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Abstract

This paper shows that the long-run risk model of Bansal and Yaron (2004) can poten-

tially solve the equity premium and risk-free rate puzzles in Thailand. In particular, the

calibrated values of the risk aversion and the elasticity of intertemporal substitution are

empirically plausible. Risk decomposition results indicate that long-run risk is the most

important risk component relevant to asset prices; that is, asset prices in Thai financial

markets are most sensitive to small changes in news regarding long-term expected growth

rates. Volatility risk also has an impact on asset prices but its impact is just about a quarter

of the impact of the long-run risk.

Keyword: equity premium puzzle, long-run risk model, long-run component risk, asset

pricing, generalized method of moments

1 Introduction

Equity premium puzzle has been an important problem in financial economics since the seminal

work of Mehra and Prescott (1985), who found that the observed equity premium in the United

States is too large to be explained by the consumption-based asset pricingmodel of Lucas (1978)

and Breeden (1979) with a plausible value of risk aversion coefficient. This failure to explain

the equity premium implies that standard macroeconomic models are not rich enough to capture
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relevant financial risks faced by the investors and their corresponding prices of risks. There

has been a large body literature trying to solve the equity premium puzzle using a variety of

approaches, e.g., Epstein and Zin (1989); Weil (1989); Bansal and Yaron (2004), most of which

were not so successful. One of the most promising papers is Bansal and Yaron (2004), which

showed that the long-run risk model can explain the equity premium and risk-free returns in the

United States reasonably well.

So far, most of the literature in Thailand has shown that the equity premium puzzle ex-

ists. Both Duangthong (2014) and Harnphattananusorn (2014) found the equity premium puz-

zle in Thailand while Sedthapinun (2000), who used earlier data, found no puzzle. Recently,

Duangchaiyoosook and Ousawat (2021) also revisited the issue using more recent data, and

found that the equity premium still exists in Thailand. Themain question of this paper is whether

the long-run risk model of Bansal and Yaron (2004) can resolve the equity premium puzzle in

Thailand.

This paper calibrates the long-run risk model of Bansal and Yaron (2004) to solve the equity

premium puzzle in Thailand. The key contribution of this paper is the empirical part not the

theoretical model since the latter is exactly the same as in Bansal and Yaron (2004). This paper

estimates the long-run processes with time-varying economic uncertainty using the quarterly

data of consumption and dividend growth rates from Thailand. The estimated parameters are

then used for model calibration, where time discount factor, relative risk aversion coefficient

and elasticity of intertemporal substitution are chosen in order to match the unconditional ex-

pectation of logs of equity premium and risk-free rate with their empirical counterparts. The

calibration result suggests that the long-run risk model of Bansal and Yaron (2004) can explain

the equity premium and risk-free rate in Thailand reasonably well. In particular, the calibrated

values of the model parameters, time discount factor, relative risk aversion coefficient and elas-

ticity of intertemporal substitution, are in a plausible range. In addition, risk decomposition

results indicate that long-run risk is the most important risk component relevant to asset prices;

that is, asset prices in Thai financial markets are most sensitive to small changes in news regard-

ing long-term expected growth rates. Volatility risk also has an impact on asset prices but its

impact is just about a quarter of the impact of the long-run risk. On the other hand, the standard

sort-run or consumption risk accounts for about 30% of the equity premium.

Intuitively, the long-run risk model can explain the equity premium because it captures two

additional risks, long-run risk and time-varying economic uncertainty, through the exogenous
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long-run processes of consumption and dividend growth while the standard model captures

only short-run or consumption risk. More importantly, the model can price those risks while

the standard model cannot because it assumes that investors have recursive preferences (Kreps

and Porteus, 1978; Epstein and Zin, 1989;Weil, 1989). The key feature of recursive preferences

is the ability to disentangle the relative risk aversion coefficient and the elasticity of intertem-

poral substitution, which is a key restriction of the time-separable utility function, employed in

Mehra and Prescott (1985). In other words, both the additional risks and recursive preferences

are complementary to each other. Recursive preferences alone is not sufficient to solve the

puzzle, as shown in Weil (1989) for the US case and Duangthong (2014), Duangchaiyoosook

and Ousawat (2021) for the Thai case while the two additional risks would have had no role on

the equity premium if the preferences were time-separable (with the elasticity of intertemporal

substitution is the reciprocal of the risk aversion).

The remainder of the paper is organized as follows. Section 2 describes the long-run risk

model and its asset pricing implications. The empirical estimation of the long-run processes are

presented in Section 3. Section 4 presents the calibration results and Section 5 concludes the

paper.

2 The Long-Run Risk Model of Bansal and Yaron (2004)

This section presents the long-run risk model of Bansal and Yaron (2004), whose two key in-

gredients are (i) the consumption-based asset pricing model with recursive preferences (Epstein

and Zin, 1989; Weil, 1989), and (ii) long-run processes with time-varying economic uncertainty

of consumption growth and dividend growth.

According to the consumption-based asset pricing model with Epstein and Zin recursive

preferences, the representative consumer solves the following utility maximization problem:

Vt = max
Ct

U (Ct, Et [Vt+1]) (1)

subject to the budget constraint1

Wt+1 = (Wt − Ct)Rc,t+1, (2)

where Ct is consumption in period t,Wt is wealth at the beginning of period t, and U (C, V ) is

an aggregator function capturing the recursive nature of the preferences.
1The budget constraint (2) matters here because the value function V is a function ofW .
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One key assumption here is the completemarkets assumption in that the consumer has access

to the complete set of assets, whose dividend is the aggregate consumptionCt+1 and total return

is Rc,t+1 = Pc,t+1+Ct+1

Pc,t
, where Pc,t is the price of the portfolio in period t. Some of the assets

may not be traded in the financial markets, however. This implies that the return on aggregate

consumption Rc,t+1 does not need to be equal to the financial market return Rm,t+1, and Pc,t is

unobserved by econometricians.

