basis risk to an insured who experienced loss in his farm but
does not get any payouts, even though they have been informed clearly by BAAC about
terms and conditions beforehand. Both the long delay in payout and potential basis risk
decrease value of this insurance reducing demand for the product. The less transparent
loss verification further push insurers to increase premium to protect themselves from

‘unknown risk’ they could not observe.

These inefficiencies initiated by the lack of high quality risk data and loss verification
resulted earlier in less than 2% of farmers insured but increasing premium (and so burden
to government in subsidizing premium). The lack of effective market for insurance have
made BAAC (who lends regularly to farmers) the place for farmers to transfer risk (through
late loan repayment or default) resulting in low quality of loan portfolio and financial

performance.

How high-quality risk information that can accurately, transparently measure losses of
farmers with rich historical records and at low cost and in near rea time can unlock these
inefficiencies? Such data can help insurers observe actual risk of insurable farmers, verify
losses and eligibility of insured farmers in transparent manner, allowing them to do risk-
based pricing accurately without having to load premium rates for ‘unknown’ factors and
perhaps increase their incentive to design more variety of products to offer not just farmers
but groups of farmers or BAAC. This perhaps can increase competition to insurers, which
are the key to development of healthy insurance market. More accurate and near real time
loss verification also potentially increase value of the insurance to farmers, potentially
increase demand for the product and at the same time their ability to manage risk. BAAC
and government can also use these data to target assistant better to ensure that the help

would not destroy incentives of farmers in taking care of themselves.
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The ecosystem of current risk management of farmers with limited information and
so less-developed insurance market and the potential value of better risk information are

summarized in Figure 1A in Appendix.

2. Recent development of satellite technology for agriculture

Satellite technology or remote sensing can be described as activities of
recording/observing/petceiving objects of events at distance places. Therefore, the sensor
receives this information without in direct contact with observed objects or events. The
information is generally carried to the remote sensor by electromagnetic radiation via the
atmospheric mediums. The output of the system is usually an image collecting observed
information. Then, image will be brought to extract the useful information by interpreting
and transform it to spatial data. This technology has been developed since World War 11
in due to military purpose. After that, it is gradually evolved into a scientific subject and
released to public. The development of remote sensing platform and sensor has continued
since then until nowadays with an initiation of airborne remote sensing developed to
satellite platform. The resolution, both spatial and radiometric, are getting more quality
and have various systems to suit the thematic purposes and many series have long historical
profiles. At the present, we can access to remote sensed data independently and there are
many distributors providing services both commercial and for free with different
resolutions.

Remote sensing has been widely used in many field, especially in agricultural activity.
This technology is adopted by many organizations, both government and private
companies. In Thailand, rice is an important cash crop which mainly plant in all region.
Many remote sensing techniques are adapted to rice field for examples, classification,
change detection, crop monitoring, etc. to support and promote rice planting, both
quantity and quality. Multidiscipline algorithms related to rice field are continue developed
to improve the ability of remote sensing on rice study.

According to electromagnetic radiation which is playing as an information carrier,
there are two main sensors related to acquiring ground information. The first one is Passive
remote sensing. This system uses the sun radiation as an information carrier.
Electromagnetic wave from the Sun travels through the atmospheric window to objects
on the Earth and the energy is reflected and emitted. After that, energy returns to the
sensor on the space platform as signal and then, transfers information to ground stations

for digitally collected. Products from passive remote sensing will be described as optical
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image which is contained visible to infrared wavelength (multispectral band). Image could
be collected both wide and narrow wavelength due to the sensor. Generally, wide
wavelength will be collected into three visible bands (red, green, and blue) plus infrared
bands. In case of narrow wavelength, it is called hyperspectral and could have more than
100 bands collected as a cube. The spatial resolution is varied from half a meter to many
kilometers due to the sensors’ design which is related to the size of area coverage.
However, passive remote sensing requires sun radiation. Then, this sensor could collect
ground information only in daytime. Moreover, there are many obstructions in atmosphere
for examples, cloud, aerosols, water vapor, etc. which can reduce the ability of image
acquisition to this platform.

The other sensor is active remote sensing which can produce the signal itself
transmitting to the Earth's surface and returns the scattering signal to the platform. This
sensor is generally called Synthetic Aperture Radar (SAR) remote sensing. Due to it can
create high frequency wavelength or Microwave itself, SAR has ability to perform image
collection both day and night. Microwave can travel through cloud and any particle matters
in the atmosphere which is regardless to cloud cover. However, the analyzed method for
this sensor is quite complicated.

Satellite image provides many advantages to rice field study. The multi-spectral
capability helps us to obtain a near infrared wavelength which is best reflect the cellular
structure of vegetation and can be derived the Normalize Difference Vegetation Index
(NDVI). The index has can investigate cropping areas and crop’s health at various stages
of crop. The index also comes with more than 16 years of continuous historical profile.
Due to its revisit capability, multi-temporal has been applied to rice field study, especially
on extracting rice phenology, to measure the characteristic of rice growing stage. This is
very useful to monitor crop planting and analyze how the extent of areas appearing with
rice at different growing stage. In case of disaster event, satellite can be used to indicate
losses to ensure timely humanitarian responses.

However, as mentioned above, optical image also has some energy scattering and
almost occur in the troposphere layer. Moreover, cloud also has much effect on acquiring
image, especially in tropical region where cloud covers area most of the year. It can be
corrected using the atmospheric correction algorithms. Alternatively, in tropical region,
SAR is selected instead of optical sensor to overcome cloud effect, though one needs to

tradeoff with the shorter historical profile.
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Remote sensing applications has been widely used in agriculture. Some notable
example includes USDA-FAS. It produces the map of crop growing mainly in the United
States and all over important growing regions. Information provided on USDA web
service has a lot more precision. This is a result of systematically processes and many
months of survey. USDA’s officers are assigned to collect data in each county for example,
crop type, planting date, acreage, crop’s yield, pest invasion, etc. and submit this
information to analyze with satellite’s data. NDVI information is extracted every revisit
period to construct the vegetation map and meteorology data is acquired from weather
stations all over US. After combining data (physical and remote sensing) together, each
crop type’s area will be classified and estimate planting area, crop stage, and crop yield
which will impact the CBOT market. Moreover, crop monitoring is operated by these data
collections. USDA will analyze the probability of disaster that will impact on crop and
estimate the loss. This information could then be used to design various risk management
instruments including crop insurance, where insurers can use satellite imagery to verify
eligibility of the insured, monitor farming activities and verify farm losses for fast
indemnity settlement.

The other good practice is operated by French private company named “GEOSYS”.
They create many systems related to remote sensing data for examples Agriquest and
Farmsat. Agriquest is a crop monitoring system which provides NDVI, precipitation,
temperature, solar radiation, growing degree day information with crop expert’s analysis.
Furthermore, the system can alert the warning when it detects some abnormal situation.
Farmsat is precision agricultural system to support farmers to growth their crop and
manage their planting. The system manages all activities from preparing bared land until
harvesting. Farmers will receive information and warning via interface and can prepare if
there is any problem occurs in their farm. Farmers can control their budget on factors of
production and estimate their income at the end of the growing season. Moreover, they
can use modern technology to support farming which can reduce cost and time
consumption. It would have more efficiency if farmers can set up the cooperation to
contribute the benefit of technology to each other. Advanced technology makes farming
easier than ever.

In Thailand, there are also many initiatives that combine remote sensing and GIS
information for agriculture and disaster risk management. Various initiatives at GISTDA
include flood monitoring, which use various remote sensing products (Radarsat and various

optical images including Thai Earth Observation System (THEOS), QuickBird,
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WorldView and Landsat data) and provides information on history of floods as well as the
on-going and expected flood events. G-Agrv is another platform developed to provide near
real time updates and monitoring of rice production for estimation of agricultural yields
and market management. Similar initiatives also expand into key economic crops of
Thailand. GISAGRO is another very useful platform that facilitate registration of farmers,
allowing them to fill in GIS locator of their field, to receive valuable planting, input
information necessary for making planting decision. Another powerful initiative in
Thailand includes Agri-map, developed in cooperation between the Ministry of Agriculture
and NECTEC for dynamic management of farmland. The Agri-Map for managing
agriculture in each province was made in accordance with the current and future situation
concerning production, supply and demands of farm goods. The program will also
demonstrate whether the use of farmland of each province is appropriate to the type of
soil, water volume and types of plants in order to make adjustments and balance so that
the farmers’ problems will be correctly solved. Some detail of these initiatives can be found

in Appendix 1.

3. Can satellite data be used to generate better risk information for
Thai rice farmers?

Satellite data and processing

We utilize two remote sensing data available at GISTDA: (1) the Terra MODIS NDVI
at 250m resolution available every 8 days from 2001-2016 and 2) the RADARSAT at 50m

resolution available from 2011.

The moderate resolution imaging spectroradiometer (MODIS) is the polar orbiting satellites that
have been comprehensively used such as, classification land cover from MODIS EVI (Xia
et al., 2008), detecting land cover change from MODIS NDVI (Kleynhans et al., 2011),
using MODIS to map sea surface oil (Innman et al., 2010) and drought monitoring from
MODIS LST (Fan et al., 2012). The normalize difference vegetation index (NDVI) and
the enhanced vegetation index (EVI) are the standard vegetation products from the
MODIS. These indices are crucial for effectively characterization of bio-physical/
biochemical states and processes from vegetated surfaces (Silveira et al., 2007). Many
applications such as remote sensing image classification, land cover change detection and
monitoring crop phenology rely on the information derived from these indices. In this

research, the NDVI product is chosen to be used in the estimation of the cultivation date.
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The main reason that we choose the NDVI rather than EVI is due to fact that the NDVI
data have a resolution of 250 meters (approximately 62.5 rai per pixel) whereas the original
EVI data have only resolution of 500 meters (approximately 125 rai per pixel). The area of

500*500 meters is too coarse for the effective rice monitoring system in Thailand.

