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Abstract

In this paper, we develop a model of wage dynamics and employment mobility with
unrestricted interactions between worker and firm unobserved characteristics in both wages
and employment mobility. We adopt the finite mixture approach of Bonhomme et al.
(2017). The model is estimated on Danish matched employer-employee data for the period
1985-2013. The estimation includes gender, education, age, tenure and time controls. We
find significant sorting on wages and it is stable over the period. Sorting is established early
in careers, increasing during the first decade after which it declines steadily. Job-to-job
mobility displays a “mean-reverting” pattern that maintains correlations between worker
and firm types to a stationary level. Counterfactuals demonstrate that sorting is primarily
driven by two channels: First, a “preference” channel whereby higher wage workers are
more likely to accept jobs in higher wage firms. Second, a job finding channel where the
job destination distribution out of non-employment is stochastically increasing in the wage
type of the worker.
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1 Introduction

What is the assignment of workers to firms, and how is it realized? To answer these two ques-
tions, we estimate a flexible parametric model of wages and mobility with two-sided unobserved
heterogeneity using Danish matched employer-employee data. First, this allows us to measure
how wages depend on worker and firm unobserved heterogeneity, and how worker and firm
unobserved types correlate across matches in any cross-section (sorting). Second, because we
also model the dynamic matching process between workers and firms, we can explain how the
estimated cross-sectional match distribution is produced.

Since the seminal contribution of Abowd et al. (1999) (hereafter AKM) the literature study-
ing how individual wages vary across workers and firms has focussed on estimating a linear
model with worker and firm fixed effects, sometimes a match-specific effect, using Ordinary
Least Squares.1 The AKM model, in its version without match effects, has been criticized for
being too restrictive. Eeckhout and Kircher (2011) claim that non monotonicity in the way
wages depend on worker and firm effects may explain the weak correlation that is found when
estimating the AKM additive-effect model. Several recent studies have designed and estimated
search-matching models that confirm Eeckhout and Kircher’s hypothesis.2 We shall not fol-
low the structural route because any structural model is also bound to severely restrict the way
worker and firm heterogeneity determine wages and employment mobility. Our aim in this pa-
per is to document these relationships under the same restrictions as the AKM model regarding
job-to-job mobility, but with more flexibility in the link between wages and heterogeneity. We
leave to further work such extensions as endogenous mobility (depending on past wages given
heterogeneity), or time-varying unobserved types (for example in order to model human capital
accumulation beyond deterministic age effects).

We depart from AKM’s linearity by following the recent approach of Bonhomme et al.
(2017) (hereafter BLM), who put no shape restrictions on the way wages and job-matching
depend on worker and firm heterogeneity.3 This is rendered possible by assuming that worker
and firm unobserved types are discrete; that is, workers and firms can be clustered into ho-
mogeneous groups of identical workers and firms. Like all finite-mixture models, but unlike
fixed-effect models, BLM show that the model is identified using a panel of workers of finite
length.

As in BLM’s application, the log wage of a match is assumed to be normally distributed
with a mean and variance that depends on both observed and unobserved worker and firm het-

1See Holzer et al. (2004); Martins (2008); Iranzo et al. (2008); Gruetter and Lalive (2009); Bagger et al. (2013);
Card et al. (2013); Woodcock (2015); Song et al. (2015); Card et al. (2016). Recent application correct the naive
OLS estimator for finite sample biases using the method in Andrews et al. (2008).

2See Lise et al. (2016); Lise and Robin (2017); Hagedorn et al. (2017); Bagger and Lentz (2014); de Melo
(2018).

3As far as we know, BLM and our paper are the only ones which model the dynamic process of wages and
employment mobility with both worker and firm heterogeneity and without structural assumptions that tie mobility
to wage outcomes. There are many papers with only worker heterogeneity (e.g. Altonji et al., 2013) and one paper
with only firm heterogeneity (Abowd et al., 2006).
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erogeneity in a non-parametric way. Our way of modeling mobility yet differs. Consider the
probability for a worker of type k and observed time-varying characteristics x who is currently
employed at a firm of type ` to move to a firm of type `′ before the end of the period. The
collection of these different probabilities for all k,x, `, `′ is soon a very large set. BLM do not
restrict these probabilities, which makes them easily estimated (given observed types) by em-
pirical frequencies, but very imprecisely. In order to reduce the dimensionality of the estimation
problem, we assume that employed workers meet other employment opportunities at a rate that
depends on worker characteristics k and x. The type of the employment opportunity `′ is drawn
from a distribution that is common to all workers and independent of the type of the current
firm. Finally, the probability that the worker decides to quit the current job and move to the new
firm takes the shape of a binomial logit, each alternative match being assigned a specific utility
value (function of k, ` and x). Hence, one interpretation of the mobility patterns in the paper
is that of a standard on-the-job search model with random utility. By doing so, we make the
transition probabilities both easier to identify and estimate, and easier to interpret.

A second difference with BLM is that we use the entire panel of Danish matched employer-
employee data for the period 1987-2013 for estimation (instead of just two years). We assume
that worker and firm unobserved types do not change over time. However, the way wage and
mobility parameters depend on observed and unobserved types is allowed to change over time
by periods of three years – some degree of stationarity being required for identification. For
example, the complementarity of worker and firm types in match productivity (wage) can thus
change along the business cycle and be subject to structural change. Therefore, a type here
conditions wage and mobility in a dynamic way. This allows us to run counterfactual exer-
cises where we remove structural changes to the parameters (time variations). This could also
allow, in particular, to calculate ex post earnings present values, like in the recent work of Gu-
venen et al. (2017), conditional on worker types. The downside of this approach to unobserved
heterogeneity is that we may need more types to capture the diversity of possible dynamics.4

A third difference with BLM relates to the estimation procedure, which is in two steps.
First, they classify firms using an automatic classification procedure (k-means) based on the
distribution of wages within each firm. In a second step, they estimate wage and mobility
parameters with unobserved worker types, but observed firm types using the EM algorithm.
Instead, we propose a Classification EM algorithm in the spirit of Celeux and Govaert (1992),
which updates the firm classification after the EM step so as to improve the expected likelihood.
We make thereby use of mobility data, in addition to wages, to classify firm types. This can
be important for measuring inequality as two firms offering identical wages but with different
levels of job stability would result in different lifetime earnings for workers. Moreover, the
mobility parameters involve substantial non-linearity in the likelihood function. The structure of

4We checked that this modeling assumption was not determining our results by alternatively estimating 9 com-
pletely separate models, one for each 3-year subpanel. Both our evaluation of the correlation between worker and
firm effects and the variance decomposition barely changed.
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transition probabilities being related to a Bradley-Terry model, we formulate an MM algorithm
(Hunter, 2004; Hunter and Lange, 2004) that is embedded in the M-step and allows a fast
solution for mobility parameters – a substantial contribution for the feasibility of the estimator.
Monte Carlo simulations show that this CEM algorithm improves over a one-step k-means.

Nevertheless, we do not view our paper’s main contribution as being technical. Our empiri-
cal application is rich with interesting lessons. First, we show both in the data and in large-scale
simulations (i.e. with a one million workers and 100,000 firms, and using our estimated com-
plex wage and mobility model) that the AKM model is overfitting in finite samples. It tends to
underestimate the residual variance and sorting (i.e. the correlation between worker and firm
fixed effects, and the contribution of the covariance between worker and firm fixed effects to
the log-wage variance), and overestimate the contribution of the worker and firm effects to the
overall variance. We find relatively large biases for the OLS estimator of the AKM model.

Second, our estimates show an apparent disagreement in the way unobserved heterogeneity
determines conditional mean wages, on one hand, and, on the other hand, the idiosyncratic
wage variance and the mobility parameters.5 The strongest link is estimated for layoff rates
and job finding probabilities for non-employed workers. The parameters governing the way a
worker of a given type values job types display a much weaker link, and only at low tenure. As
a consequence, the cross sectional distribution of match types that results from the first match
drawn when entering the labor market, and from subsequent employment mobility therefore
shows evidence of moderate, yet non negligible sorting. We measure sorting as the correlation
of the worker and firm components obtained from a linear projection of conditional mean wages
on worker and firm type dummies. Our estimates are around 28% and very stable over the all
period. This is however a greater correlation than is usually estimated using the AKM model.

Third, our parametric model allows us to run counterfactual and synthetic cohort simulations
that help trace key drivers of sorting. Surprisingly, we find that this correlation level is largely
already obtained at the first draw of a match in workers’ careers. Cohort simulations show
that subsequent job mobility strengthens sorting during the first decade of a cohort’s work life
after which sorting steadily weakens. Also surprisingly, we find that a cohort’s peak of sorting
is therefore attained quite early, after about 10 years of experience. If we counterfactually
start a cohort in non-employment, it quickly (within a year or two) attains the level of sorting
implied by our initial match distribution estimates. The strong link between worker types and
the estimated job destination distributions of non-employed workers is one primary force for
the result. The mean-reverting nature of firm mobility is another important force. Conditional
on one worker’s type, the dynamic process of firm types induced by job mobility is estimated
strongly stationary. The main parameters determining the degree of (stationary) sorting between
worker and firm types are the preference for the job, the sampling distribution of firm types and

5For example, we estimate µk` and σk` the conditional mean log-wage and standard deviation for a worker of
type k and an employer of type `. The correlation between µk` and σk` across matches (k, `) is estimated around
0.10 for all workers with tenure greater than 100 days.
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the job finding rates of unemployed.
The layout of the paper is as follow. Section 2 describes the model, Section 3 the estima-

tion procedure, Section 4 the parametric specification. Then, Section 5 presents the estimation
results, and the last two section presents applications. Section 7 is about measuring sorting and
Section 8 about the log-wage variance decomposition.

2 The Model

We use the matched employer-employee data from Denmark from 1985-2013. Wages are re-
ported at annual frequency and mobility data of workers are reported at a weekly level. Our
analysis panel starts in 1987 and we use information from 1985 and 1986 to distinguish be-
tween short and long tenure jobs in the stock of jobs in 1987. We restrict the sample to include
only employment spells that start after individuals finished their highest levels of education. We
remove any spells that start after the individuals turn 50 years old and treat any spells with less
than an average of 25 work hours in a week as a non-employment spell.6

Workers are indexed by i ∈ {1, ..., I} and firms by j ∈ {0,1, ...,J}, where j = 0 reflects non-
employment. For each worker i, we observe a set of time-invariant characteristics zi including
gender and education. Firms also differ from each other by a set of observed, fixed charac-
teristics r j such as public/private status. Each worker i is either drawn from the working age
population in 1987, or enters the panel in the first week of the first year following his or her
last year of schooling. Individual trajectories (wit , jit ,xit)

T
t=1 are recorded at weekly frequency,

where jit ≡ j(i, t) ∈ {0,1, ...,J} is the employer’s ID in the t-th week of observation, xit are
observed worker controls including potential experience (age minus age upon leaving school),
job tenure, and calendar time, and wit is the worker’s log-wage rate at occurrence t. Note that
although the number of repeated observations T varies across individuals, we adopt the simpli-
fied notation of a balanced panel. Job mobility is measured at a weekly frequency but wages are
measured at annual frequency. Thus, wage observations are missing except for the first week of
any new match and the first week of the year.7

We assume that employers (firms) can be clustered into L different groups indexed by ` ∈
{1, . . . ,L} and that workers can be clustered into K different groups indexed by k ∈ {1, ...,K}.
The index ` j is the type of firm j and ki is the type of worker i. Non-employment is observable
and is denoted by ` = 0. Worker and firm type assignments are assumed to be fixed over the
duration of the panel. That is, tenure and experience impact a worker’s mobility and wages
conditional on a fixed type assignment. By implication, a type is characterized also by its

6We operate this selection essentially for comparability with other studies keeping only full-time workers.
7At the end of the year, employers declare to the tax administration services the cumulative salary paid to each

of their employees during the elapsed year. Total salary divided by the total number of hours worked by the worker
in that year is the wage rate that we assign to the first week of that year or of the next employment spell if the
job started inside the year. Hours worked are inferred by Statistics Denmark from observed mandatory pension
contributions that are conditional on weekly hours worked.
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dynamic wage and mobility paths. An often used alternative in the literature (see, for example
Card et al. (2013)) is to stratify the data by calendar time intervals (a common length seems to
be around 7 years) and estimate the model independently for each stratification.

We make two assumptions regarding worker and firm classifications. We omit the individual
index i for simplicity and denote as P(x) the (generic) probability mass or density function of
a random variable X , describing the distribution of some trait in the population of workers, at a
point x.

Assumption 1 (Initial condition). 1) Initial x1 does not predict worker type k conditional

on z: P(k|x1,z) = P(k|z). 2) Initial employer type `1 is independent of z given k and x1:

P(`1|z,k,x1) = P(`1|k,x1).

Leaving aside the dependence to x1, these assumptions are natural. First, it is well known that
the effects of time-invariant controls are not identified in fixed-effect models and are subsumed
in the fixed effects. Second, by this way, we have a common scale of heterogeneity to compare
workers of different gender or education and jobs in different industries. Third, there is a priori

no loss of generality in proceeding this way. Suppose for example that wages are constant across
all men and across all women, but differ across gender types. Then the best way of classifying
wages given gender will be the align k on gender. However, in practice, K is likely to be lower
that the number of different values of z. So there may be some loss of information.