Following Weil (1989), we assume that the aggregator function is given by

U(C, V ) =

[
(1− β)C1− 1

ψ + β (1 + (1− β) (1− γ)V )
1− 1

ψ
1−γ

] 1−γ
1− 1

ψ − 1

(1− β)(1− γ)
, (3)

where β is the time discount factor with 0 < β < 1, γ is the relative risk aversion coefficient, and

ψ is the elasticity of intertemporal substitution. The Euler equation for the utility maximization

problem is

Et

[(
β
ψ(1−γ)
ψ−1 G

γ−1
ψ−1

c,t+1R
1−ψγ
ψ−1

c,t+1

)
Rc,t+1

]
= 1, (4)

which implies that the log of the stochastic discount factor,mt+1 = logMt+1, is

mt+1 =
ψ (1− γ)

ψ − 1
logβ +

γ − 1

ψ − 1
gc,t+1 +

1− ψγ

ψ − 1
rc,t+1, (5)

where gc,t+1 ≡ logGc,t+1 is the log of consumption growth, and rc,t+1 ≡ logRc,t+1 is the log of

return on the complete-markets portfolio. Importantly, the stochastic discount factor can price

any asset whose returns areRj,t+1 according to the standard pricing equationEt [Mt+1Rj,t+1] =

1. Note that lowercase letters in this paper refer to the natural logs.

The second key ingredient of the model is the exogenous long-run processes of the log of

consumption growth gc,t+1, the log of dividend growth gc,t+1, unobserved persistent variable

xt+1, and time-varying economic uncertainty σ2
c,t+1:

gc,t+1 = µc + xt + σc,tηc,t+1, (6)

gd,t+1 = µd + ϕxt + πdσc,tηc,t+1 + φdσc,tηd,t+1, (7)

xt+1 = ρxt + φxσc,tηx,t+1, (8)

σ2
c,t+1 = σ2

c + ν
(
σ2
c,t − σ2

c

)
+ φσησ,t+1, (9)

where µc is the expected value of the log of consumption growth, µd is the expected value

of the log of dividend growth, ϕ is the leverage ratio of the persistent variable xt, πd is the
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dividend-consumption exposure, φd is volatility multiplier ratio of the log of dividend growth,

ρ is the persistence of the growth process, φx is the volatility multiplier of the persistent vari-

able, σ2
c is the expected value of time-varying economic uncertainty, ν is the persistence of

time-varying economic uncertainty; φσ is the volatility multiplier of the time-varying eco-

nomic uncertainty, and all error terms, ηc,t+1, ηd,t+1, ηx,t+1, ησ,t+1, are i.i.d. standard normal

N(0, 1) and uncorrelated with each other. To sum up, these processes have 10 parameters,

µc, µd, ϕ, πd, φd, ρ, φx, σ
2
c , ν, φσ, which are estimated in Section 3.

The next step is to apply the standard first-order Taylor approximation, as in Campbell and

Shiller (1988), to rc,t+1 = log
[
Pc,t+1+Ct+1

Pc,t

]
:

rc,t+1 ≈ kc,0 + kc,1zc,t+1 − zc,t + gc,t+1, (10)

where zc,t = log
[
Pc,t
Ct

]
is the log of price-consumption ratio, kc,0 = log [1 + ez̄c ] − kc,1z̄c,

kc,1 =
ez̄c

1+ez̄c
, and z̄c is the mean of zc.2

Following Bansal and Yaron (2004), we guess that the log of price-consumption ratio zc,t is a

linear function of the unobserved persistent variable xt, and time-varying economic uncertainty

σ2
c,t:

zc,t = Ac,0 + Ac,1xt + Ac,2σ
2
c,t, (11)

which can be verified by substituting (10) and (11) into the Euler equation (4), and then solving

for Ac,0, Ac,1 and Ac,2. See the detailed derivation3 in Appendix A.

A similar approach can be employed to derive the approximation of the log of financial-

market return, rm,t+1 = log
[
Pm,t+1+Dt+1

Pm,t

]
, where Pm,t is the price of the financial market port-

folio, and Dt+1 is its dividend. The approximation of rm,t+1 is

rm,t+1 = km,0 + km,1zm,t+1 − zm,t + gd,t+1, (12)

2The key part is log (1 + Zc,t+1) = log [1 + ezc,t+1 ] ≈ log [1 + ez̄c ] −
(

ez̄c

1+ez̄c

)
z̄c +

(
ez̄c

1+ez̄c

)
zc,t+1, which

employs the standard first-order Taylor approximation around any z̄c that is not too far from zc,t+1. If the price-

consumption ratio were observed, it would have been easier to estimate z̄c. Following Bansal and Yaron (2004),

we can find z̄c by first setting its theoretical counterpart equal to the mean of zc,t, i.e., z̄c ≡ E [zc,t]. Using this

condition, we can then solve for z̄c using the expectation of (11): E [zc,t] = z̄c = Ac,0 +Ac,2σ
2
c , where both Ac,0

and Ac,2 are also functions of z̄c.
3An implicit assumption needed for the derivation is log-normality of consumption growth and the return on

the complete-markets portfolio.
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where zm,t = log
[
Pm,t
Dt

]
is the log of price-dividend ratio, km,0 = log [1 + ez̄m ] − km,1 z̄m,

km,1 = ez̄m

1+ez̄m
, and z̄m is the average of the log of price-dividend ratio, which is observed.4

Again, the log of price-dividend ratio, zm,t, is guessed to be a linear function of the unobserved

persistent variable xt, and time-varying economic uncertainty σ2
c,t:

zm,t = Am,0 + Am,1xt + Am,2σ
2
c,t, (13)

which can be verified by substituting (12) and (13) into the Euler equation (4) and then solving

for Am,0, Am,1 and Am,2. See the detailed derivation5 in Appendix B.

As in the standard asset pricing literature, to calibrate the model, we need to derive key

asset pricing equations as unconditional expectations, one for equity premium rm,t+1 − rf,t+1,

and one for risk-free rate rf,t+1. The unconditional expectation of the equity premium can be

written in terms of model parameters and observed statistics as the following:

E [rm,t+1 − rf,t+1] = λcβc + λxβx + λσβσ −
1

2
E [Vart [rm,t+1]] , (14)

where

E [Vart [rm,t+1]] = (km,1Am,1φxσc)
2 + (πdσc)

2 + (φdσc)
2 + (km,1Am,2φσ)

2 . (15)

Note that the equity premium is decomposed into a risk component, β, and a corresponding

price of risk, λ. In particular, βc = πdσ
2
c and λc = γ denote the short-run risk (or consumption

risk) and its price, βx = φxσ
2
ckm,1Am,1 and λx = φx(ψγ−1)kc,1

ψ(1−ρkc,1) denote the long-run risk and its

price, and βσ = φ2
σkm,1Am,2 and λσ = ψγ−1

ψ−1
kc,1Ac,2 denote the volatility risk and its price. The

detailed derivations are in Appendix C. Note that prices of the long-run risk, λx, and the volatil-

ity risk, λσ, would have been zero if ψγ = 1. In other words, both types of risks would have

had no role on the equity premium if the preferences were time-separable (with the elasticity of

intertemporal substitution is the reciprocal of the risk aversion). That is, recursive preferences

are necessary for pricing the the long-run risk and the volatility risk.