The time-series of NDVI data has been popularly used in continuously monitoring
vegetation phenology which is seasonal plant cycle stages and land cover characteristics.
Although the NDVI time-series cannot discern specific phonological stages, such as bud
burst or flowering, they can successful describe the seasonal dynamics of vegetation.
Nevertheless, the MODIS date are suffered from various types of noise and degradations
due to the atmospheric conditions. In particular, the MODIS satellite cannot observe the
earth surface when high cloud cover is present in the scene. Therefore, noise reduction is
necessary before data are used. They have many approaches to address this problem such
as applying the savitzky-golay filter, fourier transform, wavelet transform, markov model,
Extended Kalman filter to the time-series NVDI data to smooth out the atmospheric

effects.

Additionally, there are many studies that employ MODIS data to estimate phenology
date. For example, first Sakamoto et al., 2005 proposed a crop phenology detection
method using EVI every 8 day at 500m resolution. Crop phenology dates include planting,
heading and harvesting dates; heading date can detect by the maximum EVI in the time
profile; planting date can detect by decreasing heading date 60 days. And first and second
derivatives equal 0; harvesting date can detect by increasing heading date 30 days. And
second derivative equals 0. Second, (Hu et al,, 2009) proposed crop phenology date
estimation method from NDVI daily data derived from MODIS 250m resolution to detect
emerge, silking, dough, maturity and harvest dates in corn and emerge, bloom, setting
pods, drop leaves and harvest dates in soybean. To estimate phenology date, first and
second derivatives of smoothing NDVI time-series data can extract dates by finding the
silking date of corn and bloom date of soybean, which NDVI reach to the high value range
and first derivative is near zero, and then finding the others dates by relation of these date
and derivatives of data approximately to zero. Last, (Tan et al., 2011) proposed vegetation
phenology estimation method by using TIMESAT algorithm to smooth MODIS EVI data
every 8 days at 500 m resolution and then using first, second and third derivatives of
plantation period of EVI time-series data to extract date. Summary, their method cannot

detect planting date as soon as possible. They have to find the date at the maximum NDVI
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first. Thus, our point is the estimating the cultivation date without knowing the maximum

NDVI date.

The 8-day MODIS/Tetra data (MODO09Q1) spanning from 2001 to 2016 wete freely
downloaded though the Earth Observing System Data Gateway. It has two spectral bands
for red and near-infrared spectral bands with a spatial resolution of 250 meters. The data
were formatted using a Sinusoidal projection, but were re-projected to the Geographic

coordinate, mosaicked, and subset over Thailand.

The NDVTI is used to study the vegetation growth estimation is normalized transform

of the near-infrared to red reflectance ratio follow as

NDVI — (NIR — RED) )
" NIR + RED @

where NIR and RED are the digital numbers in near-infrared and red spectral bands,
respectively. Since vegetation reflect the NIR color spectral better than the red color, the
NDVTI has a higher value if there is more vegetation, and NDVI is low when a scene does
not have any vegetation. Usually, the NDVI data is between -1 and 1 where 1 and -1
indicates full vegetation and no vegetation, respectively. To create the time-series dataset
for this 16 year period; the NDVIs for every 8day MODIS scene were computed from the
8-day MODIS data. There are in total of 747 NDVI data points for each pixel from June
2001 to July 2016. The examples of time-series NDVI data are show in Figure 5.

Figure 5: NDVI pattern; (a) Rain-fed rice; (b) Water;(c) City; and (d) Forrest.
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Radarsat data set spanning from September to December 2011 was used in this flood
monitoring effort. Both Radarsat-1 and Radarsat-2 satellites are equipped with C-band
SAR sensors (5.3 GHz for Radarsat-1 and 5.4 GHz for Radarsat-2). Radarsat-1 transmits
horizontal polarization (H) and receives H data only (i.e. in combination HH data).
Radarsat-2 can transmit both H and V polarizations and receive either H or V signals or
both simultaneously. Radarsat antennas were designed to operate with multiple beam
modes, giving fine to coarse resolution and variable inclination angles. This data will be

combined with MODIS-NDVI data to better reflect the loss of rice areas by flood.

Figure 6 depicts variation of NDVI and Radarsat flood data for key disaster years and
zoom in to show variation within the 10 kilometer squared rice areas. When crop

experiences losses e.g., from flood or droughts, NDVI appears with very low value.

Figure 6: MODIS NDVI and RADARSAT flood data for present and disaster years

All 16 years of MODIS NDVI data and RADARSAT flood data are then extracted
for all potential rice growing areas in Thailand identified earlier by GISTDA taking into

account both satellite imageries and ground verification.
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Detecting growing area and dates using MODIS-NDVI

Existing literature: Satellite images can be very useful in agricultural study, since a
satellite image can cover the large scale area making it is easier to monitoring the agriculture
in the large scale. One of the comprehensively use satellite images are Synthetic Aperture
Radar (SAR) providing a global data set every 24 days, we collected the data set from
RADARSAT-2 satellite. The spatial resolution of SAR depends on type of beam modes,

we collected the data set on scanSAR narrow, there is a spatial resolution is 50 meter.

Suwannachatkul et al. proposed to use the MODIS data for the cultivation date
estimation of the rice fields. In their work, the Savitzky-Golay filter is first employed to
smooth the noisy NDVI data. Then, the rice phenology is categorized into four stages:
pre-cultivation, growing, maturation, and harvest. They estimated the transition
probabilities from the actual observed NDVI by using the Hidden Markov model, and
created a trellis diagram to find the possible paths of the rice growth in time-series data
with the Viterbi algorithm. The weather conditions in the rainy season reduced the

accuracy of cultivation harvest date estimation (Suwannachatkul et al., 2014)

Similar work by Chumkesornkulkit et al. used the MODIS NDVI data for the
cultivation date estimation. In their work, only rain-fed rice was considered. The main
algorithm was based on the extend Kalman filter (EKF) to smooth the observed data by
using the modulated cosine function consisting of three parameters, namely the mean,
amplitude, and phase. The cultivation dates were estimated as the dates where the seasonal
variation derived from the EKF was greater than a threshold after its minimum. The NDVI
data in Thailand can be affected by clouds mostly in the rainy season, which is the
cultivation period of the rice, but in other periods the effect of clouds is a lot less. This

problem may influence the accuracy in cultivation date estimation. (Chumkesornkulkit et

al,, 2013)

For the work in SAR, Lopez-Sanchez et al. used the SAR Polarimetry at X-band to
find the rice phenology by referring to Biologische Bundesanstatl, Bundessortenamt and
Chemische Industrie (BBCH) stages. These BBCH can be categorized into three large
stages, namely, vegetative, reproductive and ripening, in order to assign the BBCH to the
majority of pixels inside the parcel, when the plant emergence (BBCH 18-21) and last stage
(BBCH 50+) are still present in some areas. The Terra SAR-X has high spatial resolution

but low coverage, because the swath width is around 15 km on the grounds and some
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measurements are below or close to the noise level of TerraSAR-X(-19dB). (Lopez-Sanchez

etal., 2012)

Three RADARSAT-2 quad-polarization images from transplanting to rice crop
harvesting stages were used by Wu et al. The authors also compared these images with the
backscattering values and with the ground data such as rice height and dry biomass. Their
research showed the relation of backscattering coefficient to plant height and backscattering
coefficient to dry biomass. The satellite images with HV polarization had the highest
cotrelation to the plant height and dry biomass. The ratio of image HH/VV can be used to

separate the rice crop from banana plantations, forests, and rivers. (Wu et al., 2012)

Ribbes et al. showed that the backscattering coefficient of the rice field appeared to
have a significant temporal variation and the highest correlation with age (day after sowing),
plant height and plant biomass of rice in term R 2 =0.90,0.81,and 0.80, respectively.
The trend of backscattering coefficient at the beginning cycle revealed that flooded fields
provided low backscattering (-14 to -12dB), with the value reaching -6 dB until the end of
the cycle. The vertical structure of the rice plants that attenuated the radar signal by the
canopy was higher for VV than for HH polarizations. The accuracy of mapping was 87%
compared with the available ground data. (Ribbes et al., 1999)

These various study illuminate the potentials of remote sensing in detecting rice area,
crop cycle. Our work continues to further explore the extent to which remote sensing data

can be used to detect farm losses of farmers.