The assumption that z predicts k independently of x1 is more disputable. First, because some
workers in 1987 are drawn from the stock. So x1 contains tenure and potential experience for
these workers. If better workers tend to have higher tenure, for example, then tenure predicts
worker type. Second, the association between type and gender and education may vary across
cohorts of workers.8

Our next assumption is a conditional independence assumption giving a Markovian structure
to the model.

Assumption 2 (Conditional independence). The next employer type and wage (wt , `t+1) depend

on the current information: z, `̀̀t = (`t , `t−1, ...), wt−1 = (wt−1, ...) and xt = (xt ,xt−1, ...) as

follows

P(wt , `t+1|z,k, `̀̀t ,wt−1,xt) = P(wt |k, `t ,xt)P(`t+1|k, `t ,xt).

We implicitly assume that mobility to `t+1 occurs at the end of period t, and hence is conditioned
by xt , like the wage wt that is realized in period t.

The identification of finite mixture models is now beginning to be well understood (see
e.g. Hall and Zhou, 2003; Hu, 2008; Hu and Schennach, 2008; Kasahara and Shimotsu, 2009;
Allman et al., 2009; Hu and Shum, 2012; Henry et al., 2014; Bonhomme et al., 2016b,a; Gassiat

8A more sophisticated assumption would allow k to depend on z and cohort. Then, for experienced workers in
1987, we would translate the current date 1987 and potential experience into the corresponding cohort. Moreover,
instead of conditioning on tenure, we would add a term in the likelihood for the probability of initial tenure given
worker type, firm type, initial experience and initial date (1987).
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et al., 2016). Recently, Bonhomme et al. (2017) have applied these identification techniques to
this model of wages and mobility with two-sided heterogeneity. They show that two consecutive
observations of wages and employer’s types are generically sufficient to identify the model. In
general, two repeated observations are not enough to identify a finite mixture (Allman et al.,
2009). BLM’s proof based on the existence of “cycles”, i.e. workers returning to some initial
firm type after a while, is a bit complicated. In Appendix A we discuss two identification
arguments that complement their analysis. In particular, we show identification with two periods
if individuals can change employer within the same group of firms. In this last case, wage
dynamics for stayers and wage dynamics for movers within the same group of firms allows to
write the identification problem in the form of a joint eigenvalue decomposition that delivers
uniqueness of eigenvectors. In the application, to stay on the safe side of identification and in
order to increase the precision of estimates, we shall use three years of observations to estimate
the parameters.

3 The estimation procedure

In this section we develop a Classification Expectation Maximization (CEM) algorithm for
estimating the mixture model. We shall be treating the unobserved firm types F = (`1, ..., `J)

as fixed effects (i.e. a parameter to be estimated), and worker types E = (k1, ...,kI) as random
effects.

3.1 Likelihood

We state the likelihood for a given firm classification. Let `it = ` j(i,t) denote the type of the firm
employing worker i in period t. Let also

Dit =

1 if ji,t+1 6= jit ,

0 if ji,t+1 = jit ,

indicate an employer change between t and t +1.
For the given firm classification F = (`1, ..., `J) let

q(`|r,F) =
#{ j : r j = r, ` j = `}

#{ j : ri = r}
and q(`|F) =

#{ j : ` j = `}
J

denote the share of type-` firms given observed firm type r (e.g. public/private status) and the
unconditional share.

Let f ,M,π and m denote parametric versions of the wage density function P(w|k, `,x).,
the transition probability P(`′|k, `,x), the worker type probability P(k|z), and the distribution
of initial employer types P(`1|k,x1). For a value β = ( f ,M,π,m) of the parameters and a
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classification F of firms, the likelihood for one worker i – i.e. of (wit , jit ,xit)
T
t=1 conditional on

(zi,xi1) – is
K

∑
k=1

Li(k|β ,F),

where the complete individual likelihood is

Li(k|β ,F) =
m(`i1|k,xi1)π(k|zi)

q(`i1|F)

T

∏
t=1

f (wit |k, `it ,xit)

×
T−1

∏
t=1

M(¬|k, `it ,xit)
1−Dit

(
M(`i,t+1|k, `it ,xit)

q(`i,t+1|F)

)Dit

, (1)

where M(¬|k, `,x) = 1−∑L
`′=0 M(`′|k, `,x) is the probability of staying with the same employer,

and assuming that for the last observation period we do not know whether a mobility occurs or
not by the end of it. By convention f (w|k, `,x) = 1 if the wage observation w is missing.
The term m(`i1|k,xi1)π(k|zi) is the probability of the initial match type (ki, `i1), for ki = k,
under Assumption 1. We assume that each firm within a group is equally likely to be selected.
With that, the ratio 1/q(`it |F) is proportional to the probability that this particular firm jit ,
which is of type `it , be selected, either initially or upon job-to-job mobility. The rest of the
likelihood factors in this way under Assumption 2. Note that the terms 1/q(`it |F) do not show
up in BLM because they do not imbed the estimation of the firm classification F in the same
likelihood-maximization framework as the other parameters. Omitting them would make the
firm classification step fail.

3.2 The EM algorithm for a given firm classification

The firm classification in the data is unobserved. It is infeasible to evaluate the likelihood
function for the formulation of the model where a firm’s unobserved type is a latent variable
symmetric to the unobservable worker type formulation in equation (1). The difficulty lies with
accounting for the co-dependency between a firm’s workers resulting from their matches to a
common firm type in a setup where workers move between firms. Consequently, we estimate
the model for a given firm classification F . We shall explain in the next subsection how we set
and update F .

For a given value of β = ( f ,M,π,m), the posterior probability of worker i to be of type k

given all wages and controls (all the available information) is

pi(k|β ,F)≡ Li(k|β ,F)

∑K
k=1 Li(k|β ,F)

. (2)

Note that the factors 1/q(`|F) in the definition of Li(k|β ,F) (equation (1)) appear in the numer-
ator and the denominator of the definition of posterior probabilities in the same way and can be
simplified out.
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Then, define

Qi( f |β (m),F) =
K

∑
k=1

pi(k|β (m),F)

[
T

∑
t=1

ln f (wit |k, `it ,xit)

]
(3)

as the expected log-likelihood of worker i’s wages for a given value β (m) of the parameter. The
worker posteriors are determined by the model parameters and firm classification

(
β (m),F

)
,

where the superscript m is used to denote the given EM-algorithm iteration. Also, let

Hi(M|β (m),F)=
K

∑
k=1

pi(k|β (m),F)

[
T−1

∑
t=1

{
(1−Dit) lnM(¬|k, `it ,xit)+Dit lnM(`i,t+1|k, `it ,xit)

}]
(4)

be the expected log-likelihood of worker i’s employment history conditional on the first state
`i1.

The EM algorithm iterates the following steps:

E-step For β (m)=( f (m),M(m),π(m),m(m)) and F , calculate posterior probabilities pi(k|β (m),F).

M-step Update β (m) by maximizing ∑i pi(k|β (m),F) lnLi(k|β ,F) subject to ∑k π(k|z) = 1 for
all z and ∑`1 m(`1|k,x1) = 1 for all k,x1, that is

f (m+1) = argmax
f

I

∑
i=1

Qi( f |β (m),F), (5)

M(m+1) = argmax
M

I

∑
i=1

Hi(M|β (m),F), (6)

π
(m+1)(k|z) = ∑I

i=1 pi(k|β (m),F)1{zi = z}
#{i : zi = z}

, (7)

m(m+1)(`|k,x1) =
∑I

i=1 pi(k|β (m),F)1{xi1 = x1, `i1 = `}
∑I

i=1 pi(k|β (m),F)1{xi1 = x1}
. (8)

Note that m(`1|k,x1) is identified for all levels of experience and tenure only in the first survey
year. For all subsequent years, all workers entering the survey are also entering the labor market
and hence have zero experience and tenure.

3.3 Firm re-classification given other parameters

Given an initial value
(

β̂ (s),F(s)
)

, where β̂ (s) can be obtained given F(s) using the previous

EM algorithm, we update F(s) as

F(s+1) = argmax
F

I

∑
i=1

K

∑
k=1

pi(k|β̂ (s),F(s)) lnLi(k; β̂
(s),F). (9)
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In practice we only search for a firm reclassification that increases the likelihood. To do that we
order firms by size from the largest to the smallest. We find `

(s+1)
1 that maximizes equation (9)

keeping all other firm types equal to their values in F(s). Then we find `
(s+1)
2 given `

(s+1)
1 and

`
(s)
3 , ..., `

(s)
J and so on until `(s+1)

J . We then return to the EM iterations with the updated F(s+1).
We call this algorithm a Classification EM algorithm as it resembles the eponym algorithm
proposed by Celeux and Govaert (1992) as a variant of the EM algorithm of Dempster et al.
(1977). See Appendix B for a detailed exposition of our CEM algorithm and why it is working.

This leaves the question of initialization of the firm classification, F(0). For this we opt for
simplicity: We rank firms by average wage per worker in the firm, and cluster firms equally
into L groups based on that sorting. Alternatively, we could use the k-means algorithm as in
Bonhomme et al. (2017).

4 Empirical specification

In this section, we provide the details of parametric specifications of f and M, and on the
number of groups and their labelling.

4.1 Wage distribution

Wages are assumed lognormal given match type. Specifically,

f (w|k, `,x) = 1
σk`(x)

ϕ

(
w−µk`(x)

σk`(x)

)
, (10)

with ϕ(u) = (2π)−1/2e−u2/2. This specification of the log-wage mean allows for a match-
specific mean µk` and variance σ2

k`.
9

The M-step update 5 takes the following form:

µ
(m+1)
k` (x) =

∑I
i=1 pi(k|β (m),F)∑T

t=1 1{`it = `,xit = x}wit

∑I
i=1 pi(k|β (m),F)∑T

t=1 1{`it = `,xit = x}
,

σ
(m+1)
k` (x)] =

√√√√∑I
i=1 pi(k; |β (m),F)∑T

t=1 1{`it = `,xit = x}[wit−µ
(m+1)
k` (x)]2

∑I
i=1 pi(k|β (m),F)∑T

t=1 1{`it = `,xit = x}

(simple averages weighted by posterior type-probabilities).

9The distribution f is the distribution of wages for matches with given characteristics. One may interpret these
wages as productivity if there is no selection into employment conditional on types.
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4.2 Transition probabilities

We omit conditioning on xit to simplify the notations. The probability for a worker of type k of
a transition from a firm of type `= 1, ...,L to a firm of type `′ = 1, ...,L at time t is specified as

M(`′|k, `,x) = λk(x)ν`′(x)Pk``′(x). (11)

Parameter λk ∈ [0,1] is the worker k conditional probability of a meeting with an outside em-
ployer. Parameter ν`′ ≥ 0, with ∑L

`′=1 ν`′ = 1, is the probability that the outside draw is a job of
type `′.

The parameter Pk``′ is the probability that the transition from ` to `′ becomes effective. We
assume a Bradley-Terry specification for Pk``′ (see e.g. Agresti, 2003; Hunter, 2004). That is,

Pk``′(x) =
γk`′(x)

γk`(x)+ γk`′(x)
. (12)

Parameter γk`, with ∑L
`=1 γk` = 1, measures the quality of the match (k, `). If the worker draws a

same-type job, with little loss of generality, we assume that the worker moves with probability
1/2.10

We also model unemployment-employment transitions in a completely unrestricted way:

M(`′|k,0) = ψk`′, M(0|k, `) = δk`.

By convention, M(0|k,0) = 0. There is no transition from unemployment to unemployment.
With this it follows that the probability of staying non-employed is

M(¬|k,0) = 1−
L

∑
`′=1

M(`′|k,0) = 1−
L

∑
`′=1

ψk`′,

and for `≥ 1, the probability of staying with the same employer is

M(¬|k, `) = 1−
L

∑
`′=0

M(`′|k, `) = 1−δk`−λk`

L

∑
`′=1

ν`′Pk``′ = 1−δk`−λk`+λk`

L

∑
`′=1

ν`′(1−Pk``′).

We prove in Appendix C that the more flexible specification λk`,νk`′,γk` is not identified
given knowledge of unrestricted transition probabilities M(`′|k, `) = λk`νk`′Pk``′ . In this case,
for every choice of Mk``′ for all k and `,`′ ≥ 1 there are two and only two solutions. Let
(λk`,νk`′,γk`) be such that

M(`′|k, `) = λk`νk`′
γk`′

γk`+ γk`′
.

10We experimented the specification Pk``′ =
γk`′

θγk`+ γk`′
, where θ > 0 measures the incumbent’s advantage and

parametrizes mobility within the same group of firms. However it appeared difficult to disentangle θ from λ .
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Then we also have
M(`′|k, `) = λk`

γk`
νk`′γk`′

1/γk`′

1/γk`+1/γk`′
.