Similarly, the unconditional expectation of the log of risk-free return can be written in terms

of model parameters and observed statistics as the following:

E [rf,t+1] = − logβ +
µc
ψ

+
ψγ − 1

ψ (1− γ)
E [rc,t+1 − rf,t+1] +

1− ψ

2ψ (1− γ)
E [Vart [mt+1]] , (16)

4Since zm,t is observed, z̄m can be directly estimated using the average of the log of price-dividend ratio. This

is clearly different from the price-consumption ratio, which is unobserved.
5An implicit assumption needed for the derivation is log-normality of consumption growth, complete-market

return, and financial-market return.
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where

E[rc,t+1 − rf,t+1] = λcσ
2
c + λxkc,1Ac,1φxσ

2
c + λσkc,1Ac,2φ

2
σ −

1

2
E [V art [rc,t+1]] , (17)

E [V art [rc,t+1]] =
(
1 + (kc,1Ac,1φx)

2
)
σ2c + (kc,1Ac,2)

2 φ2
σ, (18)

E [V art [mt+1]] = λ2cσ
2
c + λ2xσ

2
c + λ2σφ

2
σ. (19)

The detailed derivations are in Appendix D.

The main purpose of this paper is to calibrate the long-run risk model, using the asset pricing

equations (14) and (16), which depend on 13 parameters, β, γ, ψ, ρ, φx, σ2
c , µc, µd, ϕ, φd, πd, ν,

φσ. Note that the first three parameters are calibrating parameters, which will not be estimated

directly, while the last 10 of them will be estimated using consumption and dividend data as in

the next section.

3 Estimation of the Long-Run Processes

This section estimates the long-run processes (6)-(9), which contain K = 10 structural param-

eters. To be able to identify and estimate these parameters using the generalized method of

moments6 or GMM (Hansen, 1982), we derive I = 12 moment conditions of observed vari-

ables, logs of consumption and dividend growth, including their own and cross moments up to

the fourth order both with contemporaneous and lagged variables. See the exact forms of these

moments and their derivations in Appendix E.

More formally, let Θ ≡ {µc, µd, ϕ, πd, φd, ρ, φx, σ2
c , ν, φσ} be the set of structural param-

eters to estimate. Let E [fi (v,Θ)] = 0 be the ith moment condition for i = 1, . . . , I , where

v = (gc, gd) are random variables representing consumption and dividend growth rates. Stak-

ing all of them together, we can write the (theoretical) moment conditions in a vector form as

the following.

E [f (v,Θ)] = 0, (20)

where f (v,Θ) is the vector of I moment conditions. The GMM approach is to find a set of

parameters, Θ̂, that solves the following minimization problem:

Θ̂ = argmin
Θ

f̄ (v̂,Θ)′ Âf̄ (v̂,Θ) , (21)

6One advantage of the GMMapproach in this case is that it is a natural setting to deal with unobserved persistent

variables, e.g., xt+1, by treating it as a random variable with finite moments.
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where ′ denotes the matrix transpose operator, and Â is the weighting matrix. In addition,

f̄ (v̂,Θ) ≡
[
f̄1 (v̂,Θ) , . . . , f̄I (v̂,Θ)

]
is the vector of the averages of the moment conditions

with

f̄i (v̂,Θ) =

∑T
t=1 fi (v̂t,Θ) di (t)∑T

t=1 di (t)
, (22)

where dj (t) = 1 if period-t data, v̂t for t = 1, . . . , T , is applicable to the ith moment condition,

and equals to zero otherwise.7 Our weighting matrix is based on the Newey-West estimator

(Newey and West, 1987) with L = 2 lags, which is always positive semi-definite, as follows:

Â =

[
Γ̂ (0) +

L∑
ℓ=1

(
1− ℓ

1 + L

)(
Γ̂ (ℓ) + Γ̂

′
(ℓ)

)]−1

, (23)

where Γ̂ (ℓ) ≡
[
Γij (ℓ)

]
is an I × I matrix with

Γij (ℓ) =

∑T
t=1 fi (v̂t,Θ) fj (v̂t−ℓ,Θ) di (t) dj (t− ℓ)∑T

t=1 di (t) dj (t− ℓ)
, for ℓ = 0, 1, . . . , L, (24)

where dj (t) = 0 if t ≤ 0. The asymptotic variance-covariance matrix of the estimated param-

eters can be calculated as the following.

V̂ ar
[
Θ̂
]
=

(
Ĝ

′
ÂĜ

)−1

T
, (25)

where Ĝ =
[
Ḡik

]
is an I ×K matrix with

Ḡik =

∑T
t=1

∂fi(v̂t,Θ̂)
∂θk

di (t)∑T
t=1 di (t)

, (26)

which is the empirical counterpart of the gradient matrix ∂E[fi(v,Θ)]
∂θk

. The standard error of

each estimated parameter can be discovered from the corresponding diagonal element of the

estimated variance-covariance matrix.

