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Abstract

In this paper, I study the transmission of COVID-19 in the dynamic SEIR (Susceptible, Ex-
posed, Infectious, and Removed) model that allows individuals to optimally choose their public
avoidance actions in response to the COVID-19 risk. I allow for heterogeneity in infection rates
across age groups and structurally estimate the parameters to match the daily pattern of new
cases and the ratio of patients by age group. Even in the absence of intervention, the elderly,
who face a greater risk of death from COVID-19, are more likely than the young to take self-
protective actions. In contrast to models with a fixed transmission rate, my model can capture
the heterogeneity in the fraction of infected individuals among different age groups.
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1 Introduction

As COVID-19 spreads around the world, a number of recent studies have attempted to provide
estimates of COVID-19 cases. However, these studies cannot explain the mismatched pattern of
fractions of the population and fractions of cases across age groups. As shown in Figure 1, the
percentage of cases across age groups between 12 February – 16 March, 2020 are different from the
age-group’s share in the population. Only 5% of patients are ages 0–19 years old, yet this group
comprises 25% of the population. The number of patients is more concentrated for ages 45 and
above. Standard epidemiological models assume that the infection rate and the fatality rate are
identical over all populations. In addition, these studies treat the transmission rates as exogenous
and disregard changes in the self-protective behavior of individuals.

In this paper, I combine the dynamic SEIR (Susceptible, Exposed, Infectious, and Removed)
model and a heterogenous-agent economic model to endogenize the public avoidance behavior
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Figure 1: The share of cases and the share of the population, by age group.

of individuals and structurally estimate parameters to match the pattern of new cases in the U.S.
and the share of patients in different age groups. The estimates suggest that the fatality rate is
(weakly) increasing with individual age. Without including the endogeneity of the public avoid-
ance level, standard epidemiological models overpredict the transmission rate in the early period
of an epidemic.

The idea of endogenous self-protective action can be traced back to Kremer (1996), who studies
how people respond to the HIV/AID disease. Studies that incorporate economic agents’ endoge-
neous behavior into an epidemic model to explore how the spread of an epidemic changes agents’
behavior include Philipson and Posner (1993), Geoffard and Philipson (1997), Bauch and Earn
(2004), Chen (2004), Reluga et al. (2006), Vardavas et al. (2007), Chen and Cottrell (2009), Chen et
al. (2011), and Reluga (2010). This paper applies the ideas of these previous studies to study the
spread of COVID-19 and structurally estimate a model to match the patterns of cases in the U.S.

The rest of the paper is organized as follows. Section 2 describes the model. Section 3 explains
the estimation method and the simulations. Section 4 discusses insights from the model. Section 5
concludes.

2 The Model

This model is based on the infectious disease dynamic SEIR (Susceptible, Exposed, Infectious,
and Removed) model used in Wang et al. (2020), Klein et al (2020), and Atkeson (2020). The
contribution made by this paper is that I allow individuals to endogenously choose their public-
avoidance levels and that I introduce heterogeneity across age groups.
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2.1 Overview

Time is continuous. There is a mass N of the population, divided into seven groups based on age.
The age groups are indexed by j ∈ {1, 2, ..., 7}. The individuals in each group are classified into one
of four types: susceptible (S), who are disease-free and are at risk of receiving the virus, exposed
(E), who have received the virus but have not been infectious, infectious (I), who can transmit the
virus, and removed (R), who have recovered or died. The differential equations are as follows:

dSj

dt
= −β (1− vi)

Sj I
N

,

dEj

dt
= β (1− vi)

Sj I
N
− σjEj,

dIj

dt
= σjEj −

(
γ + λj

)
Ij,

dRj

dt
=

(
γ + λj

)
Ij,

β = R0γ,

I = I1 + I2 + I3 + I4,

where β is the natural (exogenous) transmission rate, vi is the public avoidance action of individ-
uals in group i, σj is the infection rate of group j, γ is the recovery rate, λj is the death rate of
individuals of group j, and R0 is the reproduction number.