Hence
(

λk`
γk`

,νk`′γk`′ ,
1

γk`

)
is also a solution (with the appropriate normalizations). We thus need

to restrict the parametrization further. We opt for making λk` independent of ` and νk`′ inde-
pendent of k (but dependent on x). An employee will draw an alternative offer with probabil-
ity λk, this offer is from a firm of type `′ with probability ν`′ and `′ beats ` with probability
Pk``′ =

γk`′
γk`+γk`′

.
This parametric restriction on transition probabilities M(`′|k, `,x) is a considerable reduc-

tion of dimensionality with respect to letting transition probabilities unrestricted as in BLM. We
believe that the loss of generality is amply compensated by the gains in efficiency and intelli-
gibility. However, we also lose in simplicity. Transition probability estimates for the M-step
of the EM algorithm are simple frequencies in the unrestricted case. Obtaining estimates in the
the parametric restriction is another challenge. In Appendix D we develop an MM algorithm
(Hunter, 2004; Hunter and Lange, 2004) that allows to maximize H(M|β (m)) subject to the
parametric restriction on M very rapidly.11

4.3 The number of groups and group labeling

The numbers of latent groups, K and L, are set by experimentation. We tried automatic selection
techniques to select K,L such as BIC penalization. For a reason that we do not fully understand,
such likelihood penalization seems to work for K (workers), but not for L (firms). This is likely
due to our treatment of each ` j as a fixed effect. A deeper theoretical analysis of the CEM
algorithm (on a simpler specification) is necessary to understand it better.

For each individual i present in the panel at any time, we can calculate pi(k) the posterior
probability of being of type k using equation (2) at the estimated parameters (β and firm classi-
fication F), and for any given worker and employment-firm types k, ` and for any x indicating a
particular tenure, experience and calendar time period, let

p(k, `,x) ∝ ∑
i,t

pi(k)
T

∑
t=1

1{`it = `,xit = x} (13)

11The MM algorithm works by finding a function that minorizes the objective function and that is more easily
maximized. Let f (θ) be the objective concave function to be maximized. At the m step of the algorithm, the
constructed function g(θ |θm) will be called the minorized version of the objective function at θm if

g(θ |θm)≤ f (θ),∀θ , and g(θm|θm) = f (θm).

Then, maximize g(θ |θm) instead of f (θ), and let θm+1 = argmaxθ g(θ |θm). The above iterative method guarantees
that f (θm) converges to a local optimum or a saddle point as m goes to infinity because

f (θm+1)≥ g(θm+1|θm)≥ g(θm|θm) = f (θm).
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be the estimated proportion of observations with such k, `,x values in the panel.12

The labeling of the groups is arbitrary. We use wage observations to give a cardinal labeling
to the groups. For a given time period, let

µk`(x) = µ(x)+ak +b`+ µ̃k`(x), (14)

be the linear projection of µk`(x) on all tenure and experience interactions and worker and
firm indicators. The term µ̃k`(x) denotes the residual, and we call it the “match effect”. The
projection is obtained by regressing µk`(x) on tenure*experience dummies, worker dummies
and firm dummies, weighing each (k, `,x) by p(k, `,x). The estimation algorithm will assign
labels arbitrarily. We relabel k and ` so that ak and b`, given in 5, are now increasing in k, `.
Hence, by construction µk` will on average be increasing in the k and ` indices.

5 Estimation results

This section presents the results. First on the distributions of latent types, then on how condi-
tional mean wages and other parameters depend on latent types.

The time-invariant worker characteristics zi include gender and education. Education level
is based on the normed number of years of education associated with the worker’s highest
completed degree. The low education group comprises all degrees normed to less than 12
years of education. The medium education group has a norm of exactly 12 years, and the high
education group is any education level with a norm greater than 12 years. The time-invariant
firm characteristics r j include the public/private status. The worker’s time variant characteristics
xi include the short/long tenure status, potential experience (time since graduation), and calendar
year.13 Short tenure is defined as less than 100 weeks of employment, and 26 weeks for non-
employment. We divide experience into four groups: less than 5 years; 5-10 years; 11-15 years;
and more than 15 years. Additionally, we allow the wage and mobility parameters to vary by 3-
year time intervals. This leads to 9 different calendar time groups between 1987-2013.14 Thus,
xit is one of 72 different groups.

5.1 Distributions of worker and firm types

We set the number of worker types to K = 14 and the number of firm types to L = 24. We
indeed obtained greater likelihood gains by categorizing firms more finely than workers.

12The proportionality symbol ∝ means that the right-hand side of the “equality” needs to be normalized for the
left-hand side to be a proper probability.

13We can calculate actual experience only for the workers entering the labor market after 1987. This is why we
stick to potential experience, or age.

14We shall interpret calendar time as reflecting the macro environment. It could also refer to cohort effects.
There is obviously no way to separate cohort, time and age.
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Figure 1: Cross-sectional distributions of types (10-15 years of experience, long tenure, 1999-
01)
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(b) Distribution of ` across workers
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(c) Distribution of ` across firms
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Figure 2: Gender and education conditional average wages
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Table 1: Proportion of gender and education by worker type

Worker type Gender Education
k Male Female Low Medium High
1 0.48 0.52 0.64 0.31 0.05
2 0.13 0.87 0.40 0.52 0.08
3 0.31 0.69 0.28 0.55 0.17
4 0.42 0.58 0.23 0.57 0.20
5 0.45 0.55 0.30 0.45 0.25
6 0.51 0.49 0.18 0.55 0.27
7 0.40 0.60 0.13 0.42 0.45
8 0.62 0.38 0.24 0.44 0.32
9 0.77 0.23 0.27 0.58 0.15

10 0.76 0.24 0.14 0.66 0.20
11 0.55 0.45 0.07 0.33 0.60
12 0.68 0.32 0.07 0.37 0.56
13 0.78 0.22 0.04 0.28 0.68
14 0.83 0.17 0.03 0.20 0.77

Table 2: Firm Characteristics

Firm type Sector Group size Avg no. spells %no. spells
` No cat. Public Private
1 0.17 0.09 0.73 31638 3 0.00
2 0.05 0.04 0.91 21363 5 0.01
3 0.09 0.04 0.87 12307 29 0.03
4 0.07 0.06 0.87 27911 8 0.00
5 0.17 0.05 0.79 49002 2 0.01
6 0.02 0.06 0.92 18328 11 0.19
7 0.37 0.05 0.57 42465 13 0.02
8 0.05 0.71 0.24 262 1736 0.02
9 0.17 0.12 0.71 8829 99 0.05
10 0.05 0.11 0.84 12745 34 2.32
11 0.33 0.43 0.24 58 7209 9.82
12 0.65 0.21 0.15 34 26491 0.00
13 0.41 0.20 0.39 176 3183 30.16
14 0.02 0.18 0.80 5113 122 3.97
15 0.03 0.06 0.91 12222 24 0.00
16 0.04 0.06 0.90 49364 4 39.24
17 0.18 0.04 0.78 49284 2 0.11
18 0.22 0.49 0.30 37 27776 0.58
19 0.09 0.14 0.77 636 1063 0.02
20 0.07 0.11 0.83 1471 491 1.74
21 0.10 0.14 0.76 78 6300 9.73
22 0.12 0.09 0.79 4000 181 0.26
23 0.14 0.06 0.80 18370 27 0.03
24 0.08 0.10 0.82 525 1413 1.67
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For conciseness, we only present graphical results for workers who have 10-15 years of
experience and more than 100 days of tenure in the 1999-01 period. The online appendix
contains graphs for all periods across different characteristics of workers. There are variations
over time without any pattern obviously emerging. We calculate

p(k) ∝ ∑
i

pi(k), p(`) ∝ ∑
i,t

1{`it = `},

the estimated marginal cross-sectional distributions of k and ` across workers (the marginals
of p(k, `,x)). Figure 1 displays these distributions. The marginal CDFs of k and ` (we shall
use F(k),F(`) to denote them) offer a different labeling for the plots that we are going to
analyze. The advantage of plotting for example µk` (x) against F(k),F(`) for a given x (year,
tenure and experience) over using k and ` for the axes is that we thus compress the axis-scale
where there are few workers (as in the case of lower firm types, ` ≤ 5) and stretch it where
there are many. Interestingly, some firm types are relatively rare in the population of firms
(i.e. ` = 1,2,5,15,16,17) but frequent in the population of employed workers because these
firms have larger sizes. The firm classification respects the assumption that firms within a group
are equally likely to be sampled. Hence, to the extent that firm size and vacancy posting are
related (as one would expect), the classification will group firms by size, in addition to wage
and mobility patterns. Moreover, F(k) is invariant to the labelling of worker types, whether
k = 1,2,3 or k = 1,5,7, both choices deliver the same F(k).

Table 1 shows how observed characteristics z, gender and education, correlate with unob-
served worker types (mean posterior probabilities by observed type). There is a strong corre-
lation between types and observed characteristics. It is seen that high worker types tend to be
male and highly educated workers.15 Figure 2 shows average wage realizations conditional on
gender and education and firm type. Although we do not specifically make wages depend on
gender and education, the number of worker types K is large enough to deliver the expect link.

Table 2 repeats the operation for firms. Strikingly, most groups gather many firms that hire
very few workers, and a few groups gather a small number of firms that hire many workers.
For example, the 262 firms in group ` = 8 are mostly public and account for 0.02% of all
spells. Then, the 49,364 firms in group ` = 16 and the 6,300 firms in group ` = 21 are mostly
private and account for 39.2% and 9.7% of all spells. Although firm size and sector seem to
be important factors to explain the estimated classification, it would be obviously difficult to
explain why groups 11 and 18 are thus split.

Summing up, although we estimate a relatively small number of groups (K = 14 groups of
workers and L = 24 groups of firms), this classification contains information that differs from
the observed characteristics.

15In reality, types may reflect a combination of heterogeneity in skills, productivity and bargaining power. A
more detailed analysis controlling for observed characteristics, such as occupation, and further analyzing sources
of heterogeneity in types would be interesting future work.
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5.2 Conditional mean wages and other parameters

In Figure 3, we show the time-aggregated µk` for one experience and tenure status (10-15 years
of experience and more than 100 days of tenure). Wages are generally increasing in both tenure
and experience, but apart from that the links between expected wages and match types by expe-
rience and tenure are similar and we do not show them.

Wages vary significantly more with worker than firm types. It is furthermore notable that
µk` is broadly speaking monotone in the ranked firm and worker types. Worker types agree on
the wage ranks of firms, and vice versa. Moreover the lines ` 7→ µk` for all k (left panel) are
essentially parallel. These results are broadly consistent with the assumption of linear wage in
the AKM model. We will later perform a variance decomposition exercise that will allow us to
make this assertion more precise.

In order to avoid an inflation of figures (which are relegated to an online appendix), we only
show (in Table 3) how the other parameters correlate with mean wage µk` with respect to the
cross-sectional match distribution p(k, `) ∝ ∑i,t pi(k)1{`it = `}) is generally negative and low.

The correlation between idiosyncratic dispersion (as measured by standard deviation σk`)
and mean wages is sizable and negative only for the short-tenure workers. However, looking
at the estimated values of σk`(x) more closely, idiosyncratic dispersion seems generally quite
concentrated with a few outliers (mainly k = 2).

Overall, search intensity λk is increasing in worker type k (with noise), and this relationship
is more pronounced for younger workers who are long- tenure (less than 15 years of labor
market experience). It is worth noting that the core sorting mechanism in Bagger and Lentz
(2014) implies that more skilled workers search more intensely, consistent with this finding.
The sampling distribution ν`′ shows evidence that better firms are more likely to be sampled by
higher-tenure workers with little variation across workers of different experience levels. This
relationship, however, only exists for long-tenure workers.

Layoff rates δk` are strongly decreasing in mean wage, especially so for low-tenure workers.
The negative link between layoff rates and firm types is also emphasized in Bagger and Lentz
(2014) and Jarosh (2015). Note, however, that for higher-tenure workers at least the layoff rate
is quite flat and homogeneous. For job finding rates ψk` we find a positive link with mean wage,
less strong than for layoff rates and again stronger for low-tenure workers.

Finally, the link between mean wage and the preference for the job (or match value), γk`, is
slightly negative for longer tenure. It is weakly positive (correlation of the order of 0.3) at lower
tenure. This may indicate that some workers, for example unemployed, may be forced to accept
lower quality jobs that they will sooner than later quit when better opportunities show up. Now,
the overall very low correlation between γk` and µk` shows that the drivers of mobility across
firm types are to a significant extent unrelated to wages, particularly for long tenure workers.
Many other factors such as job amenities, family shocks, and job specific idiosyncratic shocks
may explain mobility in ways that is not necessarily optimal in terms of income.
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Figure 3: Mean wage µk` (10-15 years of experience, long tenure, 1999-01)
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Table 3: Correlation with µk` in 1999-01

σk` δk` ψk` γk` λk ν`′

experience tenure < 100 weeks
<5 years -0.50 -0.79 0.51 0.31 0.33 -0.11

5-10 years -0.41 -0.72 0.56 0.36 0.40 -0.07
10-15 years -0.31 -0.66 0.57 0.41 0.46 -0.08
> 15 years -0.35 -0.61 0.55 0.36 0.24 -0.17

tenure > 100 weeks
<5 years 0.01 -0.19 0.28 0.06 0.63 0.45

5-10 years 0.04 -0.25 0.11 -0.10 0.65 0.49
10-15 years 0.06 -0.21 -0.06 0.07 0.58 0.49
> 15 years 0.08 -0.14 -0.26 -0.10 0.22 0.20
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6 Is there a ladder effect?