This study uses a triply modulated cosine a factor function in the nonlinear estimation
method that Kleynhans et al., 2010 has proposed. A triply modulated cosine function has

equation as follows
Vi = U + aicos (wk + @) + ny @)

where Yy, is the observed value of the NDVI time-series at time k and ny, is the noise
sample at time &. Here, the cosine function at the time k is modeled to have the angular
frequency of w, the mean value of y, the amplitude of a, and the phase of @g. The
angular frequency can be explicitly computed as w = 2mf, where f is based on the annual
vegetation growth cycle in the area of interest. For example, in the rain-fed rice, we use

f = 8/3065 whereas, for the itrigated rice, f = 8/240 for 2- and 3-crop cycles pet year.
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The estimation of triply modulated cosine function parameters is nontrivial and requires a
nonlinear estimator. A good candidate for parameter tracking for the non-linear system is
the extended Kalman filter (EKF, following Kleynhans et al., 2010, 2011). The EKF has
been used for detection and reconfiguration surface fault in aircraft control systems
(Caliskan et al., 2000), improving accuracy of the feature map by modified Neural Network
aided (Kang et al., 2010) and estimate the absolute position of an autonomous mobile

robot (Marron et al., 2003).

According to the EKF formulation, for every increment of k (the discrete time), a
state vector X is defined containing the parameters to be estimated in the form x, =
[Mk @k Pr]T. The relation between X, and Xj_4 is given by a function f(.) which is
a known and can be a nonlinear function. The state vector Xy, is related to the observation
vector Y via a nonlinear measurement function h(.). Due to noisy nature of the

measurement, both systems are corrupted with unknown noises, and their relationships

can be written as
X = f(xp_1) + Wy 3
Vi = h(xy) + v, “

for the estimations of the state and observation vectors, respectively. The terms wy, and
Uy are process and observation noises, respectively. The state vector parameters may be
estimated over time k by recursive iteration based on the observation data Yy up to the

time k. In the observation equation (4), Yy is the predicted measurement.

Interpretation of the term py, and ay cos (wk + ¢@y) of a triply modulated cosine
function can be given that l;, can be considered as the trend variation and should be
associated with long term vegetation changes such as the deforestation whereas the term
ay cos (wk + @) can be considered as the seasonal variation, and should be related to
the growth of rice. As a result, we use only the term @y cos (wk + ¢;,) in the estimation

of cultivation time in this study.

Before cultivation, the rice field is clear of vegetation as a result, the NDVI is low. As
rice grows, more vegetation covers the rice field and the NDVI increases. However, in
certain area, farmer put down some other crops such as green beans or grasses before

cultivate rice to increase the Nitrogen in the soil. Hence, we identify the rice cultivation
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date as the first time instance that seasonal term aj cos (wk + ¢y) is greater than a

predefined threshold 7 after the lowest point.

We employed this technique to detect planting date in each season of each and every
pixel of NDVI data throughout the country. Figure 7 depicts average number of crops

grown per year, length of each crop season for the rice growing areas in Thailand

This exercise thus allows us to detect planting dates for each cropping season each
year and so can estimate the corresponding planting areas. Next, we will take this result,
explore variations in NDVI and cropping patterns to identify homogenous rice production
zones of the country so the loss estimation based on MODIS-NDVI and RADARSAT

can be done similarly within each zone but could differ across zones.

Figure 7 Detected pattern of crops and rice crop cycles

Number of crops
Grown per year

Average length of
Crop cycle 2

Average length of
Crop cycle 1

1 Crop
I 2 Crop
I 2.5 Crop

Clustering homogenous rice production zones

K-mean cluster analysis is then used to separate rice production areas into 15
homogenous zones using GIS information, rainfall information and NDVI data and so
based on geographical characteristics including irrigation, altitude and rice species,
meteorological information including mean and standard deviation of rainfall, and key
characteristics of NDVI in each pixel including mean value, standard deviation, curvature,
number of detected crops grown per year, detected length of first crop, detected length of

second crop. Results are reported in Table 1.
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Table 1 Summary statistics of 15 homogenous rice production zones

Cluster Cluster name NDVI Number of Crop 1 cycle  Crop 2 cycle Irrigation = 1 Rice species  Elevation
Mean SD crop per year (months) (months) (meters)
1 Central - rainfed 0.53 0.12 1.00 4.18 - 0.15 Mixed 39.77
2 Central - irrigated - jasmin rice 0.57 0.13 2.01 4.41 3.20 0.85 Jasmin 33.85
3 Central - irrigated - low variations 0.59 0.12 2.01 4.27 3.18 0.97 Mixed 9.56
4 Central - irrigated - high variations 0.55 0.18 2.00 4.41 3.51 0.96 Mixed 9.38
5 Notth - rainfed 0.53 0.14 1.00 4.24 - 0.08 Mixed 170.15
6 North - irrigated - jasmin rice 0.58 0.13 2.01 4.20 3.19 0.85 Jasmin 324.24
7 North - irrigated - low variations 0.58 0.12 2.02 4.47 3.09 0.70 Mixed 77.54
8 North - irrigated - high variations 0.52 0.19 2.00 4.45 3.35 0.74 Mixed 74.27
9 NE - rainfed - jasmin rice 0.48 0.13 1.00 4.66 - 0.05 Jasmin 172.14
10 NE - rainfed - sticky rice and others 0.50 0.12 1.00 4.73 - 0.06 Sticky 210.17
11 NE - irrigated jasmin rice 0.51 0.14 2.00 4.26 3.04 0.79 Jasmin 170.05
12 NE - irrigated others 0.54 0.13 2.00 4.46 3.06 0.60 Mixed 208.77
13 South - rainfed 0.66 0.10 1.00 4.02 - 0.06 Mixed 25.39
14 South - itrigated - low variations 0.65 0.10 2.00 4.04 3.03 0.98 Mixed 13.46
15 South - itrigated - high variations 0.57 0.13 2.00 4.07 3.27 0.93 Mixed 4.95

Figure 8: Homogenous rice production zones identified by cluster analysis
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Figure 9: Distinct patterns of NDVI across 15 rice production zones
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These 15 homogenous production zones with distinct NDVI patterns form the basis

of further analysis on farm losses.
Estimating production losses

We estimate production losses by detecting deviation of NDVI patterns from ‘normal’
condition specific to each pixel and production zone. In particular, NDVI should reflect
some varying forms of bell shape when farmer starts planting. We then simply divide
growth cycle from the detected planting date into 4 stages each with 1 month, 2 months,
3 months and 4 months following the planting date, making the full crop cycle of about 4
months or 120 days. In some production zones, especially in the rainfed areas of the
Northeast, crop cycle could last up to 5 months and so additional stage is considered for

those zones.

Production loss is defined as a composite function of deviation from ‘normal’
condition in each planting stage since the planting date is detected. Due to different level
and nature of NDVI across pixels and production zones, definition of ‘normal’ should be
pixel and production zone specific. We thus define ‘normal’ level by pegging the level of
NDVI observed in each crop stage as some percentile value based on historical data
observed in that pixel. The level of percentile will then vary across production zones but
similar for all pixels in the same zone. Since cloud effect of the 8-day data (resulting in
constant drop of NDVI to 0) could present key threat to this exercise, we rather convert

the 8-day composite to 16-day composite taking the maximum values of the 8-day data.
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In particular, production loss in pixel p of crop c in year y can be calculated based on

the following combination of 16-day NDVI in any continuous 2-week interval t as

®)

*

n,. — ndvi
pt pty .
WsEtes <—> H(ndvlpty < npt)

jc * ok _ plant(ndvi,y)<c<harvest(ndviy,)
pr (npt, Nyt Ws) = ( py) Py . .
Npe — NA Vi,
100% if in any growing stage s, Eics| —————F— ] = 100%

where plant(ndvipy) represents the detected planting date based on series of 16-day

NDVI in that pixel p and year y and harvest(ndvipy) represents the detected harvest

. . Np—ndvipty
date based on the same series in pixel p and year y. Eyeg <pT reflects mean value
pt

of deviation from ‘normal’ condition in each crop stage s which can be derived from the
deviation of the two of 16-day NDVI data during that crop stage from some percentile
threshold 1, based on historical profile of NDVI in that pixel and that 16-day period t
since planting. 1(ndviys, < n,;) is an indicator function which will be equal to one if
ndviye, < Ny and zero otherwise. The function thus allows us to only take into account
the NDVI values when they dip below ‘normal’ condition. Overall, total production loss
is thus some combination of below normal condition of each and every growing stage in
each crop season based on some weighting scheme w; that defines relative contribution

of abnormal NDVT in each particular stage to total production loss in that season.

The production loss function allows for potential of total loss that could occurs before
the season ends by capturing the extreme fall of NDVI from ‘critical level’ defined as some

percentile of NDVI in each particular pixel and 16-day period since planting n;.

The estimating production loss Ly, (ye, Ny, W) is thus a function of three
parameters My, Ny, Wy that defines ‘normal’ condition and “critical’ condition in each crop

stage of each pixel and time, and the relative weight of each cropping stage toward total

loss calculation. Figure 10 depicts framework of our loss calculation.

The production loss over an area a can then be calculated as

Zfzy (n;;t' n;;;, Ws) = Epea (Z%y (n;t' n;*tJ Ws)) (©6)
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We define production loss of individual farmer i with farm locating in an area a where

NDVI data can be taken as

c _ Jc * *% c
15, = LSy (npe, npe, ws) + €,

)

where the variance of el-cy thus represent ‘basis risk’ defined over the deviation of farmer’s

actual loss from the estimated loss from NDVI data.