The baseline estimation of this paper uses the quarterly per capita consumption and dividend

data from 2000 to 2019. This choice is to avoid the complication of the financial crisis of

1997. As a robustness check, we also perform the estimation and calibration with longer data

from 1994 to 2019. Nominal aggregate consumption data are taken from the national income

account, generated by the Office of the National Economic and Social Development Board
7These dummies are needed because moment conditions with different number of lags will have a different

number of relevant observations.
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(NESDB) while nominal dividend data are computed using cash and stock dividends from all

stocks available in each period from the Stock Exchange of Thailand.8 These nominal variables

are adjusted to be real variables using the quarterly Consumer Price Index (CPI) of Thailand,

generated by Bureau of Trade and Economic Indices. Per capita variables are adjusted using the

population data of Thailand from the Department of Provincial Administration.9 Real quarterly

(per capita) consumption growth rate, Gc,t, and real (per capita) dividend growth rate, Gd,t, are

calculated using year-on-year measurement of the real quarterly data, which makes the units of

all growth rates as per annum. The year-on-year calculation is to adjust for potential seasonal

effects. The average of log of real (per capita) consumption growth rate, ḡc, over the period of

2000-2019 is approximately 0.0381 per annum (with standard deviation of 0.0191) while it is

about 0.1392 per annum (with standard deviation of 0.4393) for the real (per capita) dividend

growth rate, ḡd. See table 1.

Table 1: Summary statistics of log of consumption growth, log of dividend growth, log of price-

dividend ratio, log of financial market return, and log of risk-free return.

Parameters 2000-2019 1994-2019

mean standard mean standard

deviation deviation

log of consumption growth (gc,t+1) 0.0381 0.0191 0.0337 0.0283

log of dividend growth (gd,t+1) 0.1392 0.4393 0.0560 0.5627

log of price-dividend ratio (zm,t+1) 4.9186 0.7477 5.1034 0.8327

log of financial market return (rm,t+1) 0.0501 0.2477 -0.0167 0.3229

log of risk-free return (rf,t+1) -0.0022 0.0186 0.0066 0.0240
All variables are calculated using year-on-year measurement of quarterly data.

This paper employs a two-step GMM estimation method, where the weighting matrix of

the first step is the identity matrix while the second step is calculated using (23) based on the

first-step estimated parameters.

The baseline estimation results are reported in the second column of Table 2. All parameter
8There are two main reasons why we should use both cash and stock dividends in this paper: (i) the equity

premium is calculated using the total return, based on capital gains, cash dividend and stock dividend. (ii) this

model does not require the equality of dividend and consumption.
9The original population data are available in annual frequency only. We use a simple interpolation method to

calculate the quarterly version.
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estimates are statistically significant with p < 0.05. The significance of the persistence of the

growth process, ρ̂ = 0.7612, and the volatility multiplier of the persistent variable, φ̂x = 0.4335

confirm that consumption growth process in Thailand is a long-run process not an i.i.d. With

the significance of the leverage ratio of the persistent variable, ϕ̂ = 3.1575, the dividend growth

process is also a long-run process. In addition, the magnitude of the estimate, ϕ̂ > 1, is in line

with the result of Abel (1999), who argued that the leverage ratio from the financial markets

should be larger than one, and, consequentially, consumption and dividend should be treated

as two distinct processes, which is different from the consumption-based asset pricing model

of Lucas (1978). The significance of the volatility multiplier of the time-varying economic

uncertainty, φ̂σ = 2.5755 indicates that time-varying economic uncertainty significantly affects

consumption growth process. The results are robust with regards to the extension of data to

1994-2019. All estimated parameters are very closed. See the second and the third columns of

table 2.

We next compare our estimates with the US case from Bansal et al. (2016), who estimated

the long-run risk model using GMM as well. Most of the estimated parameters are reasonably

closed, except µ̂d, π̂d, σ̂2
c , ν̂, and φ̂σ, as shown in table 2. The differences for dividend-related

parameters, µ̂d and π̂d, should be expected since real per capita dividend growths from both

countries are clearly distinct. Interestingly, we found that our time-varying economic uncer-

tainty parameters, σ̂2
c , ν̂ and φ̂σ, are much larger than the US ones. This suggests that Thai

economy faces much larger economic uncertainty relative to the US, which may not be an un-

reasonable claim.10 Note that J statistics (reported at the bottom of the table) imply that the

overidentifying restrictions are rejected for all three cases. As in Bansal et al. (2016), we still

use the estimated parameters to calibrate the long run risk model even though the overidentify-

ing restrictions are rejected.

4 Calibration Results

This section calibrates the model by choosing time discount factor, β, relative risk aversion

coefficient, γ, and elasticity of intertemporal substitution, ψ, to match the unconditional expec-
10Note that the estimated value of ν̂ is larger than one. This implies that the process of consumption variance

is non-stationary. This divergence may result from the small number of observations (80 periods in our case)

but we cannot be certain. When we tried to bound the estimated parameter to be less than one, the model gave

unreasonable results.
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Table 2: Estimated parameters of the long-run processes with time-varying economic uncer-

tainty.

Estimated Thailand case US case

Parameters 2000-2019 1994-2019 BYK(2016)

ρ̂ 0.7612*** 0.8362*** 0.8741

(0.0173) (0.0087)

φ̂x 0.4335*** 0.4804*** 0.1661

(0.0141) (0.0086)

σ̂2
c 0.0106*** 0.0096*** 0.0006

(0.0020) (0.0015)

µ̂c 0.0381*** 0.0337*** 0.0141

(0.0027) (0.0034)

µ̂d 0.1392** 0.0560 0.0107

(0.0519) (0.0663)

ϕ̂ 3.1575*** 3.9815*** 2.51

(0.4034) (0.4511)

φ̂d 3.2134*** 3.8078*** 5.12

(0.6881) (0.6335)

π̂d 2.4197*** 3.4124*** 0.6

(0.1774) (0.1989)

ν̂ 6.4383* 6.1637*** 0.922

(2.2146) (1.748)

φ̂σ 2.5755** 3.1395** 0.00000349

(0.9869) (1.13703)

J-stat 26.7531 34.7344 231.5

p-value 0.0000 0.0000 0.0000
Note: Standard errors are in parenthesis and * p<0.05, ** p<0.01, *** p<0.001. The weighting matrix is the Newey-West with 2 lags. J-Stat and

p-values in the last two rows are for the over-identification tests.
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tations of logs of equity premium and risk free rate, (14) and (16), based on relevant sample

statistics and estimated parameters with their empirical counterparts.