To explore the ladder structure further and the mobility implied by the λk,ν`,γk` estimates,
Figure 4 presents the expected firm type destination conditional on the current firm type and
a job-to-job move. There is surprisingly little effect of age or experience. Tenure seems to
matters. At low tenure the curves diverge. For low skill workers (say k ≤ 7; solid lines) the
curves are essentially flat, except for experienced workers with long tenure. For workers of
higher type (k > 7) then the expected destination firm rank is increasing in current firm rank.
At higher tenure, we see a reverse phenomenon. Low-skilled workers tend to catch up with
high-skill workers. Furthermore, catching-up seems stronger later in the life cycle (the main
experience effect).

In Figure 5 we repeat the exercise but we now consider the expected firm type destination
not in the next year, but five years ahead. We make two important changes though. First, we
reintroduce non-employment either in the origin state (` = 0), the destination state (`′ = 0), or
any intermediate year. Second, we run simulations allowing for tenure to change. However
we proceed to the simulation separately for each experience category. The results are striking.
There is a much bigger dispersion in destination states across worker groups for younger work-
ers than for older ones. We can see also that starting non-employed is not as bad as starting in a
job from one of the worst types. The third amazing result is that the average firm type does not
seem to vary much with experience. Finally, we see that mobility is mean-reverting. Starting
from a low firm type, mobility will improve the firm location; but starting from a high firm
type, mobility reduces the firm quality. It is thus hard to maintain a position at the top of the job
ranking if, for some reason, one has to move.

To illustrate the interaction between experience on mobility patterns, we construct a syn-
thetic cohort for the 1999-01 period, a mid point of the longitudinal dimension of our data. The
online appendix contains graphs for all periods. The patterns we highlight are invariant across
the time periods in the data. The cohort is initialized with zero experience and tenure. Its initial
allocation is drawn according to the estimated m(`|k,x) where the x category is the one corre-
sponding to zero experience, zero tenure and the time period in question. The cohort is then
simulated forward 30 years with experience and tenure evolving endogenously. Calendar time
is held counterfactually constant to avoid conflation of experience effects with time effects.

Figure 6a shows that non-employment risk is strongly associated with worker type. Low
wage workers have significantly higher non-employment rates early in life than high wage work-
ers. The evolution with experience is such that the sorting on the extensive employment margin
is less pronounced for high experience workers. Note that the relatively high non-employment
rates are in part a result of our focus on more stable and close to full time jobs.

Figure 6b shows the average firm location, by experience and worker type, for the employed.
Higher worker types are on average matched with higher wage firms. On average the age profile
of the firm location is flat and even decreasing for the high wage workers, whereas low wage
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Figure 4: Conditional mobility across firm types, 1999-01
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Figure 5: Conditional mobility across firm types (5-year ahead and unconditional on tenure)
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Figure 6: Non-employment and average firm location over the life-cycle, 1999-01 cohort.
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(c) Average firm location, nonemployment = 0
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Figure 7: Firm location mean and variance after nonemployment shocks, 1999-01 cohort.

(a) Firm location mean (employment conditional)
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(b) Firm location variance (employment conditional).
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workers show some tendency to improve their position on the ladder over time. The ladder
position variation in age is however considerably less than that across worker types. Figure
6c includes non-employed workers by assigning a value 0 to F(`) in this case. The extensive
employment margin tends to add to the picture that ladder position deteriorates in age for high
wage workers and something of an opposite trend for low wage workers. This is the mirror
image of the non-employment risk patterns previously described.

Finally, we also show the mean and variance of firm location by worker type along the life
cycle in Figure 7 subject to initial non-employment. Specifically, a cohort is initialized to be
unemployed at one of four different experience levels, 1 week, 260 weeks, 520 weeks, or 780
weeks. The cohort is then simulated forward according to the estimated mobility model. By
this, we demonstrate the impact of non-employment at different levels of experience. These
results are drawn in thin lines in Figure 7. They are compared to a baseline where the cohort is
initialized by the estimated initial distribution.

The first observation of a cohort is one year after the non-employment spell and ladder
position is a result both of the match distribution directly out of nonemployment and subsequent
mobility within the year. First of all, conditional on employment, it is seen that a cohort recovers
ladder position quite quickly. That said, there is a prolonged subsequent period of some 5
years where the cohort regains additional ladder position after the non-employment spell, which
demonstrates that job-to-job mobility does result in improved ladder position. The move out of
non-employment is associated with initially higher variance in ladder position which declines
during the subsequent recovery period and job-to-job moves.

7 Measuring sorting

The preceding section produces a rather depressing view of mobility. There is an extremely
weak ladder mechanism. Workers draw a different firm match given their type when they enter
the labor market, and essentially stay there. The aim of this section is first to provide a mea-
surement of sorting, i.e. how worker and firm types correlate, and second to understand how it
is built.

7.1 How much sorting there is?

To illustrate the estimated sorting, Figure 8 shows the joint distribution of 10-15 years of ex-
perience and long tenure workers and firms relative to the matching probability under the as-
sumption of independence, c[F(k),F(`)]≡ p(k,`)

p(k)p(`) in 1999-01. This is a copula density. There
is evidence of positive assortative matching. The entries in the first diagonal of the c() mapping
is significantly higher than off-diagonal entries. Low type workers tend to match with low type
firms, high type workers with high type firms.

There is significant noise in the relationship, in particular because it is unconditional on
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Figure 8: Copula c[F(k),F(`)]≡ p(k,`)
p(k)p(`) (10-15 years of experience, long tenure, 1999-01)
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Figure 9: Sorting by tenure and experience
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Figure 10: Observed, initial and equilibrium sorting
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calendar time, experience and tenure. To quantify the strength of the sorting conditional on
worker characteristics, we calculate the correlation coefficient between the cardinal measures
of worker and firm types we obtained in the wage projection. We do that in two ways, allowing
tenure and experience to interact with worker and firm types, or not (like in the literature).

Figure 9 shows the correlation coefficient between types conditional on time, experience,
and tenure. That is, the worker type measure is ak(x) and the firm type measure is b`(x),
obtained by projecting µk`(x) on k and ` separately for each x, each case (k, `) being weighted
by

p(k, `|x) = ∑i,t pi(k)1{`it = `,xit = x}
∑i,t 1{xit = x}

.

As can be seen the correlation coefficients tend to take values between 0.2 and 0.4, confirming
the positive sorting between firm and worker types. Furthermore, the positive sorting tends
to get stronger from the beginning of the sample period until the early 2000’s. The increasing
pattern is particularly pronounced for long tenure matches. Also, sorting seems a bit stronger for
younger workers, which is consistent with the search ladder being steeper for younger workers.

With the more usual projection obtained without interacting k and ` with tenure and experi-
ence, we find a fairly modest increase in the correlation coefficient over time from 0.25 to 0.3
(see Figure 10, line “Observed”). These estimates are considerably larger than those in Bagger
et al. (2013) using the AKM model (from a low -.07 in 1981 to a high .14 in 2001). Overall, our
sorting pattern is thus stronger and more stable. Recently, Borovičkovà and Shimer (2017) have
proposed a different way of calculating this correlation based on mean wage per worker and per
firm. Using their estimator, we find a correlation of 47%, much larger than ours. Understanding
the sources of discrepancy is beyond the aim of this paper, but it is certain that this estimator
measures something different from the correlation between worker and firm linear effects.
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Figure 11: Sorting over the life cycle
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Figure 10 also compares three correlations between ak and b` (without interactions with
tenure and experience) obtained from three different match distributions: the observed cross-
sectional match distribution p(k, `,x) calculated for a given year; the stationary (or equilibrium)
distribution p∞(k, `,x) that is obtained from the estimated transition probabilities Mk``′(x);16

and lastly, the initial distribution of matches p0(k, `|x1) = p(k)m(`|k,x1). We find that the
correlations calculated with these alternative distributions are close to each other. It may be the
initial correlation is bigger than the observed and equilibrium ones. This confirms that mobility
is not a mechanism that increases sorting, instead mobility just maintains sorting close to its
initial level.

To study the interaction between experience and tenure on mobility patterns, we construct a
synthetic cohort for each of our 9 time periods, as explained in the previous section. Figure 11
shows the correlation between worker and firm wage effects among employed workers for the
9 different cohorts by experience. Already at the outset, the cohorts are significantly sorted. It
is then a general pattern that during the first 5 to 10 years of a cohort’s life, mobility patterns
strengthen sorting, and the cohort’s maximal sorting level is attained already after about 5 or
10 years. Sorting subsequently weakens as the cohort ages further. Interestingly, this life-cycle
pattern seems to have disappeared with the 2008 crisis showing a steady decline in sorting
throughout the life of a cohort. Strikingly, for these cohorts maximal sorting is attained already
at the outset of the cohort’s life.

16From Mk``′(x) calculate m∞(`|k,x) as the ergodic distribution associated with the Markov chain where we also
allow tenure status to reset. Then, p∞(k, `|x) = p(k)m∞(`|k,x), where p(k) = 1

N ∑i pi(k). Then average over x.
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Table 4: Average counterfactual sorting over time

Benchmark ρa,b
Average <5 exp 5-10 exp 10-15 exp 15> exp

0.29 0.31 0.32 0.30 0.27

% change
Counterfactual Average <5 exp 5-10 exp 10-15 exp 15> exp
No k variation in γk` -57.74 -52.05 -59.60 -60.26 -57.03
No k, ` variation in γk` -64.55 -66.68 -63.70 -63.38 -61.44
No k variation in ψk` -39.57 -36.42 -37.61 -38.90 -45.53
No ` variation in ψk` -44.88 -39.27 -47.87 -44.10 -45.52
No ` variation in ν` -50.79 -39.16 -53.31 -52.05 -51.96
No k variation in λk -3.11 -3.68 -3.48 -3.16 -1.84
No E-E transition (λk = 0) -33.97 -39.21 -35.68 -32.86 -22.11
No k variation in δk` 1.74 -5.42 0.37 2.60 5.35
No ` variation in δk` -1.19 5.70 1.73 -2.09 -2.85
No k variations in δk` given

-45.72 -49.64 -45.38 -43.75 -47.57
no k variation in ψk`

No k variation in γk` given
-93.59 -84.44 -91.42 -99.96 -92.81

no ` variation in ν`

No tenure effect in γk` -5.72 -8.29 -4.43 -5.71 -3.69
No tenure effect in λk -0.79 -0.39 -1.14 -1.43 -0.70
No tenure effect in ν` -1.80 -2.82 -0.68 -0.59 -2.61
No experience effect in γk` -4.31 -12.32 -11.03 -2.44 4.81
No experience effect in λk -1.78 -1.50 -2.06 -1.54 -2.09
No experience effect in ν` -1.15 1.91 -1.73 -2.67 -2.25

No E-E transition (λk = 0) -33.97 -39.21 -35.68 -32.86 -22.11
No E-U transition (δk` = 0) -21.69 0.32 -15.91 -22.80 -18.77

7.2 The anatomy of equilibrium sorting

We finally perform a series of counterfactuals to assess the relative strength of the different
mobility channels that may impact sorting in the model. Each counterfactual changes a partic-
ular mobility variable by removing one dimension of variation (such as worker-type, firm-type,
tenure, experience and time variation) and setting the variable to its weighted average in a given
dimension while holding the others parameters constant. We simulate 1,000,000,000 workers
to calculate the counterfactual steady state match probability p∞

alt(k, `). We then use p∞
alt(k, `)

to re-calculate the correlations between the benchmark cardinal measures of worker ak and firm
b` types, obtained from the original steady-state distribution.17 Table 4 displays the percentage
change of counterfactual correlations, relative to the benchmark case, for both unconditional
and conditional on experience.

17We also tried with re-estimating akand b` with the counterfactual distribution. Results are similar.
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If all workers agree on their preference for firms (γk` = γ`) then the only sources of sorting
are that better workers search more intensely and climb the common ladder faster, and that
layoff rates may vary across worker types. This counterfactual removes all homophilic source
of sorting. As can be seen, the impact on sorting is substantial. We observe a similar impact
on sorting due to variation across worker types in the firm type destination distribution out of
unemployment (ψk` = ψ`). We see this channel to be a significant source of sorting in the
estimated model. It is a notable feature of the estimation since it is a channel that is typically
absent in standard random search models.

Removing the heterogeneity in search intensity λk has little effect on sorting. However,
when we set λk to zero — so that workers keep the first jobs they draw out of unemployment
until the next layoff — sorting is reduced by almost 40 percent for the youngest group of work-
ers, and to a lesser extent for the older groups.

The removal of heterogeneity in the sampling probability of firm types ν`′ also has a signifi-
cant effect on sorting, similar in magnitude to the effect obtained by removing heterogeneity in
the job finding rates for unemployed. Hence an heterogeneous firm sampling probability does
amplify sorting driven by heterogeneous preferences γk`, but not heterogeneous search intensity.
This is likely due to the fact that search intensity does not vary enough across workers.

There is limited impact on sorting from the layoff channel, δk` = δ ` and δk` = δ k. Even
though low-quality matches are more likely to be sent into unemployment than high-quality
matches, heterogeneous layoff risk does not significantly alter overall sorting. It is conceivable
that the lack of impact on sorting could be a consequence of heterogeneous job finding rates for
unemployed workers, ψk`. The estimated destination distribution out of unemployment goes a
long way to directly place a worker type back to the position implied by the job-to-job mobility.
Hence, layoffs could have minor sorting implications in our setting. Therefore, differential
layoff differences across worker types would not affect sorting either.