In this paper, I allow individuals to choose their public avoidance level to minimize their in-
stantaneous disutility. The optimization problem is given by

min
vj

c
(
vj
)
+ β (1− vi)

I
N

λjK,

where c
(
vj
)

is the disutility (cost) of public avoidance, and K is the disutility of death. The disutil-
ity of public avoidance c

(
vj
)

is twice-differentiable, strictly increasing, and convex. The disutility
function captures the forgone income of work, the opportunity cost of forgone social activities,
and the emotional cost of having to self-quarantine. The individuals face the trade-off between
self-protective action and the risk of getting the virus. They can avoid exposing themselves in the
public to reduce the risk of contracting the disease. The risk of an individual in group j getting
the virus is given by β (1− vi)

Sj I
N /Sj. This is conditional, as follows: If the person is infected, the

chance of death is λj, and if the person dies, the disutility is K.
I assume that the disutility (cost) of public avoidance takes the form of c

(
vj
)
= vθ

j . Therefore,
the optimal public avoidance level is

vj =

[(
β

θ

)(
I
N

)
λjK

] 1
θ−1

. (1)
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There are three factors that determine the optimal public avoidance level. The first factor is
the time-invariant nature of the disease, which includes the transmission rate and the disutility
parameter. The second factor is the time-varying fraction of infected individuals in the population.
This factor suggests that individuals will avoid exposing themselves in public as the number of
infected people in the general population increases. The last factor is the risk of death within an
age group which is the source of the key mechanism in the model. The relationship between public
avoidance levels vj and vk of groups j and k is given by

vj

vk
=

(
λj

λk

) 1
θ−1

.

This equation implies that individuals who face a greater risk of death will protect themselves
more intensively. The effective transmission rate in this model is β (1− vi), which is time-varying
because of the second factor, the fraction of infected individuals in the population. As the virus
spreads, susceptible individuals are more likely to come into contact with infected individuals. As
a result, they become more cautious and employ more self-protective measures.

The source of time-variant effective transmission rates is different across studies. Wang et al.
(2020) exogenously determine R0 by phase; R0 is equal to 3.1 from 1 December 2019 to 23 January
2020, 2.6 from 24 January 2020 to 2 February, 1.9 from 3 February to 15 February, and 0.9 after 16
February. Atkeson (2020) uses exogenous differential equations of Rt to represent social distancing.
In contrast, the effective transmission rates in this model are time-varying and non-monotonic
because individuals respond to the risk of infection.

3 Quantitative Results

3.1 Calibration and Estimation Strategy

The parameters are the natural (exogenous) transmission rate β, the infection rate σj, the recovery
rate γ, the death rates λj, and the reproduction rate R0. In the baseline simulation, I assume that
the infection rate σj is homogeneous across groups and is set at 1/5.2, as the incubation period is
5.2 days (Li et al., 2020). The recovery rate γ is recovered from the average hospitalization period
which is 7.62 to 17.76 days. I choose γ = 1/17.76 in the baseline simulations, which corresponds
with the upper bound of the range. The last parameter, R0, is set to 3.1, which matches the early
period in Imai et al. (2020).

The data on population is from the 2018 census.1 The U.S. population is given as approximately
330 million people, divided into seven groups by age: 0-19, 20-44, 45-54, 55-64, 65-74, 75-84, and
85 and above. The shares of population in the age groups are 0.2505, 0.3329, 0.1273, 0.1293, 0.0934,
0.0468, and 0.0198. The data on the numbers of cases is from the CDC.2 The death rates λj are set
at 0.001, 0.0015, 0.0065, 0.02, 0.038, 0.074, and 0.1885, respectively. The duration of one period in

1https://www.census.gov/popclock/
2https://www.cdc.gov/mmwr/volumes/69/wr/mm6912e2.htm
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Figure 2: The number of new cases daily from the data, and the model predictions

Figure 3: The shares of patients in each age group, from the data and model predictions.

the model is one day. The data starts from March 1, 2020. There are 30 cases at the beginning.
Following Atkeson (2020), I assume the initial value of E is 132.

The CDC has data on new reported cases from March 1 to March 26. I hold the data from March
22-26 our for validation propose. To match the data on new cases between March 1 to March 21 and
the data on the fraction of infected patients in each age group on March 16, I structurally estimate
the model in two ways. In Model 1, I allow for heterogeneity in the infection rates σj across the age
groups and estimate 9 parameters, {β, γ, σ1, ..., σ7}. In Model 2, I introduce the endogenous public
avoidance level discussed in Section 3. The number of parameters increases to 11. Details on the
estimation are described in the Appendix. The baseline model is a simplified version of Atkeson
(2020) without social distancing (declining R0).
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Figure 4: The share of infected patients in each group as predicted by Model 2.

3.2 Results

First, I compare the predictability of the models with the actual data in Figure 2. The Y-axis is in
a logarithmic scale. The baseline model underpredicts the number of new reported cases. One
possibility is that the calibrated parameters from the cases in China may not match the patterns
in the U.S. Model 1 and Model 2, in which the parameters are structurally estimated to match the
data from March 1 to March 21, fit the out-of-sample data well as they are able to predict the data
from March 22 to March 26.