Figure 10 Detecting production loss based on NDVI patterns
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Using the above framework, we estimate the optimal loss function by choosing the

three parameters for each production so as to minimize the basis risk and so choose the

three parameters for each production zone such that

®)

* *% _ . c Tc * *% 2
Npt) Npty Ws = Arcmlnn;t,n;*t,wsE(liy - Lay (npt; Nyt Ws))
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where we first obtain individual farmer’s actual production loss data from the repeated
cross sectional agricultural household survey of around 2,845 rice farm households
nationwide resided in 610 tambons and 712 villages per year for 11 years from the
production year 2547-48 to 2557-58. So altogether, the estimation is based on 31,295 farm
households from every province. Table 2 provides summary statistics of the household

data used.

Table 2: Summary statistics of agricultural household data used in the study

Variable Mean Std. Dev. Min Max
Denrography
Household members 4.7 1.7 1.0 10.0
Age 37.2 10.7 1.0 81.5
Dependent ratio (%) 26% 22% 0% 100%
Highest edu - Less than high school (%) 67% 24% 0% 100%

- High school (%) 22% 22% 0% 100%

- Vocational (%) 6% 13% 0% 100%

- Bachelor or higher (%) 5% 12% 0% 100%
Agricultural production
Operating farm land (rai) 27.2 25.1 0.0 423.6
Number of rice crop grown per year 1.3 0.5 0.0 2.0
Rice crop 1 planting area 22.3 22.6 0.0 331.5
Rice crop 2 planting area 9.4 20.0 0.0 331.5
Rice crop 1 yield (kg/rai) 457.7 283.0 0.0 10,000.0
Rice crop 2 yield (kg/rai) 640.3 389.5 0.0 10,000.0
Total annual net income (Baht) 104,246.0 775,347.4 -1,926,500.0 3,165,820.0
Share of rice income to total income (%) 45% 23% 14% 93%
Financial portfolio
Total loan outstanding (Baht) 128,112.7 218,341.7 0.0 5,000,000.0
Share of loan in agriculture (%) 54% 29% 27% 100%
Loan collateral - individual (%) 36% 43% 0% 100%
Loan collateral - group (%) 41% 43% 0% 100%
Loan collaterial - asset (%) 20% 32% 0% 100%
Saving (Baht) 39,174.9 198,448.5 0.0 11,100,000.0
Other asset (Baht) 1,721,390.0 3,331,409.0 0.0 143,000,000.0

Note: Average number of households per year is 2845 from 610 tambons and 712 villages. The data covers 10

years from 47-48 crop production year to 57-58 crop production year.

The data come with tambon location of each farmer and so we then match each
farmer with NDVI data extracted at tambon level. Search algorithm is employed to then
find the combination of the three parameters (n;‘,t, Nyt WS) that minimize the basis risk
for each homogenous production zones. Table 3 thus reflects search results of optimal

combination of the three parameters.

Using these estimated parameters, we then constructed MODIS-NDVI predicted
losses for each and every pixel over time. RADARSAT data is then overlaid over all the
pixels to detect which pixels, when in the crop cycle when we see inundation in

RADARSAT (and for how many weeks do we see inundation). We then use this
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information to cross verify with the estimated loss from MODIS-NDVI. And in the case
when there is no indication of loss from MODIS-NDVI in any pixel while we observed
more than 2 weeks of inundation from RADARSAT during the cropping cycle, we re-

assign loss to those pixels.

Overall all, these algorithms thus allow us to construct and track crop production

cycles and losses for each and every pixel of rice area as depicted in Figure 11.

Figure 11 Detected crop cycles and loss based on NDVI
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Table 3 Optimal loss parameters

Cluster name Loss Total loss Loss weight assigned to each growing stage (w )
Cluster threshold (n*) threshold (n**) Plant Grow I Grow IT  Grow ITI/Harvest ~ Harvest
(Percentile) (Percentile) 1st month 2nd month 3rd month 4th month 5th month
1 Central - rainfed P15 P5 10% 25% 25% 40%
2 Central - irrigated - jasmin rice P15 P5 10% 20% 30% 40% -
3 Central - irrigated - low variations P15 P5 10% 20% 30% 40%
4 Central - irrigated - high variations P10 P5 0% 25% 35% 40% -
5 North - rainfed P15 P5 10% 20% 30% 40%
6 North - irrigated - jasmin rice P15 P5 10% 25% 25% 40% -
North - irrigated - low variations P20 P5 10% 20% 30% 40%
North - irrigated - high variations P10 P5 10% 30% 30% 30% -
9 NE - rainfed - jasmin rice P15 P5 10% 20% 20% 20% 30%
10 NE - rainfed - sticky rice and others P15 P5 10% 20% 20% 20% 30%
11 NE - irrigated jasmin rice P20 P5 10% 25% 25% 40%
12 NE - irrigated others P10 P5 10% 20% 30% 40% -
13 South - rainfed P20 P5 10% 20% 20% 50%
14 South - irrigated - low variations P15 P5 10% 20% 30% 40% -
15 South - irrigated - high vatiations P10 P5 10% 25% 25% 40%

Verification with household data

To what extent could these satellite estimated information reflect actual crop
production and losses of farm households? Because the NDVI data are matched with farm
households at Tambon level (note that it is also possible to merge at village level, though
the process could take some good amount of time due to the lack of village shp file for
ArcGIS), this implies that the predictive errors could come from at least two sources: (1)
the extent to which the Tambon-level estimated loss can predict Tambon loss and (2) the

extent that actual loss of each farm household varies from Tambon loss.

We rewrite farm household 1’s production loss for crop c, year y and in Tambon T as
licy =ity + giCTy (9)

where [7,, reflect Tambon-level average loss and Sl-CTy reflects variation of household i’s
loss from Tambon-level average. (9) thus disaggregate household loss into the component
that co-move with Tambon-level average and the idiosyncratic component that are specific

to each households and uncorrelated with others within Tambon.

We can then write Tambon-level loss as

*

g"y = %‘y(npt' n;*t' Ws) + Sic"y (10)

And so €F,, reflects the extent that the Tambon-level losses could not be explained by

*

satellite-based loss Z%y (np

t Myt WS). And so from (9) and (10), we can deduce that the
total ‘basis risk’ faced by each farm households from using satellite data to predict loss

could thus be decomposed as €], = &7, + €fy.
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Using 10 years of data of 31,295 farm households, we first estimate the total predictive

€rrors E-C

iy and their distributions across different production zones. And Table 4 and

Figure 12 depict these results.

We also attempt to understand how predictive errors of satellite-estimated losses can
be compared with those from existing field verification from the National Disaster Relief
Program. While the data do not come with list of Tambon being declared disaster zone,
we rather extract this information from the actual pdf version of announcement of disaster
affected areas themselves. Given that the task is very time-consuming, we only manage to
do it for 3 consecutive years of 2011-2013. This thus provides additional data on which
Tambon in those three years had been declared disaster zones. We can then use this
information to analyze the probability that the Tambon was declared disaster zone given
that the farm households observed with losses in the household survey. And so in the last
column of Table 4, correctly predict loss = 1 if the Tambon that lost household resigned

was also declared disaster zone by the National Disaster Relief Program.

Table 4: Distribution of total predictive errors

Satellite-based loss prediction Current loss verification

Cluster Cluster name SD Correctly Distribution of predictive etrors Correctly

of errors  predictloss  Within Within Within ~ Greater than predict loss
0,1) +-10% +- 20% +- 30% +- 30% (0,1)
1 Central - rainfed 0.18 79% 29% 45% 18% 8% 77%
2 Central - irrigated - jasmin rice 0.24 66% 26% 28% 28% 18% 75%
3 Central - irrigated - low variations 0.24 69% 24% 29% 26% 21% 81%
4 Central - irrigated - high variations 0.26 57% 19% 35% 23% 23% 79%
5 North - rainfed 0.18 77% 36% 39% 17% 8% 78%
6 North - irrigated - jasmin rice 0.26 68% 25% 34% 25% 16% 77%
7 North - irrigated - low variations 0.23 73% 23% 34% 29% 14% 83%
8 North - irrigated - high variations 0.26 65% 25% 27% 26% 22% 85%
9 NE - rainfed - jasmin rice 0.12 84% 43% 37% 13% 7% 81%
10 NE - rainfed - sticky rice and others 0.15 80% 41% 42% 10% 7% 80%
1 NE - irrigated jasmin rice 0.19 73% 34% 39% 16% 11% 86%
12 NE - irrigated others 0.21 71% 31% 37% 18% 14% 84%
13 South - rainfed 0.25 72% 35% 42% 13% 10% 76%
14 South - irrigated - low variations 0.28 68% 27% 33% 23% 17% 84%
15 South - irrigated - high variations 0.32 59% 25% 36% 18% 21% 79%

We can see that performance of satellite-based estimation of loss vary across
production zone with good performance in the rainfed zones especially in the Northeast,
Central and North with relatively low standard deviation of errors and 72-84% probability
that satellite-based loss can accurately predict the occurrence of loss by household.
Performance worsen especially in for irrigated zones in the South, Central and North with

relatively larger standard deviation of errors.
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Looking at the distribution of predictive errors, we find that especially in the rainfed
zones, more than 70% of errors are mainly within +-20% and less than 10% of the time
when we see errors beyond +-30%. This patterns also applies to the irrigated zones though
we still see quite large percentage of errors in the largest section. Figure 12 plots relative

performance of satellite-based loss estimation by production zones.

Figure 12: Distribution of total predictive errors by production zones
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Comparing with the loss announced by the National Disaster Relief Program, we
find the performance of satellite-based loss estimation to be relatively similar to that of the
Relief Program, though the program appears to perform better especially for irrigated areas

where there appears to be limitation in satellite estimation.