The observed financial market returns Rm,t+1 are taken from the Financial and Economic

Data for Research (FEDR) at the University of the Thai Chamber of Commerce (UTCC), which

collects and adjusts financial data from the Stock Exchange of Thailand (SET). The FEDR re-

turns are constructed using a similar framework to the CRSP market returns from the Center

for Research in Security Prices at the University of Chicago. In particular, the total returns for

each individual stock are calculated as the sum of the returns from the capital gains, cash div-

idends and stock dividends, taking into account stock split/reverse. The FEDR market returns,

henceforth market returns, are the returns of the value-weighted portfolio of all stocks in the

SET. The key advantage of the FEDR market returns over the SET total returns provided by the

SET is that the former returns are available since the beginning of the SET (April, 1975) while

the latter ones are available only after January, 2002. To be consistent with the calculation of

consumption and dividend growth, the real market returns here are calculated using year-on-

year measurement of the real quarterly returns. See appendix F for derivations. Figure 1 shows

log of quarterly market returns, log of quarterly SET total returns, and log of quarterly risk-free

returns (all units are per annum). The average of log of real market returns over the period

2000-2019 is approximately 0.0501 per annum, as shown in table 1. This number is slightly

smaller than the average annual real market returns of 0.0672 per annum.

The observed risk-free returns, Rf,t+1 are the 3-month time deposits average returns of the

fivemain Thai commercial banks, includingBangkokBank, Krungthai Bank, SiamCommercial

Bank, Kasikorn Bank and Bank of Ayudhya, taken from the �Bank of Thailand (BOT). We need

to use the deposit rate instead of the 3-month treasury bill returns as in the international literature

(e.g., Mehra and Prescott, 1985) because the treasury data of Thailand are consistently available

only after 2005 while the deposit rates are available since 1978. In addition, both rates are

reasonably close when both are available, as evident in figure 2. The real risk-free returns are

also calculated using year-on-year measurement of the real quarterly returns. The average of

log of real risk-free returns over the period 2000-2019 is approximately -0.0022 per annum, as

shown in table 1. This number is slightly smaller than the average annual real risk-free returns

of -0.0013 per annum.

Another key statistic is the average of the log of price-dividend ratio, which is the estimate of

z̄m. We compute the price-dividend ratio, using the quarterly observed cash and stock dividends

12



Figure 1: Log of real market returns (1977-2019), log of SET real total returns (2002-2019),

and log of real 3-month time deposits average rate of main five Thai Commercial Banks (1978-

2019). Note that the real observed data are not available before 1976 because of the unavailabil-

ity of the CPI. All returns are calculated using year-on-year measurement of the corresponding

real quarterly returns.

Figure 2: Log of real 3-month time deposits average rate of the five main Thai Commercial

Banks (1978-2016) and log of 3-month treasury bill returns (2005-2019). All returns are calcu-

lated using year-on-year measurement of the corresponding real quarterly returns.
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and market price. The average of the log of price-dividend ratio over the period 2000-2019 is

approximately 4.9186, which is reasonably closed to the value of 3.404 for the US (Bansal et al.,

2016).

We are now ready to calibrate the model. There are three parameters to calibrate with two

equations. Therefore, we need to predetermine one parameter. Following the literature, we

calibrate the model by solving equations (14) and (16) jointly for risk aversion coefficient γ

and elasticity of intertemporal substitution ψ, for each particular value of the time discount

factor β = 0.95, 0.96, 0.97, 0.98, 0.99.

Table 3 shows the calibration results, which suggest that the long-run risk model with time-

varying economic uncertainty can resolve equity premium and risk-free rate puzzles in Thai-

land. For the baseline case, calibrated values of risk aversion coefficient γ and elasticity of

intertemporal substitution ψ are empirically plausible, for each time discount rate. Risk aver-

sion is between 2.77-3.05, which is a plausible range suggested by empirical studies (Mehra and

Prescott, 1985) while the elasticity of intertemporal substitution is between 1.01-1.03, which is

also empirically reasonable. See the second and third columns of table 3. Note that the average

of log of consumption-price ratio corresponding to each set of calibrated parameters is between

2.45-3.51, which is much lower than the average of log of dividend-price ratio of 4.92. The

calibration results using data from 1994-2019 also lead to a similar conclusion. That is, the

model can be calibrated to match equity premium and risk-free returns with reasonable param-

eter values.

Table 3: Calibrated values of risk aversion γ and elasticity of intertemporal substitution ψ.

β
2000-2019 1994-2019

γ ψ z̄c γ ψ z̄c

0.95 3.0579 1.0330 2.4445 3.8262 1.0031 2.0352

0.96 2.9895 1.0277 2.6204 3.1099 1.0025 3.0633

0.97 2.9193 1.0225 2.8358 3.6985 1.0018 2.1616

0.98 2.8469 1.0174 3.1142 3.3991 1.0012 2.5293

0.99 2.7716 1.0126 3.5103 3.5679 1.0005 2.3074

We can also decompose risk components of the model using (14). As discussed earlier in

section 2, the equity premium can be decomposed into short-run risk component, λcβc, long-run

risk component, λxβx, and volatility risk component, λσβσ, each of which can be calculated us-
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ing estimated and calibrated parameters and observed statistics. The baseline results, presented

in table 4, suggest that long-run risk is the key contributor to the equity premium. For example,

for the case with β = 0.99, long-run risk accounts for roughly 54% while short-run risk and

volatility risk account for 33% and 13%, respectively. This is consistent with Bansal and Yaron

(2004), who find that long run risk is the most important source of the variance of pricing ker-

nel. Again, the results are robust with regards to the extension of data to 1994-2019. See table

4.

Table 4: Contribution of short-run, long-run and volatility risks.

β
2000-2019 1994-2019

short-run long-run volatility short-run long-run volatility

0.95 0.0787 0.1140 0.0247 0.1252 0.3737 -0.0552

(36%) (52%) (11%) (28%) (84%) (-12%)

0.96 0.0769 0.1147 0.0254 0.1017 0.3902 -0.0484

(35%) (53%) (12%) (23%) (88%) (-11%)

0.97 0.0751 0.1154 0.0262 0.1210 0.3764 -0.0539

(35%) (53%) (12%) (27%) (85%) (-12%)

0.98 0.0732 0.1161 0.0270 0.1112 0.3832 -0.0511

(34%) (54%) (12%) (25%) (86%) (-12%)

0.99 0.0713 0.1169 0.0278 0.1167 0.3791 -0.0527

(33%) (54%) (13%) (26%) (86%) (-12%)

In addition, the pricing formulation in (14) enable us to decompose each risk component

into the corresponding risk measure, β, and its market price, λ. The baseline results, presented

in table 5, suggest that long-run risk also has the largest risk measure while short-run risk and

volatility risk measures are slightly smaller. On the other hand, market prices of short-run and

long-run risk are comparablewhile the price of volatility risk ismuch smaller. For the alternative

data of 1994-2019, the results are qualitatively similar but more striking. See table 6. Risk

measure of long-run risk is distinctively larger than the other two and its price is also the highest.