Model 1 and Model 2 are able to match the data on the shares of patients across age groups.
Basic SEIR models generally fail to match this data because they assume the same parameters
across all groups. As a result, the shares of patients in the basic SEIR models are equal to the share
of the population in each age group.

I use Model 2 to predict the number of new cases and the public avoidance levels across the
age groups, assuming that the individuals respond to the risk of getting the disease and that no
policy interventions are implemented during the period.

According to Figure 4, Model 2 predicts that Group 7 would have the smallest share of infected
patients, while Groups 2 and 3 would have the highest shares. The results could be counter-
intuitive at first glance, as the populations in Group 2 and Group 3 are relatively healthier than the
population in Group 7. The patterns are driven by the endogenous public avoidance levels. The
population in Group 7 realize that they face a greater risk of dying, and therefore they use more
self-protective actions.

As can be seen from Figure 5, the public avoidance level of Group 7 is the highest among
all groups. It reaches 1 around mid-April and stays at 1 until the number of cases in the whole
economy declines in mid-May. The model predicts that Group 7 would have a small number of
new cases between mid-April to mid-May. In contrast to Group 7, Groups 1, 2, and 3 are predicted
to choose small levels of public avoidance. The reason is that they believe they are unlikely to
become infected or die.

One by-product of the estimation is that infection rate σ is likely age-dependent. The estimates
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Figure 5: The public avoidance levels over time as predicted by Model 2.

suggest that the infection rate increases with age, as the estimate is 0.0133 for Group 1 and increases
to 0.1917 for Group 6. Note that the estimates from the model are not necessarily equal to the actual
infection rates.

4 Discussion

This study offers three main insights. First, if individuals do not consider their externality of
possibly transmitting the virus to susceptible individuals, their public avoidance behavior is sub-
optimal, in the sense that because they do not self-quarantine, and so they spread the virus to an
innocent population. In Figure 4, Groups 1, 2, and 3 would carry the virus and risk spreading it to
the other groups.

Second, the lockdown policy, which aims to reduce the number of transmissions, would affect
the young more than the elderly. This corresponds to the fact that teens and young adults can be
seen outside in public, while the elderly are reluctant to go outside in crowds, since the elderly
are more likely to self-quarantine at all costs, even without a policy. We can see from Figure 5 that
Groups 1, 2, and 3 would be constrained by a lockdown policy that imposes the minimum level of
public avoidance.

Third, the government may announce a commitment to not hospitalize infected individuals.
By so doing, the government would raise the cost of infection for each individual, and individuals
would respond by becoming more self-protective. Other penalties such as taxes or penalties on
being outside without an appropriate reason could incentivize individuals to raise their public
avoidance level and lower the transmission rate.
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5 Conclusion

This paper studies the transmission of COVID-19 in an epidemic model that allows for endogenous
public avoidance levels and heterogeneous infection rates across all age groups. The model is
structurally estimated to match the daily pattern of new cases in the U.S and the percentage of
patients across all age groups. It predicts a variation in the share of infected population across
those age groups and suggests that the infection rate σ is likely age-dependent.
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Appendix

The parameters in Model 1 that are structurally estimated are β, γ, σ1, σ2, σ3, σ4, σ5, σ6, and σ7. In

Model 2, the public avoidance equation 1 is equivalent vj =
[
µ (I/N) λj

] 1
θ−1 , where µ = βK/θ is a

constant. Thus, the estimation of Model 2 has 11 parameters: β, γ, σ1, σ2, σ3, σ4, σ5, σ6, σ7, θ, and µ.
The estimations are implemented by command fminsolve in MATLAB software. The initial guesses
follow from the parameters used in Atkeson (2020). The estimated values are described in Table 1.
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Table 1: Estimation Results
Model 1 Model 2

parameter initial guess estimate parameter initial guess estimate
β 3.5 5.0847 β 3.5 4.7964
γ 1 0.6736 γ 1 0.4121
σ1 0.1923 0.0154 σ1 0.1923 0.0133
σ2 0.1923 0.0788 σ2 0.1923 0.0672
σ3 0.1923 0.1437 σ3 0.1923 0.1217
σ4 0.1923 0.1406 σ4 0.1923 0.1215
σ5 0.1923 0.2118 σ5 0.1923 0.1816
σ6 0.1923 0.2201 σ6 0.1923 0.1917
σ7 0.1923 0.5741 σ7 0.1923 0.4739

θ 4 5.5338
µ 100 148.8241
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