How might predictive errors differ across different magnitudes of actual losses?
Table 5 reports distributions of total predictive errors conditional on actual losses being in
one of the three magnitudes. We find that for all clusters, satellite-based loss estimation
perform very well in predicting extreme losses of more than 1-in-5 year losses with
predictive errors reduce for those loss levels. This could further imply that satellite data
could perform well in predicting extreme loss events, while there still needs to add other
higher resolution satellite data and to have field verification to improve predictive power

in those irrigated areas where production patterns are largely heterogeneous.
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Table 5: Distribution of predictive errors conditional on the magnitude of losses

Distribution of predictive errors

Cluster For actual loss < 1-in-3 yr loss For 1-in-3 yr loss < actual loss < 1-in-5 yr loss For actual loss > 1-in-5 yr loss
Within Within Within ~ Greater than ~ Within Within Within ~ Greater than ~ Within Within Within ~ Greater than
+- 10% +- 20% +- 30% +- 30% +- 10% +- 20% +-30% +- 30% +- 10% +- 20% +-30% +- 30%
1 19% 49% 21% 11% 34% 49% 14% 3% 61% 22% 12% 5%
2 17% 29% 33% 21% 37% 24% 24% 15% 43% 31% 15% 11%
3 21% 22% 32% 25% 25% 40% 19% 16% 35% 38% 14% 13%
4 14% 38% 25% 23% 23% 32% 21% 27% 33% 28% 19% 16%
5 24% 45% 21% 10% 53% 30% 12% 6% 56% 30% 10% 4%
6 25% 23% 32% 20% 12% 60% 17% 11% 47% 34% 11% 8%
7 18% 28% 36% 18% 24% 47% 20% 9% 41% 36% 16% 7%
8 21% 23% 28% 28% 29% 30% 24% 17% 34% 38% 21% 7%
9 28% 49% 14% 9% 65% 19% 12% 5% 67% 19% 11% 3%
10 27% 52% 12% 9% 60% 29% 6% 4% 65% 23% 8% 4%
11 24% 44% 18% 14% 44% 36% 14% 7% 58% 24% 12% 6%
12 22% 38% 22% 18% 38% 42% 11% 9% 55% 25% 14% 6%
13 29% 46% 15% 10% 36% 40% 11% 13% 57% 29% 9% 5%
14 23% 31% 27% 19% 28% 38% 19% 15% 41% 33% 14% 12%
15 22% 32% 22% 24% 24% 50% 13% 17% 38% 28% 11% 15%

How do we explain these patterns of total predictive errors? We further decompose
errors into the errors that reflect how individual losses deviate from Tambon loss Sl-CTy (or
the idiosyncratic component of loss that varies across households) and those that reflect
how Tambon loss deviate from the satellite-estimated loss €, (or the part of covariate

Tambon-level loss that could not be explained by satellite data).

We find in Table 6 that in all production zones, most of the predictive errors are from
the idiosyncratic component of losses of each household from the Tambon losses. This
could imply that one can improve the total predictive power of satellite data by trying to
match them to households at more micro-level, e.g., village level. This could also imply

that satellite data appear to perform well in predicting area losses.

Table 6: Decomposition of predictive errors by sources

Individual - Tambon avg Tambon avg - Satellite preduction
Cluster Cluster name SD % of error SD % of error
of errors Greater than of etrors Greater than
+-30% +-30%

1 Central - rainfed 0.11 5% 0.06 4%
2 Central - irrigated - jasmin rice 0.13 12% 0.09 13%
3 Central - irrigated - low variations 0.14 16% 0.08 14%
4 Central - irrigated - high variations 0.14 15% 0.10 15%
5 North - rainfed 0.09 5% 0.07 7%
6 North - irrigated - jasmin rice 0.13 11% 0.12 13%
7 North - irrigated - low variations 0.15 13% 0.09 11%
8 North - irrigated - high variations 0.16 17% 0.12 13%
9 NE - rainfed - jasmin rice 0.08 4% 0.03 4%
10 NE - rainfed - sticky rice and others 0.09 3% 0.04 4%
11 NE - irrigated jasmin rice 0.12 9% 0.08 10%
12 NE - irrigated others 0.11 11% 0.09 10%
13 South - rainfed 0.13 7% 0.12 9%
14 South - irrigated - low variations 0.15 12% 0.14 13%
15 South - irrigated - high variations 0.17 15% 0.14 14%
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Figure 13: Comparison of patterns of predictive errors by sources
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Overall, the above exercise thus implies that the moderate resolution MODIS-NDVI
when combined with high-resolution RADARSAT flood data has great potential in
predicting rice production losses but not everywhere. In particular, satellite data perform
well in rainfed production zones and for extreme losses. These implies that there are needs
to complement these satellite data with (i) other higher resolution data that could better
capture spatial variations of production patterns in the irrigated areas varies across
production zones and (ii) rigorous field verification to ensure of accuracy. And since we
could only match individual farming household to satellite data at Tambon level, we found
the predictive performance is dominated by the variation of individual losses within
Tambon. This thus implies that one way to improve performance of satellite data is to

match them to household at more micro level, e.g., village.'

While this will be to do list for further research, we turn now to illustrate what these

satellite-based loss estimations can tell us and how can we make good use of them.

1'We also try to analyze how MODIS-NDVI can predict planting date and so growing areas at Tambon level.
We do so by comparing predicted growing areas each season based on MODIS-NDVI with the data obtained
from registered farm households each season obtained from the DOAE. The result appears promising with

predictive errors concentrate within +- 20%.
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4. How might the satellite-based risk information be used to enhance
sustainable agricultural risk management?

What can we learn from this satellite-based risk information?

The constructed satellite-based loss information over time across pixels and rice
production areas thus can make very unique and valuable information especially when the
data can give information at granular level, over more than 16-year time and over rice
growing areas throughout the country. This complements well with other data collected
by governments/researchers, which might not be this detailed and with a lot less coverage.

This data thus can be used to reflect many different dimension of agricultural risk.

Understanding risk of rice production of the whole country: The very key feature of this satellite-
based risk information is the ability to understand dynamics of rice production, losses and
risk for the whole country. Figure 14 plots rice production and total losses separated by
crop season over the past 16 years. This historical profile gives us big picture of the whole
production system of the country, all of which, however are derived from pixel-level

information.

Figure 14: Nationwide rice production losses and its distribution
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Understanding risk of a farm or an area: More interesting perspectives can be drawn at

more micro level. First, with given GIS locator of each farm, satellite-based risk
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information (or statistics of historical losses) can be extracted for each farm or area, e.g.,
Tambon or village. This allows us not only to understand cropping patterns, loss over time
and statistics of loss — ‘risk” — for each farm or area, but also how losses of farms and areas
co-move over time to try to understand the extent to which risk can be pooled across

geographical areas.

Figure 15: Risk information extracted for each individual farm
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Figure 16: Different level of production losses (million baht)
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(b) Suphan Buri
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Figure 16 compares losses when measured at aggregated country, province, amphoe
and tambon. Different levels give totally different pictures and there are large variations
within province and even Amphoe. This implies that using provincial aggregate measures,
while could provide big picture of risk, they will not work well in representing loss at more
micro level. Losses at Tambon also appears correlated especially in the key flood 2011 and
drought 2003 years. This really shows that the rice production losses are largely covariate.
There are also some localized events, where losses do not correlate. Figure 17 shows that

losses are less correlated across crop seasons but correlated across production zones.

Figure 17: Production losses by crop seasons
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Figure 18: Production losses by selected production zone

2000 2008 2000 2000 2000 2000 2000
F
2001 2001 2001 2001 2001 2001 2001
r
202 20 202 202 202 20 202 :
2008 208 2008 2008 2008 208 2008
2004 2004 2004 2004 2004 20 2004
2005 2005 2005 2005 2005 2005 2008
208 2008 2008 208 2006 2008 2006
2007 2007 2007 2007 2007 2007 2007
2008 200 208 2008 208 208 208
208 208 208 2008 2008 2009 208
2010 10 2010 2010 2010 2010 2010
201 201 200 20m 200 20 201
202 202 2012 2 2012 202 2012
2013 2013 2013 013 2013 2013 2013
2014 2014 2018 2014 2014 2014 2014
2015 2015 2015 2015 2015 2015 2015
o0 o3 s o oo e oo o o0 g 3% e e o e g o T whe o e eon o mw e T o ad a5

Understanding risk of farmers’ groups or cooperatives: With location of farmers’ cooperatives
throughout the country, we can also extract historical losses (i.e., risk profile for each
cooperative) as well as profiles of individual farmers belonging to the cooperatives to see
how might the patterns of losses vary across households in same period, to what extent
might losses co-move or can be shared within cooperatives and to what extent might losses

co-move or can be pooled across cooperatives. Figure 18 show that losses appear covariate

Figure 18: Risk information extracted for cooperative or groups of farmers
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across cooperatives. Looking at losses of individual members within each cooperative, we
found considerable amount of individual losses that are uncorrelated, implying that there

could still be potential for risk sharing across members of cooperatives.