However, volatility risk is negative. As pointed out in Bansal and Yaron (2004), a negative

volatility risk is possible when return and volatility innovations are negatively correlated.
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Table 5: Risk measures and their prices for 2000-2019.

Risk Measures Prices of Risks

β short-run long-run volatility short-run long-run volatility

0.95 0.0257 0.0410 0.0222 3.0579 2.7821 1.1139

0.96 0.0257 0.0409 0.0232 2.9895 2.8050 1.0972

0.97 0.0257 0.0408 0.0242 2.9193 2.8284 1.0814

0.98 0.0257 0.0407 0.0253 2.8469 2.8525 1.0665

0.99 0.0257 0.0406 0.0264 2.7716 2.8776 1.0524

Table 6: Risk measures and their prices for 1994-2019.

Risk Measures Prices of Risks

β short-run long-run volatility short-run long-run volatility

0.95 0.0327 0.0809 -0.0190 3.8262 4.6172 2.9099

0.96 0.0327 0.0809 -0.0179 3.1099 4.8216 2.7044

0.97 0.0327 0.0809 -0.0188 3.6985 4.6517 2.8632

0.98 0.0327 0.0809 -0.0184 3.3991 4.7366 2.7716

0.99 0.0327 0.0809 -0.0187 3.5679 4.6870 2.8197

5 Conclusion

This paper calibrates the long-run risk model of Bansal and Yaron (2004) to match both the

equity premium and the risk-free returns in Thailand during 2000-2019. To do so, we estimate

the long-run processes of consumption and dividend growths. The estimation results indicate

that consumption and dividend indeed follow long-run processes with time-varying economic

uncertainty.

The calibration results confirm that the long-run risk model can potentially solve the equity

premium and risk-free rate puzzles in Thailand. In particular, the calibrated values of the risk

aversion and the elasticity of intertemporal substitution are empirically plausible. Moreover,

risk decomposition results indicate that long-run risk is the most important risk component

(compared to the standard short-run consumption risk and volatility risk) relevant to Thai fi-

nancial markets. According to Bansal and Yaron (2004), this implies that asset prices in Thai

financial markets are most sensitive to small changes in news regarding long-term expected
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growth rates. We also found that news regarding economic uncertainty, represented by volatil-

ity risk, have some impact on asset prices but it is just about a quarter of the impact of the

long-run risk.

An important caveat of this paper is that the estimation parameter capturing the persistence

of economic uncertainty, ν, is larger than one. This implies that the process of consumption

variance is non-stationary. We should have estimated the long-run processes with an upper

bound of the parameter at one. Unfortunately, we did try but themodel gave unreasonable results

every time we imposed the bound. This may result from the small number of observations or

the limited number of moments using in the GMM estimations. In future research, one might

try to add more moments or use a different estimation method, e.g., maximum likelihood. In

addition, this paper focuses only on the equity premium and risk free rate implications of the

model even though the model is capable of explaining a number of financial phenomena, e.g.,

predictability of returns, growth rates and price-dividend ratio, each of which is an interesting

topic for future research but beyond the scope of this paper. Another limitation of this paper is

the small number of observations. It would be better if quarterly consumption data before 1994

are available.
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A The Derivation of the Log of Price-Consumption Ratio zc,t
as in (11)

Using log-normality of consumption growth, Gc,t+1, and return on the complete-markets port-

folio, Rc,t+1, the Euler equation (4) can be rewritten in log-form as follows.

log β − 1

ψ
Et [gc,t+1] + Et [rc,t+1] +

θ

2
Vart

[
rc,t+1 −

1

ψ
gc,t+1

]
= 0, (A.1)

where θ = ψ(1−γ)
ψ−1

. Substituting (6), (8), (10) and (11) into (A.1) and rearranging the terms lead

to the following equation.[
log β +

ψ − 1

ψ
µc + kc,0 + (kc,1 − 1)Ac,0 + (1− ν) kc,1σ

2
cAc,2 +

θ

2
(φσkc,1)

2A2
c,2

]
+[

ψ − 1

ψ
+ (kc,1ρ− 1)Ac,1

]
xt +

[
θ

(
ψ − 1

ψ

)2

− 2 (1− νkc,1)Ac,2 + θ (kc,1φx)
2A2

c,1

]
σ2
c,t = 0.

(A.2)

Since condition (A.2) must hold for every value of xt and σ2
c,t, we now can conclude that

ψ − 1

ψ
+ (kc,1ρ− 1)Ac,1 = 0, (A.3)

θ

(
ψ − 1

ψ

)2

− 2 (1− νkc,1)Ac,2 + θ (kc,1φx)
2A2

c,1 = 0, (A.4)

log β +
ψ − 1

ψ
µc + kc,0 + (kc,1 − 1)Ac,0 + (1− ν) kc,1σ

2
cAc,2 +

θ

2
(φσkc,1)

2A2
c,2 = 0. (A.5)

We then can find the solution for Ac,0, Ac,1 and Ac,2 by solving this system of equations (A.3)-

(A.5) as follows.

Ac,1 =
ψ − 1

ψ (1− kc,1ρ)
, (A.6)

Ac,2 =
θ(ψ − 1)2 + θ (ψkc,1φxAc,1)

2

2ψ2 (1− νkc,1)
, (A.7)

Ac,0 =
2ψ log β + 2ψkc,0 + 2(ψ − 1)µc + 2ψ(1− ν)σ2

ckc,1Ac,2 + θψ (φσkc,1Ac,2)
2

2ψ (1− kc,1)
, (A.8)

which are exactly identical to the ones in Bansal and Yaron (2004). These solutions also help

verify that we have guessed the process of price-consumption ratio, (11), correctly.