Finally, we assess the extent to which the transition from employment to unemployment
impacts sorting by setting δk` to zero. When workers only move from job to job, sorting rises
among young workers, while sorting reduces for workers in other age groups. This is consistent
with our finding that sorting is largely built early on in one’s career and become less strong as
workers age.

8 Decomposing the variance of log-wages and wage growth

In this last section, we measure the contribution of sorting to log-wage inequality and wage
growth dispersion.
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8.1 Log-wage levels

For a given time period, we project µk`(x) on all tenure and experience interactions and worker
and firm indicators as in equation (14). We then decompose the log-wage variance as follows
(omitting the conditioning on calendar time):

V(wit) = E[V (wit |ki, `it ,xit)]+V[E(wit |ki, `it ,xit)]

= E[σ2(ki, `it ,xit)]+V[µ(ki, `it ,xit)],

and

V[µ(ki, `it ,xit)] = V[µ(xit)]+V[a(ki)]+V[b(`it)]

+V[µ̃(ki, `it ,xit)]+2Cov[µ(xit),a(ki)]

+2Cov[µ(xit),b(`it)]+2Cov[a(ki),b(`it)],

where expectation operators (and variance and covariance) are with respect to distribution
p(k, `,x). For example,

E[σ2(ki, `it ,xit)] =
∑k, 6̀=0,x p(k, `,x)σ2

k`(x)

∑k, 6̀=0,x p(k, `,x)
.

Figure 12 shows the log-wage variance decomposition over time. In panel (a), it is seen that
overall log wage variance, V(w), is increasing over time. Panel (b) shows the relative impor-
tance of within match wage variance, Eσ2, and between match wage variance, Vµ , respectively.
As can be seen, the between match wage variance is rising proportionately over time so that by
the end of the sample, in the early 2010s, the within match wage variance accounts for 62.1% of
overall wage variance, from 47.6% at the end of the 1980s. The residual variance, the average
of the idiosyncratic component σk`(x), conversely decreased from around 52.4% to 37.9%.

Note that we estimate considerably more idiosyncratic wage dispersion than is usually the
case using the AKM model (Table 5). Along with the increased importance of between match
wage variance follows an increase in the variance across worker types V(a). Wage dispersion
across worker types is the dominant source of dispersion across matches (around 29% between
1987 and 2007, and 35% after 2007), but its importance as a fraction of between match variation
is decreasing over time (from 61.2% to 58.5%). Since we estimate so much more idiosyncratic
variance, our estimates of person effect contribution is sizably smaller than in the AKM-based
literature.

The effect of sorting 2Cov(a,b) comes next, which explains about 7% of the overall log-
wage variance. We confirm the increasing trend that has been observed elsewhere (Card et al.,
2013; Song et al., 2015), although in a much more subdued way. The firm effect has remained
third in contribution after the worker effect and what we conventionally call “sorting” until the
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Figure 12: Variance decomposition
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mid-2000, explaining about 5% of the log wage variance. We observe a big drop after 2005
benefiting to the match-specific effect V (µ̃) and the effect of age and tenure V (µ). It is difficult
to say if this corresponds to a structural change or if it is just some anecdotic phenomenon.
Finally, there is evidence that worker and firm heterogeneity impact mean wages in a non ad-
ditive way. The match-specific effect V (µ̃) has doubled in size between 1995 and 2011. Its
contribution to log wage variance is now comparable to that of the worker effect.

Summing up, we estimate much more residual variance than with the AKM model, and
therefore a smaller contribution of worker effects. Sorting comes next and its contribution is
increasing over the period. The firm effect and the match effect have similar, smaller contri-
butions. The relative shares of worker, firm, sorting and residual effects are different from the
estimates in Bonhomme et al. (2017) using Swedish matched employer-employee data. They
estimate a greater correlation between worker and firm types, less residual variance, a much
greater contribution of the person effect and a lower contribution of the firm effect. However,
note that they estimate their more flexible model (as far as mobility is concerned) on just two
years of data, whereas we use 26 years of data to identify worker and firm heterogeneity.

8.2 Monte Carlo simulations

In order to both check the accuracy of our estimation procedure and evaluate the biases of
AKM, we ran a Monte Carlo simulation as close as possible from the true data. The simulations
involve 1,000,000 workers and 100,000 firms where K = 14,L= 24. The length of the panel is 7
years. We use the parameters estimated for a given time period and age class, and we simulation
worker trajectories, allowing for tenure to change. We hold age fixed in the simulations so as not
to worry about workers’ entry into and exit from the labor market. We draw initial conditions
from the steady-state distribution.

The results can be found in Table 6. Each horizontal section of the table separated by an
horizontal line corresponds to a different simulation with a different time period and a differ-
ent experience group. Within each horizontal panel, the row labeled “true” displays the actual
variance decomposition and correlation between worker and firm effects for employed work-
ers. The row “LPR” shows the variance decomposition and correlation after first estimating the
parameters using our model and estimation procedure. It is a test of the capacity of our CEM
algorithm to recover the true parameters when the model is well specified. As can be seen, our
algorithm works very well. The row labeled “AKM” shows the variance decomposition and
correlation that are obtained by estimating an AKM model on the simulated data. The simula-
tions confirm the overfitting tendency of AKM, overestimating the contributions of worker and
firm effects, and underestimating the contribution of sorting as well as the residual variance.

As part of the AKM decomposition, we also calculate the correlation between a worker’s
wage effect and the average of the worker’s co-workers’ wage fixed effects as proposed in
de Melo (2018). As seen, our simulations produce significant correlations between co-workers
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Table 6: Simulated log-wage variance decomposition

Components of explained variance
Date Experience Model Residual Explained Person Firm Sorting Match Obs. hetero. Correlation Corr. btw pe

variance variance effect effect effect var cov btw pe and fe and co-worker pe

1987-89

<5 yrs

true 68.7 31.4 15.9 5.4 5.3 3.0 1.1 0.2 0.4 28.6
LPR 68.5 31.5 16.3 6.0 4.9 2.5 1.3 -0.1 0.5 24.6
AKM 57.4 42.6 29.6 8.9 2.2 1.2 0.1 0.5 6.9 23.6

BS 34.0

5-10 yrs

true 60.2 40.0 24.4 5.9 6.8 2.5 0.4 0.1 -0.1 28.5
LPR 60.2 39.8 24.1 6.2 6.5 2.7 0.5 -0.1 -0.1 26.5
AKM 49.8 50.2 36.9 9.3 3.7 0.4 0.0 -0.1 10.0 23.6

BS 37.6

10-15 yrs

true 49.9 50.2 32.9 6.4 7.2 3.6 0.2 0.1 -0.2 24.7
LPR 49.8 50.2 32.6 7.1 7.2 3.1 0.3 0.0 -0.2 23.6
AKM 41.0 59.0 45.2 10.2 3.4 0.3 0.1 -0.2 7.9 22.1

BS 37.4

>15 yrs

true 40.0 60.0 41.4 5.9 7.3 5.6 0.1 -0.1 -0.2 23.3
LPR 40.4 59.6 41.1 7.1 7.4 4.1 0.1 -0.1 -0.2 21.7
AKM 33.2 66.8 54.3 11.3 1.4 0.2 -0.2 -0.3 2.8 21.9

BS 37.0

1999-01

<5 yrs

true 60.1 39.9 19.4 6.1 7.4 3.5 1.4 1.6 0.7 34.0
LPR 60.6 39.4 18.1 6.6 6.6 4.1 2.0 1.0 1.0 30.0
AKM 51.1 48.9 31.4 8.6 5.2 1.3 1.5 0.7 15.8 28.8

BS 37.5

5-10 yrs

true 57.2 42.9 22.6 6.1 7.8 3.3 1.3 1.1 0.6 33.2
LPR 57.6 42.4 22.1 6.3 7.2 3.6 1.7 0.8 0.7 30.5
AKM 48.4 48.9 31.4 8.6 5.2 1.3 1.5 0.7 15.8 28.8

BS 37.7

10-15 yrs

true 53.5 46.4 27.2 5.9 7.9 3.1 1.2 0.8 0.5 31.0
LPR 53.9 46.1 26.9 6.1 7.4 3.1 1.4 0.6 0.5 28.8
AKM 44.5 55.5 39.3 9.2 4.6 1.0 0.8 0.5 12.1 29.4

BS 38.0

>15 yrs

true 50.0 50.1 31.7 5.4 6.7 3.8 1.4 0.8 0.4 25.7
LPR 50.0 50.0 31.8 5.6 6.5 3.5 1.5 0.6 0.5 24.2
AKM 40.9 59.1 45.6 10.6 0.4 1.2 0.9 0.4 1.0 28.2

BS 35.0

2011-13

<5 yrs

true 33.9 66.2 43.7 3.1 5.4 8.8 4.1 0.3 0.7 23.0
LPR 35.5 64.5 44.5 3.5 4.5 6.8 4.1 0.3 0.8 18.1
AKM 31.8 68.2 53.9 6.6 2.5 4.5 -0.5 1.2 6.6 25.2

BS 33.8

5-10 yrs

true 40.5 59.5 39.4 4.1 7.6 5.5 1.8 0.8 0.4 29.7
LPR 41.5 58.5 38.8 4.6 7.8 4.4 1.8 0.8 0.3 29.0
AKM 33.9 66.1 52.0 8.0 3.1 2.3 0.3 0.3 7.6 30.6

BS 39.1

10-15 yrs

true 41.8 58.3 36.5 6.2 8.4 5.4 1.3 0.2 0.3 28.0
LPR 42.7 57.3 36.5 6.7 8.3 4.1 1.4 0.0 0.3 26.7
AKM 34.6 65.4 51.3 10.6 1.8 1.6 -0.1 0.2 3.8 32.3

BS 42.7

>15 yrs

true 42.9 57.1 37.2 5.9 8.6 4.1 1.2 -0.2 0.3 29.1
LPR 43.3 56.7 37.3 6.1 8.6 3.3 1.3 -0.3 0.4 28.7
AKM 34.8 65.2 51.6 11.6 0.6 1.3 -0.2 0.3 1.3 33.5

BS 43.9

Notes: The simulations involve 1,000,000 workers and 100,000 firms where K = 14,L= 24. The length of the panel
is 7 years. The simulation is initialized in steady state. “Model = true” is the infeasible variance decomposition
as if heterogeneity were observed. “Model = AKM” refers to (therefore misspecified) AKM estimates. “Model =
LPR” refers to our model. “Model = BS” refers to Borovičkovà and Shimer (2017)’s calculation of the degree of
sorting. We show the mean simulation. With such a big sample size, there is very little variance across simulations.
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as they sort on firm types. As a reference, the co-worker correlation is 0.38 when AKM is
performed on our full data set.

Lastly, the row labeled “BS” shows Borovičkovà and Shimer (2017)’s calculation of the
degree of sorting. The simulations confirm the tendency of the correlation between mean wage
per worker and mean wage per firm (with all the adjustments to the naive formula proposed
by BS) to overestimate (sometimes quite significantly) the correlation between worker and firm
linear effects. This statistic captures more than just the correlation between linear projections
of log wages on worker and firm dummies. The role of the match-specific effect, for example,
must be better understood.

9 Conclusion

In this paper we use the finite mixture framework of Bonhomme et al. (2017) to estimate a
model of wages and employment mobility on Danish panel of matched employer-employee
data over the period 1987-2013. Our model allows for structural changes in the parameters
and we propose a new parametrization for state transition probabilities. We develop a Classi-
fication Expectation Maximization algorithm allowing to estimate a random component model
for K = 14 worker types and a classification of firms into L = 24 discrete groups. Our esti-
mation algorithm works well and is fast, despite the nonlinear specification of state transition
probabilities.

Our estimates of unobserved worker and firm heterogeneity and structural parameters shows
an apparent disagreement in the way unobserved heterogeneity determines conditional mean
wages, on one hand, and, on the other hand, the idiosyncratic wage variance and the mobility
parameters. The strongest link is estimated for layoff rates and job finding probabilities for
unemployed workers. The parameters governing the way a worker of a given type values job
types display a much weaker link, and only at low tenure.

The joint distribution of match types shows evidence of moderate sorting. We measure
sorting as the correlation of the worker and firm components obtained from a linear projection
of conditional mean wages on worker and firm type dummies. Our estimates are around 28%
and very stable over the all period. We find that this correlation level is obtained at the first draw
of a match in workers’ careers. The moderate relationship between conditional mean wages and
mobility parameters is only sufficient to maintain sorting at its initial level. There is no evidence
of a strong ladder effect. The main parameters here are the preference for the job, the sampling
distribution of firm types and the job finding rates of unemployed.

Finally, we estimate the log-wage decomposition. We estimate much more residual variance
than with the AKM model, and therefore a smaller contribution of worker effects. Sorting
comes next and its contribution is increasing over the period. The firm effect and the match
effect have similar, smaller contributions. The relative shares of worker, firm and sorting effects
are consistent with the estimates in Bonhomme et al. (2017) using Swedish matched employer-
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employee data.
What all this means is that the more precise description of wage and mobility that BLM’s

approach facilitates does not fundamentally change the estimation of sorting that the AKM
model delivers. A 28% correlation is certainly not large. We could understand such a small
correlation for young workers, but most search-matching models would predict that a stronger
correlation is built after a while. Our estimates of the preference for a job (determining which
of the current job and an alternative one a worker selects) are very weekly correlated with mean
wages (across match types), in particular for older workers. This implies that workers tend
to change employment for reasons that relate very little to productivity. Amenities, following
one’s spouse, skill obsolescence may explain mobility at older age better than wage prospects.