Understanding risk of BAAC’s loan portfolio: Figure 19 plots location of all the branches of BAAC
along with the sige of their loan portfolio to rice farmers in bubble. Risk information can also be
extracted for each branch to identify potential credit risk and threat to the bank’s overall
portfolio. Figure 19 plots rice production losses of farmers belonging to each branch by
region. Again, we see high degree of covariate in key disaster years. This results however
relies on some assumption on the extent to which credit risk, i.e., the probability that
farmers do not repay loan, correlates with their production losses (as we could not obtain

any information on actual credit risk from BAAC).

Figure 19: Risk information extracted for each BAAC branch
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Production losses (million baht) by provincial branches by region

(ranked by total loan outstanding)
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Analytical framework

Nature of risk: We first draw empirical distribution of total annual losses for the whole
country from 2001-2015 in Figure 20. From Figure 20, we can at least distinguish losses
into three layers. First, the losses less than L* reflects high-frequency but low-impact
losses, e.g., from localized events that are largely incurred by some farmers and not
correlated across farmers, e.g., pest, local flood, etc. Second, the loss from L* to L**
reflects in-between losses with moderate frequency and losses. And third, the losses
beyond L** reflects low-frequency but highly catastrophic results, e.g., from large disaster
events like the flood 2011, etc. Managing these different layers of losses thus would need
different costs and for different sectors implying that appropriate risk management tool

for each layer could be different.
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Figure 20: Distribution of losses and risk layering
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Cost of market risk transfer: Transferring risk to the market requires insurance type
financial product that could compensate in the event of losses based on some pre-

determined payout function. We consider here the potential to use market risk transfer

through insurance contracts, which makes payout based on satellite-based loss data (L).

In general, payout function can be illustrated in Figure 21, where on the left,
payouts will be made if satellite-based losses is beyond L* (strike level). The right panel
applies a threshold L** (exit level) so that payout is equal to maximum payouts if satellite-

based losses are beyond L**. In particular, we can write a prototype insurance payout as
n(L, L, L**) = min(max(L — L*,0), L™ — L") (11)

And so the strike L* thus will reflect coverage of the contract, the higher the L* the less
coverage this insurance is. The exit L** also reflects the reverse coverage. High L** implies
larger coverage of contract. The left panel of Figure 21 has L** at 100% and hence would

have more coverage than the one on the write.

Figure 21: The two payout functions considered in this study
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Actuarially fair rate for any insurance contract that represents fair pricing just enough
that the insurer will cover all the cost of payout is simply the expected value of payouts

made based on historical data and hence will be some function of risk information and

coverage and so equal to ET(L, L*, L**). Commercial premium rate is defined as
Prt = catloadxEm(L, L', L**) + adminload. (12)

Where catload is catastrophic load to captute capital cost needed in order to manage
some reserve to prepare for times when insurers will need large leverage and so catload =
c(VAR(m), quality of information) where VAR(m) is value at risk of portfolio
payout reflecting probability of extreme events. Catastrophic load will be large with large
VAR () and large when low quality risk information as insurers will then need to prepare
for the possibility of events that could be underestimated by low-quality risk information.
The influence of bad information to risk transfer cost is amplified when the contract can
have extreme payouts as insurers will incur expenses to prepare for these extreme events
in the presence of low quality information. The adminload reflects some fixed and

variable costs of developing, designing, marketing and selling the contract.

So overall, we can induct that the cost of risk transfer through any insurance contract
Pr = p(L,L*,L**,VAR(n), quality of information). And so the cost will be high
with larger coverage (small L*, large L**), larger possibility of extreme payout events and
lower quality of risk information. We note that the very key determinant of VAR (1) is the
potential for risk diversification e.g, through large scale of operation and larger

geographical and product coverage.

Farmer’s optimal insurance decision: An optimal insurance design defines a combination
of coverage (L*, L**) that maximizes the farmer’s welfare given the pricing structure. For
simplicity, we consider a risk averse household with preference over consumption
represented by a class of mean variance utility function with 8 > 0 representing an Arrow-
Pratt coefficient of absolute risk aversion.” With stochastic net income from rice
production y;; under assumed deterministic price, income from other source y0;;, insured

household’s income available for consumption ¢;; can thus be written as

e = EQi)(1 = 0 + Ipx (n(L, 15, 177) = Pu(L, L, 1)) + yor + a(D) +yie  (13)

2 In specific, we consider CARA utility function U(cy,) = —e~9¢ut 5o that EU(cy,) = E(—e‘ecilf) =

E(cy) — 30' 2(cy1¢) under normally distributed consumption (Ljungqvist and Sargent 2004).
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where [ reflects farm household’s actual rice production losses, I reflects household’s
insurance decision in term of total amount of rai and sum insured per rai (i.e., value per rai
to be covered by insurance, e.g., total income or input cost) they choose to insure, a(L)
reflects other public assistance based on some loss verification D e.g., the current disaster
relief and y;; reflects other (potentially positive) stochastic component of rice production
income that could not be captured through the expected rice income and losses. Subjected
to (11), (12) and (13), an optimal insurance contract for (L, L*, L**) designed based on

satellite-based loss estimation L involve searching for a combination of insurance decision

I and contract coverage L*, L** such that
6 2

I, E(cie) =5 0°(cie) (14

Using household data from rice production area nationwide, this allows us to search

for optimal coverage level L*, L** for each rice production zone and individual insurance

decision I} =1(0,cov(L,L),L*, L, Pn(L, L*, L**), cov(l, a(L)), cov(l, yo;)). This

implies that farmer’s optimal insurance decision will be increasing in risk aversion, how

satellite-based loss co-move with actual farm loss, coverage level and if farmer has other

sources of income that tend to co-move with rice production and so providing less

diversification to their overall income. The insurance decision will be decreasing in

commercial cost of risk transfer and if the amount of public disaster assistance co-move

well with actual loss.

We simulate 1,000 representative farm households from each rice production zone,
their rice production income, losses and other income from 2001-2016 based on the
estimated relationship with 2001-2016 satellite-based loss estimation in (9) and (10) and
parameters observed in the current survey on Table 2. Detail of parameters used and
simulation process are reported in Appendix. This allows us to search for the optimal
contract coverage by production zone as well as the optimal insurance decision for each
and every 15,000 farmers. This allows us to understand insurance demand and its

geographical distribution f(I) conditional on the optimal insurance contract coverage.

Government’s  contribution to risk management. Government’s contribution to risk
management could come in the form either of disaster relief a(L) based on some public

loss verification L and supports to development of insurance market either in the form of

premium  subsidy S(f (1),PT[(Z, L, L**)) and/or acting as insurer of last resort or
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providing reinsurance s’ (either by insuring the extreme losses of portfolio of insurer when
portfolio loss or providing direct payouts to insured farmers instead of market beyond the

point where it might be too expensive for market to offer (e.g., above L*™) and so
S'( f(D,L, L**). And so the total cost to government in risk management can be written

for some cost structure g () which could reflect both capital cost and opportunity cost of

budget as

Go(a(D),s,s) = g <a(Z) +5(F,Pr(L, L, L)) + 5/ (FOD L, L**)) (15)

The cost of disaster relief a(L) will thus be increasing with the farm losses. The cost
of subsidy s will be increasing in the amount of farmers insured and commercial pricing
of insurance, which then depend on the quality of data and probability of extreme risk,
scale and risk diversification potential of the program. And the cost of reinsurance support

s’ will increase with probability of extreme risk and the amount of farmers insured.

The framework above implies different impacts on farmers of government supports
to risk management. Provision of disaster relief, depending on cov(l, a(L)) will reduce
risk of farmers and with high covariance potentially reduce demand for insurance. So well
perform disaster relief will result in government acting as insurer for farmers destroying

the sustainability of insurance market.

The premium subsidy § ( f, PT[(Z, L, L**)) will bring down commercial premium

faced by farmers and so could potentially increase demand. But in the setting with
probability of extreme payout events in place as well as low quality data, resulting in
extremely high premium pre-subsidy, this could imply that government’s subsidy might
need to be very large in order to bring down affordable premium to farmers or else the
subsidy might not work well in stimulating demand. The potential impacts of subsidy that
could not capture in our model is the extent to which farmers will depend on subsidy and
so the market might not be able to work on its own without government’s provision of

subsidy.

Government’s contribution by acting as insurer providing reinsurance
S'( fH,L, L**) could bring down commercial premium by reducing coverage from
insurers on extreme risk, reduce the impacts of low quality data on commercial premium

and so increase demand. Overall, with increasing scale and could further bring down

premium. This support appears quite similar to those of disaster relief but the key different
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is the more targeted losses that government will help and the clear link to market-based
insurance (as farmers will have to buy insurance first in order to be quality for this
assistance) allowing this support to further stimulate (rather impeding) demand for

insurance. We estimate the cost to government applying some cost of capital r.

With government supports, farm households’ income available for consumption thus

can change to
¢ =E@ )1 -1 +I;x (T[(Z,L*,L**,S’) — PT[(Z,L*,L**,S,S’)) + a(l) + yo; +
Vit (16)
Optimal Public-Private Partnership (PPP) arrangement in risk management. We then define the
optimal combination of contribution to risk management from farmers I*, the optimal

market-based contract coverage L*, L** and government G* that maximizes welfate of

farmers following (14) such that

6
max E(c;) —=0a%(c; 17
If,L*,L*Z(,G* ( lt) 20 ( lt) (17)

Once again, we estimate this using 15,000 simulated farm household data from 2001-

2016, where we consider three different types of insurance.