B The Derivation of the Log of Price-Dividend Ratio zm,t as
in (13)

Using log-normality of consumption growth, Gc,t+1, return on the complete-markets portfolio,
Rc,t+1, and return on the financial market, Rm,t+1, the Euler equation (4) can be rewritten in
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log-form as follows.

θ logβ − θ

ψ
Et [gc,t+1] + (θ − 1)Et [rc,t+1] + Et [rm,t+1]

− θ

2
Vart

[
(θ − 1) rc,t+1 + rm,t+1 −

θ

ψ
gc,t+1

]
= 0, (B.1)

where θ = ψ(1−γ)
ψ−1

. Substituting (6), (7), (8), (10), (11), (12) and (13) into (B.1) and rearranging
the terms lead to the following equation.[

logβ + km,0 −
1

ψ
µc + µd +

1

2
(1− θ) θk2c,1A

2
c,2φ

2
σ + km,1Am,2 (1− ν)σ2c

+
1

2
(km,1Am,2φσ + (θ − 1) kc,1Ac,2φσ)

2 + ((1− km,1))Am,0

]
+[

ϕψ − 1

ψ
+ (ρkm,1 − 1)Am,1

]
xt +

[
(1− θ) (1− νkc,1)Ac,2 − (1− νkm,1)Am,2

+
(πd − γ)2 + φ2

d + [φxkm,1Am,1 − φx (1− θ) kc,1Ac,1]
2

2

]
σ2c,t = 0. (B.2)

Since condition (B.2) must hold for every value of xt and σ2
c,t, we now can conclude that

ϕψ − 1

ψ
+ (ρkm,1 − 1)Am,1 = 0, (B.3)

(πd − γ)2 + φ2
d + [φxkm,1Am,1 − φx (1− θ) kc,1Ac,1]

2

2
+ (1− θ) (1− νkc,1)Ac,2

− (1− νkm,1)Am,2 = 0, (B.4)

logβ +
ψ − 1

ψ
µc + kc,0 + (kc,1 − 1)Ac,1 + (1− ν) kc,1σ

2
cAc,2 +

θ

2
(φσkc,1)

2A2
c,2 = 0. (B.5)

We then can find the solution for Am,0, Am,1 and Am,2 by solving this system of equations
(B.3)-(B.5) as follows.

Am,1 =
1

ψ (1− ρkm,1)
[ϕψ − 1] , (B.6)

Am,2 =
1

2 (1− νkm,1)

[
(πd − γ)2 + φ2

d + [φxkm,1Am,1 − φx (1− θ) kc,1Ac,1]
2

+ 2 (1− θ) (1− νkc,1)Ac,2

]
, (B.7)

Am,0 =
1

2ψ (1− km,1)

[
2ψ logβ + 2ψkm,0 − 2µc + 2ψµd + ψ (1− θ) θk2c,1A

2
c,2φ

2
σ

+ 2ψkm,1Am,2 (1− ν)σ2c + ψ (km,1Am,2φσ + (θ − 1) kc,1Ac,2φσ)
2

]
. (B.8)

These solutions also help verify that we have guessed the process of price-dividend ratio, (13),

correctly.
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C TheDerivation of theExpectedEquity PremiumE [rm,t+1 − rf,t+1]

as in (14)

Using log-normality of stochastic discount factor, mt+1 and return on the financial market,

Rm,t+1, the Euler equation (4) can be rewritten in log-form as follows.

Et [mt+1] + Et [rm,t+1] +
1

2
Vart [mt+1] +

1

2
Vart [rm,t+1] + Covt [mt+1, rm,t+1] = 0. (C.1)

By construction, the Euler equation for risk-free return, Rf,t+1, can be rewritten in log-form as

follows.

rf,t+1 = −Et [mt+1]−
1

2
Vart [mt+1] . (C.2)

Substituting (C.2) into (C.1) gives the conditional mean of the equity premium

Et [rm,t+1 − rf,t+1] =− Covt [mt+1, rm,t+1]−
1

2
Vart [rm,t+1] . (C.3)

Using (5), (6), (7), (8), (9), (10), (11), (12) and (13) and rearranging the terms, we can derive

the conditional covariance between stochastic discount factor and financial market returns as

follows:

Covt [mt+1, rm,t+1] = − (γ)
(
πdσ

2
c,t

)
−

(
ψγ − 1

ψ − 1
kc,1Ac,1φx

)(
km,1Am,1φxσ

2
c,t

)
−
(
ψγ − 1

ψ − 1
kc,1Ac,2

)(
km,1Am,2φ

2
σ

)
. (C.4)

Similarly, we can use (7), (8), (9), (12) and (13) to derive the conditional variance of financial

market returns as follows:

Vart [rm,t+1] =Vart
[
km,1Am,1φxσc,tηx,t+1 + km,1Am,2φσησ,t+1 + πdσc,tηc,t+1 + φdσc,tηd,t+1

]
=(km,1Am,1φxσc,t)

2 + (km,1Am,2φσ)
2 + (πdσc,t)

2 + (φdσc,t)
2 (C.5)

Using (C.3), (C.4) and (C.5), the unconditional mean of equity premium is

E [rm,t+1 − rf,t+1] = λcβc + λxβx + λσβσ −
1

2
E [Vart [rm,t+1]] , (C.6)

where

E [Vart [rm,t+1]] = (km,1Am,1φxσc)
2 + (πdσc)

2 + (φdσc)
2 + (km,1Am,2φσ)

2 , (C.7)

βc = πdσ
2
c and λc = γ denote the short-run risk (or consumption risk) and its price, βx =

φxσ
2
ckm,1Am,1 andλx =

φx(ψγ−1)kc,1
ψ(1−ρkc,1) denote the long-run risk and its price, andβσ = φ2

σkm,1Am,2

and λσ = ψγ−1
ψ−1

kc,1Ac,2.
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D The Derivation of the Expected risk-free return E [rf,t+1]

as in (16)

Using log-normality of stochastic discount factor,mt+1, risk-free return, rf,t+1, can be rewritten

as follows:

rf,t+1 = −Et [mt+1]−
1

2
Vart [mt+1] . (D.1)

Following Bansal and Yaron (2004), we substitute log of stochastic discount factor (5) in the

first term of (D.1), which can be written as follows:

rf,t+1 =− log β +
1

ψ
Et [gc,t+1] +

1− θ

θ
Et [rc,t+1 − rf,t+1]−

1

2θ
Vart [mt+1] (D.2)

where θ = ψ(1−γ)
ψ−1

. The unconditional expectation of log of risk-free return is

E [rf,t+1] =− log β +
1

ψ
E [gc,t+1] +

1− θ

θ
E [rc,t+1 − rf,t+1]−

1

2θ
E [Vart [mt+1]] (D.3)

It is obvious that E [gc,t+1] = µc. Similarly to the derivation in appendix C, E [rc,t+1 − rf,t+1]

can be rewritten as

E [rc,t+1 − rf,t+1] =− Covt [mt+1, rc,t+1]−
1

2
Vart [rc,t+1] , (D.4)

Using (5), (6), (8), (9), (10) and (11), we can derive the conditional covariance between stochas-

tic discount factor and complete-market returns as follows.