However, it may also be that some of the basic assumptions of our model, which we main-
tained from the AKM model, are not satisfied by the data. For example, wages and mobility
may depend on current and past wages conditional on worker and firm heterogeneity (endoge-
nous mobility). BLM consider an extension with autoregressive wages, and find it too weak to
make a difference on the measurement of sorting. Or, it could be that worker and firm types are
not fixed over time. Developing a Hidden Markov model with time-varying worker and firm
types is an interesting project for future research.

In any case, one conclusion seems clear to us. It is certainly important to understand how
worker and firm heterogeneity determine wages, but it is at least as important to understand how
worker and firm heterogeneity determine employment mobility. The finite mixture approach of
Bonhomme, Lamadon and Manresa offers a tractable way to do that, and to go beyond the wage
model of Abowd, Kramarz and Margolis. We are just beginning to mine this seam.
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APPENDIX

A Non-parametric identification

The basic linear algebraic tool for identification is the following lemma. Let there be two m×n

matrices A0 and A1 such that

A0 = G∆0F>, A1 = G∆1F>,

for two matrices G,F of dimensions m× k and n× k, and two diagonal k× k matrices ∆0,∆1.
Suppose that rank(A0) = k ≤ min(m,n). This implies that G and F have linearly independent
columns and that ∆0 is invertible. Let the Singular Value Decomposition (SVD) of A0 be A0 =

UΛV>, for two orthogonal matrices U,V of dimensions m×k and n×k, and an invertible k×k

diagonal matrix Λ.18

Two interesting results follow. Firstly,

U>A0V Λ−1 =U>G∆0F>V Λ−1 = Ik (identity matrix).

This implies that if we let W =U>G, then W−1 = ∆0F>V Λ−1. Secondly,

U>A1V Λ−1 =U>G∆1F>V Λ−1 =W∆1∆−1
0 W−1.

This shows that ∆1∆−1
0 is the diagonal matrix of the eigenvalues of U>A1V Λ−1, and that W

is one particular matrix of eigenvectors. If there are no multiple eigenvalues (all associated
eigenspaces have dimension one), W is unique up to a multiplication of its columns by non zero
numbers. If there are several such A1 matrices, the second step’s diagonalization becomes a
simultaneous diagonalization problem.

A.1 Identification of remaining parameters with observed firm types

We first consider the case where the firm type is observed.

A.1.1 One instrument, one wage, one job mobility

Assume that for each worker, we observe a set of characteristics z (gender, education, etc), the
employer’s type ` and the current wage w, as well as employment mobility at the end of the
period (either no mobility, or mobility to a firm of type `′). The worker type k is not observed.
For simplicity, we neglect the control x and we assume that all variables are discrete.

18The standard SVD has A0 = UΛV> where U is m×m orthogonal, Λ is rectangular diagonal m× n and V is
n× n orthogonal. If rank(A0) = k, then we extract from U and V the first k columns, and from Λ the first k rows
and columns (assuming this block contains the non zero singular values). Orthogonality of U and V means that
U>U =V>V = Ik (the identity matrix of size k).

36



Identifying matrices

We start by building identifying matrices using the following assumption specializing Assump-
tions 1 and 2 to the current case.

Assumption 3. 1) P(`|z,k) = P(`|k); 2) P(w|z,k, `) = P(w|k, `); 3) P(`′|z,k, `,w) = P(`′|k, `).

The first condition states that z helps measuring k but does not predict the employer’s type `

given k. The second condition states the same for the wage w given the match type (k, `) and z.
The third condition says that job-to-job mobility only depends on the current match type (k, `)

and not on z or the current wage w.
Under Assumption 3,

P(k,z, `,w) = P(k)P(z|k)P(`|z,k)P(w|z,k, `) = P(k)P(z|k)P(`|k)P(w|k, `).

Then summing P(k,z, `,w) over the unobserved worker type k,

P(z, `,w) = ∑
k
P(z|k)P(k, `)P(w|k, `), (15)

where P(k, `) = P(k)P(`|k). Define the matrices

Q` = [P(z, `,w)]z×w, G = [P(z|k)]z×k, F̀ = [P(w|k, `)]w×k, ∆` = diag[P(k, `)],

where the subscript indicates which variable indexes rows and which variable indexes columns.
It follows from (15) that Q` = G∆`F>` .

Next, consider the probability of z,w, ` and of moving to a firm of any type `′ at the end of
the period:

P(z, `,w, `′) = ∑
k
P(z|k)P(k, `)P(w|k, `)P(`′|k, `), (16)

where the probability of moving to a new job of type `′ is P(`′|z,k, `,w) = P(`′|k, `) by Assump-
tion 3.

We can similarly define the matrices

Q``′ = [P(z, `,w, `′)]z×w, ∆``′ = diag[P(k, `, `′)],

with P(k, `, `′) = P(k, `)P(`′|k, `). Equation (16) implies that Q``′ = G∆``′F>`′ .

Identification

We can then apply the lemma to our setup under the following assumption.

Assumption 4. 1) All matches form with positive probability: P(k, `) 6= 0 for all (k, `). 2) P(z|k)
and P(w|k, `) are linearly independent with respect to k given `. 3) No two groups of workers k
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and k′ have the same transition probabilities: P(`′|k, `) 6= P(`′|k′, `) for some (`,`′). 4) Workers

of different type k have different distributions P(z|k) of observed characteristics z.

Condition 1 implies that matrix ∆` is non singular. It is a stronger assumption than necessary
which is made to simplify the argument. We could allow for different sets of matching k’s for
each `. Condition 2 guarantees that matrices G and F̀ are full-column rank. Both conditions
together guaranty that the matrices P` are full column rank.

We can then apply the identification lemma with A0 = Q` and A1 = Q`1, ...,Q`L, separately
for each initial employer type `. Let Q` = U`Λ`V>` be the SVD of Q`. The lemma shows
that the matrices U>` Q``′V`Λ−1

` , `′ = 1, ...,L, can be simultaneously diagonalized. The matrices
of eigenvalues are ∆``′∆−1

` = diag[P(`′|k, `)], which identifies transition probabilities. Under
Condition 3 of Assumption 4 the entries of ∆``′∆−1

` are all distinct. The common matrix of
eigenvectors W` is such that

W` =U>` GD`, W−1
` = D−1

` ∆`F>` V`Λ−1
` ,

for some non singular diagonal matrix D`. Hence, GD` is identified, and as the rows of G sum
to one because P(z|k) is a probability, it follows that the matrix D` is identified from the sum of
the rows of U`W`. In the same way, ∆`D−1

` is also identified, hence ∆`, that is P(k, `) for all k.
The identification of G and F̀ immediately follows.

Finally, note that we have proceeded separately for workers employed in different sectors `.
This means that the classification of workers is contingent on the type of the first period’s em-
ployer. One can identify worker groups across employer types ` if the distributions of observed
types z vary across worker groups k (Assumption 4, Condition 4).

Wrapping up, if the distributions of observed worker characteristics and wages are suffi-
ciently “rich” to differentiate worker types, and if the worker classification is minimal in the
sense that no two groups are observationally identical and no group is degenerate (probability
zero), then one wage observation and one job mobility are enough to identify the model when
firm types are observed. If there are too few observed characteristics, say only gender, then the
matrix G will not be full column rank for K > 2 and we shall need more information, such as
two wage observations.

A.1.2 One job mobility, two wages

If there are no or insufficiently many observed worker characteristics, let us consider two con-
secutive periods of time, in which we observe the worker’s wages and both employers’ types.
We now offer a simple proof of identification for this case that differs from BLM’s in that we
use both stayers and movers, and we consider the possibility of a mobility in the same job class
(from ` to `).19

19BLM’s proof only uses job-to-job transitions and relies on the existence of some special, “alternating” job
paths.
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Identifying matrices

We can proceed as in the previous subsection and build identifying matrices under a similar
specialization of Assumptions 1 and 2.

Assumption 5. 1) P(`|z,k) = P(`|k); 2) P(w|z,k, `) = P(w|k, `); 3) P(`′|z,k, `,w) = P(`′|k, `);
4) P(w′|z,k, `,w, `′) = P(w′|k, `′).

Assumption 5 adds to Assumption 3 the Condition 4, which is a conditional independence
assumption stating that wages only depend on the current match type.

First, consider the probability of wages w and w′ in periods 1 and 2 in the same firm of type
` (no job mobility is denoted as ¬):

P(`,w,¬,w′) = ∑
k
P(k, `)P(w|k, `)P(¬|k, `)P(w′|k, `),

where P(¬|k, `) = 1−∑`′ P(`′|k, `) is the probability of staying with the same employer given
(k, `). Let

F̀ = [P(w|k, `)]w×k, ∆` = diag[P(k, `,¬)],

with P(k, `,¬) = P(k, `)P(¬|k, `). We have P` = [P(`,w,¬,w′)]w×w′ = F̀ ∆`F>` .
Second, consider the probability of wages w and w′ in periods 1 and 2 with a job mobility

from ` to `′:
P(`,w, `′,w′) = ∑

k
P(k, `)P(w|k, `)P(`′|k, `)P(w′|k, `′).

Denoting ∆``′ = diag[P(k, `, `′)], with P(k, `, `′) = P(`′|k, `)P(k, `), we have

Q``′ = [P(`,w, `′,w′)]w×w′ = F̀ ∆``′F
>
`′ .

Identification

Now let us update Assumption 4 as follows.

Assumption 6. 1) P(k, `) 6= 0 for all (k, `). 2) P(w|k, `) is linearly independent with respect to

k given `. 3) For all (k, `), no mobility is always possible: P(¬|k, `) 6= 0. 4) For all (k,k′) there

exists ` such that P(`|k,`)
P(¬|k,`) 6=

P(`|k′,`)
P(¬|k′,`) .

Under Conditions 1 and 3, ∆` is non singular for all `. Under Condition 2, F̀ is full-column
rank. For the SVD P` =U`Λ`U>` , let W` = Λ−1/2

` U`F̀ ∆1/2
` . Then

W−1
` = ∆1/2

` F>` U>` Λ−1/2
` .

It also holds that
Λ−1/2
` U`P``U>` Λ−1/2

` =W`∆
−1
` ∆``W−1

` .
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Assuming that the entries of ∆−1
` ∆`` = diag[P(`|k, `)/P(¬|k, `)] are all distinct (Condition 4),

any matrix of eigenvectors is thus of the form

W` = Λ−1/2
` U`F̀ ∆1/2

` D`, W−1
` = D−1

` ∆1/2
` F>` U>` Λ−1/2

` ,

for a non singular diagonal matrix D`. Since the rows of F̀ sum to one, then ∆1/2
` D` and

∆1/2
` D−1

` are both identified. Hence ∆` is identified, and so are D` and F̀ .

Now, having proceeded independently for each firm type `, how do we know that the worker
group k that we have thus labelled for firm type ` corresponds to the worker group k′ that we
have thus labelled for firm type `′? Take matrix Q``′ corresponding to a job mobility from ` to
`′. We know that Q``′ = F̀ ∆``′F>`′ with ∆``′ diagonal. So given arbitrarily chosen worker-group
labels for ` and `′ one should relabel worker groups for `′ (say) by reordering the columns of F̀ ′

so that F+
` Q``′F+

`′ = ∆``′ is a diagonal matrix (denoting A+ = (A>A)−1A> for any full column
rank matrix A).

Finally diag[P(k, `)] = ∆`+∑`′ ∆``′ is also identified.

A.2 Identification of firm types from a cross-section of wages

Suppose that for each firm j we observe a set of characteristics r j and two independent wages
w j1,w j2. Moreover, suppose that for firms as for workers wages are independent of independent
of observed types r j given ` j. Then, assuming independent wage draws given firm type, we can
identify the proportion of each firm type, and the distributions of observed firm characteristics
and wages given firm types.

More precisely let us make the following assumption. Let q denote probability distributions
across firms.

Assumption 7. 1) Within a given firm of type (`,r), the distribution of wages given (`,r) is

independent of r. 2) Wages are mutually independent given `. 3) The distribution of ` is not

degenerate (q(`) 6= 0 for all `).

Under this assumption, we can write the probability of (w1,w2) as

q(w1,w2) = ∑̀q(`)q(w1|`)q(w2|`)

and the probability of (w1,w2,r) as

q(w1,w2,r) = ∑̀q(`,r)q(w1|`)q(w2|`).

Per se r does not identify the firm classification. For example, suppose that we have man-
ufacturing and services and public and private firms. We can classify firms into two groups
by clustering them by their public/private status, or by industry. However, observable firm
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heterogeneity helps building matrices of moments with a common algebraic structure. Specif-
ically, Pr = [q(w1,w2,r)] , w1 in rows and w2 in columns, can be factored as Pr = F∆rF>, for
F = [q(w|`)] and ∆r = diag[q(`,r)]. Because q(`) = ∑r q(`,r) 6= 0 by assumption, the iden-
tification lemma identifies ∆r∆−1

r0
= diag[q(r|`)]. Finally, using a similar argument as above,

the matrix of eigenvectors, together with the fact that q(w|`) is a probability and sums to one,
identifies both conditional wage distributions F and type probabilities q(`).