Optimal risk strategies with satellite-based risk information

A typical crop insurance for farmers: The simple payout function can be defined as

T[farmer(zl L L**) = min(max(z - L, 0) S L — L*)XXXI (18)

where insurance payout is based on observed satellite-based losses I measured at Tambon
level where farmer locates relative to the strike and exit, X reflect sum insured of the
contract. The insurance can be written on crop income with predetermined sum insured,
e.g., X = py where P reflects some pre-determined average price per kg, ¥ reflects pre-
determined average yield per rai in kg and so I here reflects the number of rai that farmers
would like to insure. The commercial premium thus can be quoted as percentage of total

sum insured, 1L.e., as percent of X XI.

Table 7 presents optimal PPP arrangements for each production zone and how the
optimal arrangement might change with changing insurance scale and coverage. We find
that the optimal insurance coverage levels vary across production zones and range in

between 1-in-4 yr and 1-in-6 yr losses. We find that the optimal government support is to
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pull resource to providing assistance (i.e., as insurer of last resort) for extreme losses that
result in more than 70% of production losses of the country, which occur 1-in-10 year in
the history in 2011 flood and 2015 drought. Farmer’s demand for insurance varies across
production zones with high demand in the zones where satellite-based loss explains actual
farmer’s loss well, e.g., in the rainfed areas. High demand also appears in the very risky
irrigated areas. And lastly, using various risk aversion parameters to simulate results, we

find that insurance demand increases with risk aversion of farmers.

We also estimate these results in the case when only crop 1 is insured, the result (not
shown here) also reflects the possibility of risk diversification when contracts extend
coverage throughout the country and to cover both crop 1 and crop 2 seasons. And so
overall, with optimal government’s support that can complement (not substitute) market,
we find increasing market participation by farmers, which could then increase scale and

risk diversification and hence sustainability of the system.

Table 7: Optimal PPP arrangements with market-based crop insurance to farmers

Cluster Cluster name Market Government % Farmer demand
L* Commercial Subsidy (g)  Insurer of Low risk High risk
premium rate last resort aversion aversion
(%) (g'=1L*) (theta <3)  (theta >3)

1 Central - rainfed 30.0% 8.4% 0.0% 60.0% 59.0% 78.0%
2 Central - irrigated - jasmin rice 30.0% 6.4% 0.0% 60.0% 61.0% 84.9%
3 Central - irrigated - low variations 30.0% 7.3% 0.0% 60.0% 67.0% 97.5%
4 Central - irrigated - high variations 25.0% 6.3% 0.0% 60.0% 56.0% 95.8%
5 North - rainfed 30.0% 8.1% 0.0% 60.0% 54.0% 71.0%
6 North - irrigated - jasmin rice 35.0% 9.0% 0.0% 70.0% 43.0% 67.0%
7 North - irrigated - low variations 30.0% 7.7% 0.0% 60.0% 46.0% 69.5%
8 North - irrigated - high variations 25.0% 7.0% 0.0% 60.0% 47.0% 65.0%
9 NE - rainfed - jasmin rice 30.0% 5.1% 0.0% 60.0% 61.0% 77.0%
10 NE - rainfed - sticky rice and others 30.0% 6.9% 0.0% 60.0% 57.0% 75.0%
11 NE - irrigated jasmin rice 30.0% 7.4% 0.0% 60.0% 43.0% 67.0%
12 NE - irrigated others 30.0% 4.7% 0.0% 60.0% 32.0% 53.0%
13 South - rainfed 40.0% 8.5% 0.0% 70.0% 28.0% 45.0%
14 South - irrigated - low variations 25.0% 9.1% 0.0% 60.0% 25.0% 34.0%
15 South - irrigated - high variations 30.0% 8.2% 0.0% 60.0% 21.0% 39.0%
All Nationwide - 6.5% - - 45.0% 63.0%
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Figure 22: risk-based pricing of optimal crop insurance to farmers (by Tambon)

8.8%

8.3%

11.2%

A group insurance for cooperatives or farmers’ groups: The key different and potential
advantage of group-based insurance comparing to the insurance to farmer are (1) the
possibility of group risk shating could allow farmers to share basis risk (when L does not
petfectly reflect actual loss [ of farmers) and so reduce the adverse impact of basis risk if
basis risk across farmers within group are uncorrelated (hence increase value of insurance
to farmer and so increase demand) and (2) the possibility of risk pooling across Tambon
if cooperatives are large enough and losses are less correlated across Tambons (hence

reduce insurance price and so increase demand).
And so the payout for group insurance can simply be written as
n9rouP (L, 1", L") = min(max(L — L*,0), L™ — L*)xXXI (19)

where X now reflects sum insured of the whole group, e.g., the group-insurance pool

received from individual contribution of member, etc.

The working assumption for this group insurance is the existing of group-based risk
sharing within cooperative so that following (9) and (10), farmer’s loss after sharing within

group is

lShaTEd =1 _ Yiin group lit 7 Yiin group €Tt |, Ziin group it
: = = Zlingrowplit _ 4 i , 20)
it groupt oy t oy oy

iingroupl iingroup! iingroupl
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where L; reflect satellite-based losses at Tambon where farmer locates, €r; is variation of
tambon loss from satellite-based loss and &;; is variation of individual loss from tambon
loss. And so the reduction in basis risk will increase if the two sources of basis risk can be

Yiin group €Tt Yiin group it
shared or as —=——— — ( and =—"I>L—= > (.
Yiin groupl Yiin groupl

Table 8 presents optimal PPP arrangements if group insurance can be used for each
production zone and how the optimal arrangement might change with changing insurance
scale and coverage. We can see that with group-risk sharing in place, the optimal group
insurance coverages are lower than those of insurance to farmers as the group insurance
can be used to complement group-risk sharing within cooperative, which already takes care
of most of the localized and idiosyncratic risk. The key improvement from individual
contract comes from larger market participation, which is due to reducing in basis risk,
which now can be shared within cooperatives, and not from the reducing premium due to
risk sharing across Tambons in the cooperative as Tambon losses are highly correlated
even across Tambons within the same neighborhood. This group insurance appears as

very promising model.

Figure 23: Risk-based pricing of optimal group insurance to cooperatives

8.7%
5.6%
7.0% 3.9%
6.2%
Commercial premium rate
9.5% 5 o

> 10%

A risk contingent credit for farmers: Apart from using insurance to insure farmers or group
of farmers’ crop income, farmers also take out input loan at the beginning of the cropping

season and the production losses could directly affect ability to repay loan and so to
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accumulate debt of farmers. The BAAC could also experience reducing loan portfolio

quality when rice production losses of borrowers are largely stochastic.

Agricultural banks worldwide offer risk contingent credit to farmer, which really is the
loan that is linked with insurance. Farmers take out loan paying interest which will be
slightly higher due to the inclusion of insurance premium that covers the total loan plus
interest. In the normal years, farmer needs to repay the full loan but in the bad years, when
farmers experience production losses, they could just need to repay partial of the loan and
the rest will be repaid by the insurance company directly to the bank. This contract thus
works as the bank obtaining insurance for their overall loan portfolios, of which they then

pass on burden of insurance premium to borrowers.

With limit information on loan performance of BAAC, we assume for now that the
loan portfolio losses co-move with the rice production losses with cortelation 6. And so

total losses of loan portfolio of BAAC proxy by satellite data can be written as

[oamPort = 3 nen outstandingy XLy = Ypranch outstanding,, X6XLa,  (21)

where Ly, reflects loss of loan from branch b in year t, which is calculated from the
satellite-based loss of the Amphoe for that branch. And so insurance that can protect loan

portfolio of BAAC can be written as
mloanport (I 1+ 1) = min(max(L*"P°™ — L*,0), L** — L*)xXxI (22)

And so for farmer i, taking risk contingent loan means that they will pay slightly higher

interest on their loan with return of the following loan repayment function
LRy = (1 + 7 + pm)loan — min(max(LY*"?°™ — 1*,0),L** — L*)loan  (23)

And so the key benefit of risk contingent loan is to protect farmers from being indebtness,
protect BAAC portfolio and if implemented widely for BAAC’s borrowers, this could
benefit from the scale of contract and risk diversification from the nationwide rice

production loan portfolio.

Table 9 report results the optimal PPP arrangements when risk contingent loan is in
place. With results on optimal contract similar to insurance for farmers, we can move to
construct interest rate on this risk contingent loans conditional on the assumed degree to
which credit risk correlate with production risk. This interest based is closed to risk-based

pricing of loan when § — 1.
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Figure 24: Risk premium of optimal group insurance to cooperatives
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How might these satellite-based risk management strategies work?

So far we already illustrate the potential that satellite-based risk data can be used to
provide necessary risk information to allow government, market and farmers to contribute
to the optimal PPP arrangement of risk management, which involves farmer’s lively
contribution to market-based insurance and government acting as insurer of last resort
providing assistance to insurer or directly to insured farmers when extreme events occut.

How might this system work in the real world?

First farmers have to register their farm and production with the DOAE and through
the newly establish GISAGRO platform, they can also draw GIS locator of their farm
allowing production cycle, loss and risk to be detected by satellite data linking them to
easily by farm location. This individual farm information is then incorporated with satellite
data as a center risk information system, which could then provide high quality risk

information for insurers, BAAC and government.