Covt [mt+1, rc,t+1] = − (γ)
(
σ2
c,t

)
−
(
ψγ − 1

ψ − 1
kc,1Ac,1φx

)(
kc,1Ac,1φxσ

2
c,t

)
−
(
ψγ − 1

ψ − 1
kc,1Ac,2

)(
kc,1Ac,2φ

2
σ

)
. (D.5)

Similarly, we can use (7), (8), (9), (10) and (11) to derive the conditional variance of complete-

market returns as follows.

Vart [rc,t+1] = (kc,1Ac,1φxσc,t)
2 + (kc,1Ac,2φσ)

2 + (σc,t)
2 . (D.6)

Using (D.4), (D.5) and (D.6), we have

E [rc,t+1 − rf,t+1] = λcσ
2
c + λxkc,1Ac,1φxσ

2
c + λσkc,1Ac,2φ

2
σ −

1

2
E [Vart [rc,t+1]] , (D.7)

where

E [Vart [rc,t+1]] =
(
1 + (km,1Am,1φx)

2)σ2
c + (kc,1Ac,2φσ)

2 . (D.8)
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We can use (5), (6), (8), (9), (10) and (11) to derive the fourth of (D.3) as follows.

E [Vart [mt+1]] = γ2σ2
c +

(
1− γψ

ψ − 1
kc,1Ac,1φx

)2

σ2
c +

(
1− γψ

ψ − 1
kc,1Ac,2

)2

φ2
σ (D.9)

Using (D.3), (D.7) and (D.9) , we can now derive the unconditional expectation of log of risk-

free return as follows.

E [rf,t+1] = − log β +
µc
ψ

+
ψγ − 1

ψ (1− γ)
E [rc,t+1 − rf,t+1] +

1− ψ

2ψ (1− γ)
E [Vart [mt+1]] ,

(D.10)

where

E[rc,t+1 − rf,t+1] = λcσ
2
c + λxkc,1Ac,1φxσ

2
c + λσkc,1Ac,2φ

2
σ −

1

2
E [Vart [rc,t+1]] , (D.11)

E [Vart [rc,t+1]] =
(
1 + (kc,1Ac,1φx)

2) σ2
c + (kc,1Ac,2)

2 φ2
σ, (D.12)

E [Vart [mt+1]] = λ2cσ
2
c + λ2xσ

2
c + λ2σφ

2
σ. (D.13)
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E Moment Conditions for the Long Run Processes

This appendix presents all 12 moment conditions, fi (v,Θ), for i = 1, 2, . . . , 12.

f1 (v,Θ) = gc,t − µc, (E.1)

f2 (v,Θ) = g2c,t − µ2
c − σ2

c −
φ2
xσ

2
c

1− ρ2
, (E.2)

f3 (v,Θ) = gc,tgc,t+1 − µ2
c −

ρφ2
xσ

2
c

1− ρ2
, (E.3)

f4 (v,Θ) = gc,tgc,t+2 − µ2
c −

ρ2φ2
xσ

2
c

1− ρ2
, (E.4)

f5 (v,Θ) = gd,t − µd, (E.5)

f6 (v,Θ) = g2d,t − µ2
d − π2

dσ
2
c − φ2

dσ
2
c −

ϕ2φ2
xσ

2
c

1− ρ2
, (E.6)

f7 (v,Θ) = gd,tgd,t+1 − µ2
d −

ρϕ2φ2
xσ

2
c

1− ρ2
, (E.7)

f8 (v,Θ) = gd,tgd,t+2 − µ2
d −

ρ2ϕ2φ2
xσ

2
c

1− ρ2
, (E.8)

f9 (v,Θ) = gc,tgd,t − µcµd − πdσ
2
c −

ϕφ2
xσ

2
c

1− ρ2
, (E.9)

f10 (v,Θ) = gc,tgd,t+1 − µcµd −
ρϕφ2

xσ
2
c

1− ρ2
, (E.10)

f11 (v,Θ) = g4c,t −

[
µ4
c + 6µ2

cσ
2
c + 3σ4

c +
6φ2

x (µ
2
cσ

2
c + σ4

c )
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+
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+
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2
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]
, (E.11)

f12 (v,Θ) = g2c,tg
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(E.12)
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F TheRelationship ofYear-on-YearReturns andGrowthRates

This paper uses year-on-year calculation for both dividend and consumption growth rates to

adjust for potential seasonal effects. This appendix shows that, to be consistent, we need to

calculate returns using year-on-year method as well. To be concise, we show the derivation for

the financial market returns and dividend growth only. Other cases can be derived readily using

a similar method.

LetPt,q andDt,q be the price and dividend of an asset in quarter q of year t. The year-on-year

financial market returns in quarter q of year t+ 1 are

Rt+1,q =
Pt+1,q +Dt+1,q

Pt,q
. (F.1)

We can rearrange the right hand side as follows:

Rt+1,q =
1 + Zt+1,q

Zt,q

Dt+1,q

Dt,q

, (F.2)

where Zt,q = Pt,q
Dt,q

is the price-dividend ratio in quarter q of year t. Taking the natural logarithm

both sides gives

rt+1,q = log [1 + Zt+1,q]− zt,q + gd,t+1,q, (F.3)

where rt+1,q = logRt+1, zt,q = logZt,q and gd,t+1,q = log Dt+1,q

Dt,q
.
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