If we do not observe firm characteristics, a third wage observation is necessary to identify
q(`) and q(w|`). And if we observe many wages per firm, then the posterior probability of firm
type will precisely estimate the unobserved firm type. In this paper, we thus follow BLM’s idea
of classifying firms into distinct groups, using the employees’ wages and other observed firm
characteristics, while leaving worker types random. However, we shall iterate an algorithm that
estimates the model first given a current firm classification, and then proceeds to an improved
firm re-classification.

B The CEM principle

Given the statistical model which generates a set X of observed data, a set of two unobserved la-
tent data or missing values E,F , and a vector of unknown parameters β , along with a likelihood
function P(X ,E,F |β ), the maximum likelihood estimate (MLE) of the unknown parameters is
determined by the marginal likelihood of the observed data

P(X |β ) = ∑
E,F

P(X ,E,F |β ).

In our application E and F are two discrete variables: E is the set of worker types and F is the
set of employer types (E for employee and F for firm). However, because different workers can
be in the same firm at different periods of time, the summation over F can be extremely costly
to compute and not even feasible. So instead we treat F as a parameter (a set of firm fixed
effects) and we seek to maximize the conditional likelihood

P(X |F,β ) = ∑
E
P(X ,E|F,β ),

with respect to β and F . For this we use the following Classification Expectation Maximization
(CEM) algorithm (not quite like the one in Celeux and Govaert, 1992, but related).

For a given value F(s), we run a standard EM algorithm treating F(s) as data. The EM
algorithm consists of applying the following two steps iteratively:

Expectation step (E step): Calculate the expected value of the log likelihood function, with
respect to the conditional distribution of E given X ,F(s) under the current estimate of the pa-
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rameters β (m):

Q(β |β (m),X ,F(s)) = ∑
E
P(E|X ,F(s),β (m)) lnP(X ,E|β ,F(s)),

where
P(E|X ,F,β ) =

P(X ,E|F,β )
∑E P(X ,E|F,β )

.

Maximization (M step): Find

β
(m+1) = argmax

β

Q(β |β (m),X ,F(s)).

The EM algorithm delivers a sequence of parameter values that increases the likelihood

P(X |F(s),β ) = ∑
E
P(X ,E|F(s),β ).

To see this, write the log likelihood of the data by,

lnP(X |F,β ) = lnP(X ,E|F,β )− lnP(E|X ,F,β ).

Then multiplying both sides by P(E|X ,F(s),β (m)) and summing over E,

lnP(X |F(s),β ) = ∑
E
P(E|X ,F(s),β (m)) lnP(X ,E|F(s),β )

−∑
E
P(E|X ,F(s),β (m)) lnP(E|X ,F(s),β )

= Q(β |β (m),X ,F(s))+H(β |β (m),X ,F(s)).

By Gibbs’ inequality H(β |β (m),X ,F)]≥ H(β (m)|β (m),X ,F). Hence,

Q(β |β (m),X ,F(s))+H(β (m)|β (m),X ,F(s))

is a minorization of lnP(X |F(s),β ) in the point β (m), and improving Q(β |β (m),X ,F(s)) over
Q(β (m)|β (m),X ,F(s)) improves P(X ,F(s)|β ) relative to P(X ,F(s)|β (m)).

This is well known. Let β̂ (s) denote the estimate obtained from F(s). One can let the EM
algorithm increase the likelihood L(β ,F(s)|X) until convergence or stop after any number of
iterations. We then update F(s) as follows.

Classification step (C step): Find

F(s+1) = argmax∑
E
P(E|X ,F(s), β̂ (s)) lnP(X ,E|F, β̂ (s)).
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By the same argument as before

lnP(X |F,β ) = ∑
E
P(E|X ,F(s),β ) lnP(X ,E|F,β )−∑

E
P(E|X ,F(s),β ) lnP(E|X ,F,β ).

Therefore, improving ∑E P(E|X ,F(s), β̂ (s)) lnP(X ,E|F, β̂ (s)) delivers F(s+1) such that

P(X |F(s+1), β̂ (s))> P(X |F(s), β̂ (s))> P(X |F(s), β̂ (s−1)).

The sequence (β (s),F(s)) delivers an increasing sequence of (P(X |F(s),β (s)) that converges
to a local maximum of P(X |F,β ). This CEM algorithm is essentially like a sequential EM
algorithm where β is updated given F and then F given β .

C Parametric identification of transition probabilities

We show that the parameters λk`,νk`′,γk` are not identified given Mk``′ = λk`νk`′
γk`′

γk`+γk`′
for `,`′=

1, ...,K. Let us omit the index k to simplify the notation.
We have M`` =

1
2λ`ν`, which identifies λ` given ν`. Moreover,

M``′

2M``
=

ν`′

ν`

γ`′

γ`+ γ`′
,

M`′`

2M`′`′
=

ν`

ν`′

γ`

γ`+ γ`′
,

which identifies the parameter ratios γ`
γ`′

and ν`
ν`′

from the two ratios of transition probabilities
M``′
2M``

and M`′`
2M`′`′

. Note that

r``′ ≡
1−
√

1− M``′
M``

M`′`
M`′`′

1+
√

1− M``′
M``

M`′`
M`′`′

=
γ`+ γ`′−|γ`− γ`′|
γ`+ γ`′+ |γ`− γ`′|

=
min{γ`,γ`′}
max{γ`,γ`′}

.

We would like to know which of γ`,γ`′ is the min and which is the max. If we knew the ordering
of (γ`) then we could transform r``′ so as r``′ =

γ`
γ`′

, and the normalization ∑` γ` = 1 would
identify each γ` precisely. Unfortunately, we do not know a priori the ordering of (γ`).

Note first that r``′ =
γ`
γ`′

for all `,`′ implies that r`′`′′ = r``′′/r``′ for all `,`′, `′′. However,
suppose that γ2 < γ1 < γ3. Then r12 =

γ2
γ1
,r13 =

γ1
γ3

and r23 =
γ2
γ3

. Hence, r23 = r13× r12. If we
change r13 into 1/r13 then the ratios are again consistent. The following algorithm does that for
all `.

For i = 2 : L

For j = 3 : L

If r1 j
r1i

/∈
{

ri j,
1

ri j

}
then r1 j← 1

r1 j

If r1 j
r1i

= 1
ri j

then ri j← 1
ri j

end
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end

end

This algorithm guaranties that r``′ =
γ`
γ`′

for all `,`′ or r``′ =
γ`′
γ`

for all `,`′.
Second, assume that r``′ =

γ`
γ`′

. Then

L

∑
`′=1

1
r``′

=
1
γ`
,

and γ` =
(

∑L
`′=1

1
r``′

)−1
. Moreover,

ν` =

(
L

∑
`′=1

M``′

2M``

γ`+ γ`′

γ`′

)−1

.

If instead r``′ =
γ`′
γ`

then

γ̃` =

(
L

∑
`′=1

1
r``′

)−1

∝
1
γ`

and

ν̃` =

(
L

∑
`′=1

M``′

2M``

γ̃`+ γ̃`′

γ̃`′

)−1

∝ v`γ`.

Hence, if M``′
2M``

=
ν`′
ν`

γ`′
γ`+γ`′

, then there is an equivalent parametrization M``′
2M``

=
ν̃`′
ν̃`

γ̃`′
γ̃`+γ̃`′

with

γ̃` ∝ 1
γ`

and ṽ` ∝ v`γ`. For each solution (λ`,ν`,γ`) there is an observationally equivalent one

(λ̃`, ν̃`, γ̃`) ∝
(

λ`
γ`
,v`γ`, 1

γ`

)
, where ∝ means that second and third components must be normal-

ized so as to sum to one. One additional normalization is required to determine which of the
two solutions is the right one. For example, one may prefer ex ante that γ` be increasing.

D An MM algorithm for the M-step update of transition prob-
abilities

In the M-step of the EM algorithm, we maximize the part of the expected likelihood that refers
to transitions, i.e.

H(M|β (m))≡
K

∑
k=1

L

∑̀
=0

{
nk`¬(β

(m)) lnMk`¬+
L

∑
`′=0

nk``′(β
(m)) lnMk``′

}
,
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where Mk`¬ ≡M(¬|k, `),Mk``′ ≡M(`′|k, `), and

nk`¬(β
(m)) = ∑

i
pi(k|β (m))#{t : Dit = 0, `it = `,xit = x} ,

nk``′(β
(m)) = ∑

i
pi(k|β (m))#

{
t : Dit = 1, `it = `,`i,t+1 = `′,xit = x

}
,

where #{} denotes the cardinality of a set and where we reintroduce the control xit = x to remind
that we are estimating different parameters for all different control values x.

Parameters ψk` (job finding rate for unemployed) are thus updated as

ψ
(m+1)
k` =

nk0`(β
(m))

nk`¬(β (m))+∑L
`′=1 nk0`′(β (m))

.

The rest of the likelihood is similar to the likelihood of a Bradley-Terry model except that when
the incumbent firm ` wins we do not know against which `′. The likelihood is thus rendered
more nonlinear by the presence of the term in lnMk`. An MM algorithm can still be developed
as follows.20

Because the logarithm is concave, we can minorize M(¬|k, `) ≡ Mk`¬ as follows. With
obvious notations, for `= 1, ...,L,

lnMk`¬ = ln

(
1−δk`−λk +λk

L

∑
`′=1

ν`′(1−Pk``′)

)

≥
1−δ

(s)
k` −λ

(s)
k

M(s)
k`¬

ln

(
1−δk`−λk

1−δ
(s)
k` −λ

(s)
k

M(s)
k`¬

)

+
L

∑
`′=1

λ
(s)
k ν

(s)
`′ (1−P(s)

k``′)

M(s)
k`¬

ln

(
λkν`′(1−Pk``′)

λ
(s)
k ν

(s)
`′ (1−P(s)

k``′)
M(s)

k`¬

)
.

Note that both sides of the inequality are equal if (λk,ν`′,γk`) = (λ
(s)
k ,ν

(s)
`′ ,γ

(s)
k` ) (no parameter

change).
Let

ñ(s)k``′ = nk`¬
λ
(s)
k ν

(s)
`′ (1−P(s)

k``′)

M(s)
k`¬

,

20The MM algorithm works by finding a function that minorizes the objective function and that is more easily
maximized. Let f (θ) be the objective concave function to be maximized. At the m step of the algorithm, the
constructed function g(θ |θm) will be called the minorized version of the objective function at θm if

g(θ |θm)≤ f (θ),∀θ , and g(θm|θm) = f (θm).

Then, maximize g(θ |θm) instead of f (θ), and let θm+1 = argmaxθ g(θ |θm). The above iterative method guarantees
that f (θm) converges to a local optimum or a saddle point as m goes to infinity because

f (θm+1)≥ g(θm+1|θm)≥ g(θm|θm) = f (θm).
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where nk`¬ is implicitly a function of β (m). We omit this reference in the rest of this subsection.
This is the predicted fraction of stayers such as home beats visitor `′. Given initial values
λ (s),ν(s) one can update γ(s) so as to maximize

K

∑
k=1

L

∑̀
=1

L

∑
`′=1

{
ñ(s)k``′ ln

γk`

γk`+ γk`′
+nk``′ ln

γk`′

γk`+ γk`′

}
,

subject to the normalization ∑L
`=1 γk` = 1.21 Now, because

− ln(γk`+ γk`′)≥ 1− ln(γ(s)k` + γ
(s)
k`′ )−

γk`+ γk`′

γ
(s)
k` + γ

(s)
k`′

(see Hunter, 2004), we can instead maximize

K

∑
k=1

L

∑̀
=1

(
L

∑
`′=1

(ñ(s)k``′+nk`′`)

)
lnγk`−

K

∑
k=1

L

∑̀
=1

L

∑
`′=1

(
(ñ(s)k``′+nk``′)

γk`+ γk`′

γ
(s)
k` + γ

(s)
k`′

)
.

That is (taking special care to indices), for `= 1, ...,L,

γ
(s+1)
k` ∝

(
L

∑
`′=1

(ñ(s)k``′+nk`′`)

)[
L

∑
`′=1

ñ(s)k``′+nk``′+ ñ(s)k`′`+nk`′`

γ
(s)
k` + γ

(s)
k`′

]−1

,

where X` ∝ Y` means X` = Y`/∑`Y`, that is γ
(s+1)
k` should sum to one over `= 1, ...,L.

Update δ (s),λ (s) by maximizing

K

∑
k=1

L

∑̀
=1

((
nk`¬

1−δ
(s)
k` −λ

(s)
k

M(s)
k`¬

)
ln(1−δk`−λk)

+nk`0 lnδk`+
L

∑
`′=1

(
ñ(s)k``′+nk``′

)
lnλk

)
.