The insurers can then use to design various insurance products and sell at risk-based
pricing in the market. They can use satellite data (perhaps together with field-based
verification) to identify eligibility of farmers (whether they really grow rice in the plots, is
growing rice during the insured season), losses, and how they might change growing

patterns following getting insurance.
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BAAC can also use risk information to monitor their credit risk to loan portfolio, to
design various risk contingent credit contracts to protect themselves and farmers, allowing
them to offer insured loan to farmers with slightly higher interest in exchange for some
protection of loan in bad years. Government can also use information to improve their
assistance using satellite-based loss as basis for deciding assistance in the extreme years.
This satellite-based risk information comes in near real time thus allowing faster assistance

to be implemented.

Farmers thus can have wide range of insurance and credit products available to them
at reasonable prices, which could be sold through BAAC and link with the BAAC account.
This includes income insurance to protect crop income and insured loan to protect input
loan to BAAC. When group insurance is now available, this could perhaps strengthen
group-risk sharing mechanisms, where farmers can regularly contribute payment to the
group pool of which they can take out as loan (or cash) in case they experience losses. The
group can insure the pool so that when everyone in the group experience losses at the
same time so the pool run out, insurance can provide payout to leverage it. Farmers can
also use risk information to make production decision, stocking and harvesting to control

exposure to over-supply prices.

5. Potential economic impacts

Finally, we simulate the potential economic impacts of the satellite-based PPP
arrangements in risk management and comparing with existing program where starting
from this year government will buy insurance for all the rice farmers who are borrowers
of BAAC and use current government loss verification to trigger payout at the commercial
cost of 100 baht per rai. The results are based on 15,000 simulated farm household data
from all production zones throughout the country. In All the simulated model and

parameters are reported in the Appendix.

We note however that this comparison between the two systems has not hold
anything equal given the difficulty and large difference across the two. The very key

difference are

(1) The current system is no longer commercial based as government is the sold buyer
and so government would end up spending large amount of money both for insurance

premium for all farmers and for disaster relief. This really is the case as government insure
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part of their budget exposure to providing relief to farmers through market and take on
the rest of the exposure themselves. This in contrast to our proposed model where
government rather acts as insurer of last report providing assistance only for the extreme

risk, whete it is not cost effective for market to do so.

(2) Insurance coverage will be a lot different with the current program providing
payout only when total loss occurs. The current program covers 30% of input cost as part
of free insurance and another 30% from relief. And so for farmers, they can be protected
up to 60% of input cost only in the bad years. Our insurance is designed to compensate
income losses and another program to compensate for all input loans. So farmers will be
protected both from the income and input cost that really affects their ability to repay loan

and income available for consumption.

Based on 15,000 simulated farmers over the 16 years when we have satellite data, we
simulate the potential impacts on (i) farmer’s income available for consumption and their
probability of defaulting on input loan, (ii) proportion of defaulted input loan of BAAC
loan portfolio to rice farmers, (iii) government budget exposure. These simulations aim to
compare the impacts of the current program and (1) satellite-based PPP arrangement when
crop income insurance to farmers are available, (2) satellite-based PPP arrangement when
crop income insurance to cooperatives are available for existing cooperatives and (3)
satellite-based PPP arrangement when contingent loan are available and (4) PPP

arrangement when both crop income insurance and contingent loan are available.

Impacts on farm households: We find that while current program can reduce probability
of farm income available for consumption dropping toward zero, there are still some good
probability of low consumption, which could result from low insurance coverage. The
satellite-based crop income insurance can eliminate such low consumption probability
especially when both crop income insurance and risk contingent credit are implemented.
The optimal satellite-based PPP arrangements thus result in lower debt accumulation to
farmers relative to the current program. These are average results, we however find impacts
also vary across production zones and lower for irrigated zones where satellite-based loss

estimation are less correlated with actual losses (results are not shown here).

Impacts on BAAC loan portfolio: With the assumption that farmers will always pay back
loan as much as they can with positive income available for consumption after meeting

subsistence consumption level at the poverty line (which could already be too optimistic),
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we find probability of default decreases substantially with the satellite-based program. This

is contrasting to the current program with low insurance coverage.

Impacts on government’s budget: We find that the current program exposes government
with large budget exposure having to both provide disaster relief and pay for the insurance
premium. When government ‘s support is optimized and confined to only providing
assistance during extreme losses and so allowing market to work properly and farmers to

insure themselves, these result in less budget exposure.

Impacts on insurer’s profitability: Would the proposed satellite-based risk management
system profitable for the private insurers and so could enhance their incentives to step in
to using this improved quality risk information to innovate and offer more variety of
financial contracts to farmers? We simulate loss ratio of the insurers’ nationwide rice
insurance portfolio when risk are pooled for 2, 5 and 10 years. We find that while there
could still be possibility of some losses for the first couple years of operation, such
probability reduces substantially when the risk are pooled beyond 5 years. Of course, we

have not consider the potential risk pooling across portfolios of other types of risk.

Finally, since we have not hold the government budget spent on each program
constant when doing the comparison. For comparison, we estimate the expected outcome
for 1,000 million baht that government expects to spend. And Table 10 reports this result.
We find that various potential insurance and PPP arrangements that are brought about by
satellite-based risk information outperform existing program in terms of decreasing crop
income variability and probability of defaulting input loan of rice farmers as well as in term

of decreasing proportion of defaulted loan in BAAC loan portfolio.

Table 10: The potential impacts on farmers, BAAC and governments

Existing Crop Cooperativ Insured Crop

program income e insurance loan and insurance
Outcome insurance and PPP PPP and insured
Decrease farmer's income variabiility 2.8% 11.2% 13.0% 3.6% 15.8%
Decrease farmer's prob. of loan default 1.8% 6.4% 8.8% 11.4% 13.5%
Decrease BAAC's portfolio loan default 1.4% 6.2% 7.6% 12.4% 13.6%

These simulated results thus make a good evidence for the potential economic values

to investing in risk information, one of which can be satellite data.
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6. Conclusions and policy implications

This paper already illuminates the promises of satellite data (that are collected
transparently, continuously and near real time at granular level but covers nationwide and
more than 16 years) in creating high quality risk information necessary to unlock
development of sustainable risk management in agriculture. We show however that despite
great performance in most of the areas, there are room for improvement especially in
highly heterogeneous production zones in irrigated cropping areas, implying the need to
invest in and explore the use of better resolution satellite data as well as higher quality field
verification. Thanks to the recent development, there are already many of high-resolution
data recently launched, which can be tapped to complement existing sets. And
development of crop-cutting techniques worldwide already shows great promise in

transparently, accurately and timely collection of agricultural yield data.

We then show that as this improved quality satellite-based risk information could
reflect crop production cycles, losses and risks at granular level but covers the whole
system of the country and over time, one can use them to understand localized risks and
how they co-moves and the overall risk of the country, all of which are necessary for
designing and pricing competitive financial contracts. This necessary understanding could
then be used to design optimal PPP arrangements that result of the most cost effective
contribution to risk management from farmers, market and government. With better risk
information, we show that if government can be more targeted and limit their role to just
serve as insurer of last resort providing help in the extreme events when it is not cost
effective for market to manage and allows the market to work offering variety of
competitive financial contracts to transfer risk that have great values to farmers and banks,
this could result in reduction in vulnerability of farm households, improve financial
deepening and financial stability of rural agricultural bank and most importantly reduce

fiscal burden to government. This is really a great improvement from the current program.

This study is far from inclusive, there are obviously many other possible ways one can
exploit from high quality risk information, for example (1) Improving management of other
agricultural risk more importantly price risk, (2) Crowding in effectiveness of other public programs
by linking government supports to enhance farmers’ incentives to participate in crop
zoning, large farm program, farmer’s risk sharing groups, etc. or by designing risk transfer
mechanisms to protect government/BAAC lending agricultural SMEs and (3) Enbancing

sustainable financial deepening by allowing BAAC to design variety of insured credit and saving
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programs and allowing them to do risk-based pricing which could result in the BAAC
being able to extend credit to those currently rationed out of market due to potentially

high credit risk.

Opverall, our results point to the three key implications: (1) Need to investing in agricultural
risk  information: 'This applies well beyond satellite data into better administrative data
collection, combining existing data available at various places. But who should invest in
data? And there will be needs for research and development to get high-quality data to
tunction. (2) Need to investing in research and development. We already show that great data
would still require high degree of research. But who should do research? And even great
research outcomes will not matter if it could not be brought into implementation. And (3)
Need to answer “Who should invest in data, who should do research, and how do we bring research to

materialize and drive policy?”
These are key questions; of which we would like to open three debatable ways forward.

Focus on getting the market to work first: Government should limit their role in agriculture
to rather support development of healthy market. Key roles of government should be
provisioning of public goods, e.g., convening agricultural data reform, investing in risk and
market infrastructure (including inviting laws) to incentivize private sector to innovate and
compete in the market. This could then later create value of risk information beyond public
good, where private sector will have incentive to co-invest both in data and research and

development

Reform agricultural data in the conntry: With government having convening power and with
many agricultural data currently collected by various government agencies, government
should involve private sectors, researchers at the start in the reforming (and opening) of
agricultural data in the country, which involve not only collating existing data but designing
data platform and collection going forwards. Inclusive involvement will create sense of

ownership and incentivize them to partner in data usage and investment going forward.

Bridging research to market and policy environment: We already show that agricultural policies
could work well when optimal public-private partnership (PPP) is in place. So bridging
research in, improve research capacity of government officials and more importantly
involving both researchers and private sectors at the start of the policy design would be

critical.
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