Let, for k = 1, ...,K,

λ
(s+1)
k =

[
L

∑̀
=1

L

∑
`′=1

(
ñ(s)k``′+nk``′

)][ L

∑̀
=1

[
nk`0 +nk`¬

1−δ
(s)
k` −λ

(s)
k

M(s)
k`¬

+
L

∑
`′=1

(
ñ(s)k``′+nk``′

)]]−1

,

δ
(s+1)
k` =

(
1−λ

(s+1)
k

)
nk`0

[
nk`¬

1−δ
(s)
k` −λ

(s)
k

M(s)
k`¬

+nk`0

]−1

.

21Notice that for `= `′ = 0, we have an extra contribution of (ñ(s)k00 +nk00) ln 1
2 , but it does not matter because it

is independent of parameters.

46



Finally update ν(s) by maximizing

L

∑
`′=1

[
K

∑
k=1

L

∑̀
=1

(
ñ(s)k``′+nk``′

)]
lnν`′ s.t.

L

∑
`′=1

ν`′ = 1.

That is

ν
(s+1)
`′ ∝

K

∑
k=1

L

∑̀
=1

[
ñ(s)k``′+nk``′

]
, `′ = 1, ...,L.

For a given value of β (m), the sequence (H(M(s)|β (m))), driven by the sequence (ψ(s), δ (s),
λ (s),ν(s),γ(s)), is increasing. The MM algorithm can thus be stopped at any time, not only after
convergence, to deliver the updated values of transition parameters, (ψ(m+1), δ (m+1),λ (m+1),ν(m+1),γ(m+1)).

E Numerical implementation

The implementation of the estimation allows the estimation to be scaled up to larger data sets
by expansion of the number of CPUs in the computing cluster. The following describes how the
storage and computation requirements of the estimation are delegated across CPUs in a parallel
computing environment. The coding is done in Fortran and parallelization is performed with
OpenMPI.

E.1 Data structure

The Danish Matched Employer-Employee (MEE) data comprise I = 4,000,000 workers and
J = 400,000 firms observed at a weekly frequency from 1985 to 2013. The fundamental obser-
vation in the data is a spell (either employment or non-employment).

A worker history consists of a series of employment and unemployment spells. It is stored
as a linked list. Each object in the list is a spell. The spell object contains,

• Start and end weeks of the spell.

• ID’s of the worker and firm (unemployment has firm ID 0).

• A vector of wage observations for each year of the spell.

• Pointers to the previous and next spell in the worker’s history.

• Pointers to the previous and next spell in the firm’s spell list (unlike the worker’s linked
list, the firm list is not necessarily chronological).

In addition, the data structure holds the observable characteristics of each worker and firm
separate from the list of spells. The worker i object holds the worker’s observable characteristics
(gender, education, birth year, year of entry into labor market, etc) as well as pointers to the first
and last spells in the worker’s labor history. The firm j object holds observable characteristics
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(public-private) and pointers to the first and last spell in its list of spells. The firm j = 0 list
holds all the non-employment spells in the data.

The data storage is divided across CPUs so that each CPU holds its own subset of worker
histories. Denote by ιc the set of worker IDs assigned to CPU c. Each CPU holds the entire
set of firms, but CPU c’s list of employment spells in firm j consists only of those that are
contributed by workers in the subset ιc.

The Danish MEE data set is relatively small by international comparison (by the small size
of the Danish population). Nevertheless, it does place significant demands on computer mem-
ory. Needless to say, this issue only becomes more acute for MEE data from larger countries. It
is a virtue of the code that the memory requirement associated with each CPU is roughly 1/C

of the total size of the data given a total of C CPUs. Thus, the memory pool available to the
estimation is the combined memory of the nodes in the cluster, which is trivially scaled up by
adding more nodes. This opposed to a data structure where each CPU holds the entire data set,
which would place heavy memory requirements on multi-CPU nodes.

E.2 E-step

E.2.1 Likelihood evaluation for a given (β ,L ).

Each CPU holds its own copy of the firm classification, L . With this, CPU c evaluates
Li(β ,L ) = ∑K

k=1 Li(k;β ,L ) for any i ∈ ιc by walking through the worker i linked list of spells.
CPU c calculates Lc = ∑i∈ιc lnLi(β ,L ). The likelihood of the data is then found by summing
Lc across CPUs, L(β ,L ) = exp

(
∑C

c=1 Lc) . This is a modest communication of a single double
precision number across the C CPUs. The calculation of the overall likelihood is not neces-
sary for the execution of the E-step, but serves as useful check that the algorithm is indeed
proceeding to increase the likelihood in each iteration.

E.2.2 Worker posterior update for a given (β ,L ).

CPU c updates worker posteriors for all i ∈ ιc by, pi(k;β ,L ) = Lk(k;β ,L )/Li(β ,L ). No
communication across CPUs is necessary for this and CPU c knows only the posteriors for
workers i ∈ ιc. Nowhere in the CEM algorithm does CPU c need to know the worker posterior
for workers outside ιc. This is a significant savings in communication which would otherwise
involve a communication of I×K double precision numbers across the C CPUs in each E step.

E.3 M step

The M step uses the updated posterior pi(k;β ,L ) from the E step. Each part of the M step
requires only modest communication between nodes.
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E.3.1 πk(z) update for given (β ,L ).

With the worker posteriors in hand CPU c calculates πk,c(z) =∑i∈ιc pi(k;β ,L )1{zi = z}, which
is communicated across the CPUs. This is a K×Z dimension double precision array commu-
nication across C CPUs where each CPU receives ∑C

c=1 πk,c(z).22 Each CPU then calculates
πk(z) = ∑C

c=1 πk,c(z)/
[
∑K

k=1 ∑C
c=1 πk,c(z)

]
.

E.3.2 mk`(x) update for given (β ,L ).

CPU c calculates mk`,c(x) = ∑i∈ιc pi(k;β ,L )1{xi1 = x, `i1 = `}, which is communicated across
the CPUs with each CPU receiving ∑C

c=1 mk`,c(x). This is a K×L×Xini double precision array
where Xini is the number of x categories in the initial distribution. Each CPU then calculates
mk`(x) = ∑C

c=1 mk`,c(x)/
[
∑L
`=1 ∑N

n=1 mk`,c(x)
]
.

E.3.3 Wage parameters for given (β ,L ).

CPU c calculates µk`,c(x)=∑i∈ιc pi(k;β ,L )∑T
t=1 1{`it = `,xit = x}wit and dk`,c(x)=∑i∈ιc pi(k;β ,L )∑T

t=1 1{`it =

`,xit = x}. These 2 K×L×X arrays are communicated across CPUs to form ∑C
c=1 µk`,c(x) and

∑C
c=1 dk`,c(x), where X is the number of relevant x categories for the wage parameters as well as

γ and λ mobility parameters. Each CPU proceeds to calculate µk`(x)=∑C
c=1 µk`,c(x)/∑C

c=1 dk`,c(x).
Moving to the variance, CPU c calculates σk`,c(x) = ∑I

i=1 pi(k;β ,L )∑T
t=1 1{`it = `,xit =

x}[wit − µk`(x)]2. The K× L×X array is communicated across CPUs to form ∑C
c=1 σk`,c(x).

Each CPU calculates σk`(x) =
√

∑C
c=1 σk`,c(x)/∑C

c=1 dk`,c(x).

E.3.4 Mobility parameters for given (β ,L ).

Running through worker spell lists, each CPU calculates mobility counts,

nk`,c(x) = ∑
i∈ιc

pi(k;β ,L )#{t : Dit = 0, `it = `,xit = x}

and
nk``′,c(x) = ∑

i∈ιc

pi(k;β ,L )#
{

t : Dit = 1, `it = `,`i(t+1) = `′,xit = x
}
.

These two integer arrays (of size K× (L+1)×X and K× (L+1)2×X , respectively) are com-
municated across CPUs to form nk`(x) = ∑C

c=1 nk`,c(x) and nk``′(x) = ∑C
c=1 nk``′,c(x). With these

counts each CPU updates γk`(x), λ`(x) and ν`(x) according to section D.

E.4 C step

The C-step reassigns firm types in such a way as to increase the value of the expected log
likelihood function, thereby increasing the likelihood of the data. The C step can be viewed as

22Using mpi_allreduce.
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a simple extension of the M step where the firm classification is just another set of parameters
to be chosen so as to improve on the expected log likelihood. While the M step requires very
modest communication, the C-step does involve J separate communications of size L arrays
within the cluster. This is a significant communication load and consequently, it is advantageous
to do multiple EM iterations between C steps.

The firm IDs have been chosen so that firms are ordered by size ( j = 1 is the largest firm
where size is the number of wage observations throughout the panel). The algorithm reassigns
firm type j by,

`
(s+1)
j = argmax

`

I

∑
i=1

K

∑
k=1

pi(k; β̂
(s),L (s)) lnLi(k; β̂

(s),L
(s)
− j (`)), (17)

where L
(s)
− j (`) is the firm classification that is obtained by taking the L (s) classification where

all firm types j′ = 1, . . . , j− 1 have already been reassigned, and furthermore replace the j’th
element with `. Do the reassignment in order. This step increases the expected log likelihood.

Done naively, the step is expensive since it involves L× J expected likelihood evaluations
of the data. But the expected log likelihood varies with firm j’s type only through the spells
that directly involve firm j and through firm j’s type’s impact on the q(`,L (s)

− j (`)) distribution.
The latter does involve all spells but in a way that allows simplification. Define by Ω(L ), the
contribution to the expected log likelihood from the q(·|L ) related terms,

Ω(β ,L ) = −
I

∑
i=1

K

∑
k=1

pi(k;β ,L )

[
lnq(`i1|L )+

T

∑
t=1

Dit lnq(`i(t+1)|L )

]

Define,

nq
`(L ) =

I

∑
i=1

[
1{`i1 = `}+#

{
t : Dit = 1, `i(t+1) = `

}]
with which we can write,

Ω(β ,L ) = −
L

∑̀
=1

lnq(`|L )nq
`(L ).

It is worth noting that another way of calculating Ω is by adding up spells at the firm level.
Denote by n̂ j the number of employment spells in firm j,

n̂ j =
I

∑
i=1

[
1 [ j(i,1) = j]+

T

∑
t=1

1 [Dit = 1, j(i, t +1) = j]

]
.

50



with this, Ω can be written as,

Ω(β ,L ) = −
L

∑̀
=1

lnq(`|L )
J

∑
j=1

n̂ j1
[
` j = `

]
=−

L

∑̀
=1

lnq(`|L )n̂(`|L ),

where the number of spells in type ` firms is,

n̂(`|L )≡
J

∑
j=1

n̂ j1
[
` j = `

]
. (18)

This firm-centric formulation of Ω is the preferable one for the firm reclassification algorithm.
Continuing the firm-centric formulation of the log-likelihood, denote by ι( j) = {(i, t) |

j(i, t) = j}, that is, all worker-time pairs with firm j. We can then write the the firm j clas-
sification update as,

`
(s+1)
j = argmax

`

[
∑

(i,t)∈ι( j)

K

∑
k=1

pi(k; β̂
(s),L (s))×

[
fk`(wit |xit)+

(1−Dit) lnMk`it (xit)+Di(t−1) lnMk`i(t−1)`+Dit lnMk``i(t+1)

]
+Ω(β ,L

(s)
− j (`))

]
. (19)

The algorithm is then as follows:

1. The firm j spell counts, n̂ j, are determined at the outset of the overall estimation where all
processors count how many spells they each have for each given firm j. n̂ j is then found
by a communication of a size J integer vector across all processors. Furthermore, the firm
IDs j = 1, . . . ,J, are ordered by firm size - specifically the size of ι( j). These steps are
not done in the C-step but rather just once at the outset of the full CEM algorithm.

2. The firm classification at the outset of the C-step is L (s). Denote by L (s),0 =L (s), where
L (s), j is the firm classification in the jth substep of the C-step. Initialize the C-step by
the determination of n̂(`|L (s)) by equation (18).

3. Take firm j = 1. Find the optimal firm type for firm j according to equation (19) and
firm classification L (s), j−1. The (i, t) pairs in ι( j) are by the data delegation spread out
across different CPUs. Each CPU evaluates the summation in equation (19) for its own
(i, t) pairs for each firm type ` = 1, . . . ,L. The data structure has for each firm defined
a linked list of its spells held by CPU c, which allows quick within CPU evaluation of
each CPU’s contribution to equation (19). The full sum for each ` is then obtained by a
summation across all CPUs to the master process. This is a communication of an L size
array from each node to the master node. The master process resolves the maximization
problem in equation (19), and communicates the optimal firm type `

(s+1)
j to all CPUs, a

single integer.
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4. Update the firm classification L (s), j = L
(s),( j−1)
− j (`

(s+1)
j ). Thus, as the algorithm steps

through j = 1, . . . ,J, the firm classification is updated sequentially with a new firm type
for firm j. Also, update n̂ j(`) = n̂(`|L (s), j) and the type frequencies q(`|L (s), j). This is
done by the simple algorithm (stated just for n̂ j)

(a) If `(s+1)
j = `

(s)
j then n̂ j(`) = n̂( j−1)(`) for all `.

(b) Else, n̂ j(`
(s+1)
j ) = n̂( j−1)(`

(s+1)
j )+ n̂ j and n̂ j(`

(s)
j ) = n̂ j−1(`

(s)
j )− n̂ j. For all other

firm types, n̂ j(`) = n̂( j−1)(`).

5. loop back to step 3 for next j. Exit when j = J is completed. Denote by L (s+1) =L (s),J.
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