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Abstract

How does the market power along the agricultural value chains mediate the effects of policies

on the welfare of farmers? Using microdata on farmers and rice mills in Thailand, I document

heterogeneity in the spatial density of rice mills. I further provide reduced-form evidence that a

one standard deviation increase in local competition among rice mills leads to a 7.7% increase

in farmer prices. Informed by the empirical findings, I propose and estimate a quantitative

spatial model that accounts for the market power and entry-location choices of intermediaries.

I then simulate two policy counterfactuals. I find that gains to farmers from a country-wide

improvement in road infrastructure are regressive; the percentage increase in income of the top

decile farmers is on average 11% larger than that of the bottom decile. Changes in the entry

decisions of the rice mills further exacerbate the regressive effect, more than doubling the gap

between the percentage change in income of the top and bottom decile farmers. The second

counterfactual simulation shows that the market power of intermediaries could lead to a lower

than socially optimal level of technology adoption among farmers.
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1 Introduction

How does the market power along the agricultural value chains mediate the effects of policies

on the welfare of farmers? A large proportion of the population in developing countries relies on

farming as a source of livelihoods, with agriculture accounting for 60% of employment in low-income

countries and 29% in middle-income countries (World Bank, 2021). One of the prominent features

of agriculture in developing countries is a large number of small farmers and a small number of

intermediaries, suggesting the possible existence of market power along the value chain. This is

particularly true for many staple crops that need to be processed before they become edible, such

as rice and wheat. The fixed cost and economies of scale arising from the intermediate processing

activities give rise to large intermediaries; for instance, in the rice market, rice mills emerge. Local

market concentration around these large-scale intermediaries contrasts the fragmented nature of

small-scale farmers. This can potentially allow intermediaries to enjoy significant market power and

suppress the prices that farmers receive. Furthermore, these intermediaries make strategic entry

and location choices, which are influenced by the heterogeneous local market sizes and transport

costs, leading to heterogeneity in the spatial density of intermediaries across the country. This, in

turn, results in variations in the level of local competition of intermediaries and possibly variations

in the prices that farmers receive.

Assessing how policies impact farmer income requires understanding both how intermediaries’ entry

decisions change in response to those policies and how subsequent changes in the spatial density of

intermediaries impact prices that farmers receive. For instance, consider an improvement in road

infrastructure, which reduces trade costs. For a given spatial density of intermediaries, we would

expect lower trade costs to increase prices that farmers receive. However, our conjecture about the

overall effect of this policy becomes ambiguous once we account for intermediaries’ entry responses.

On the one hand, because upward pressure on farmer prices reduces the profitability of the in-

termediaries, intermediaries may respond by exiting the market, leading to lower competition and

lower farmer prices. On the other hand, higher farmer prices could incentivize farmers to increase

their output. A higher quantity of rice traded means higher total profit for the intermediaries,

which encourages more intermediaries to enter, increasing the spatial competition. Therefore, to

understand the effects of shocks on the welfare of farmers, it is necessary to take into account both

the intermediaries’ entry-location decisions and the subsequent impact on their market power.

In this paper, I develop a framework to study the consequences of policies, such as an improvement

in road infrastructure, on the welfare of farmers. I approach the question in the context of the

rice market in Thailand, focusing on the market power of rice mills and its impact on farmers. I

assemble a micro-level dataset on locations of farmers and rice mills, prices, and rice production.

In the first part of the paper, I begin by providing two motivating observations of the entry, exit,

and spatial distribution of rice mills. First, I document the heterogeneity in the spatial distribution

of rice mills; productive areas tend to have a higher density of mills on average, signifying the
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existence of economies of scale for rice mills and heterogeneity in the spatial competition among

rice mills. Second, I show that there is an active margin of entry and exit of rice mills, which leads

to changes in the density of rice mills and their spatial competition.

I then provide reduced-form, causal evidence that spatial competition among rice mills affects

farmer prices. Similarly to Macchiavello and Morjaria (2021), I instrument for the local competition

among rice mills using the productivity of the farmers in the neighboring area. Conditional on the

farmer’s own productivity, a farmer surrounded by more productive neighbors is surrounded by a

larger number of mills and experiences a higher degree of competition among the mills (first stage).

I establish that a one standard deviation increase in local competition results in a 7.7% increase in

farmer prices1 (second stage).

Next, I develop a quantitative structural model grounded in these empirical findings. I adopt a

framework that captures both the uneven spatial distribution of rice mills and the effect of spatial

competition among intermediaries on farmer prices. In the model, rice farmers grow rice on plots

with heterogeneous productivity. Post-harvest, farmers optimally choose mills to sell the rice they

have grown. The mills then sell rice to retailers at fixed and exogenous retail prices. Following

Chatterjee (2020), I model the spatial market power of rice mills using a Nash bargaining framework,

in which spatial market power arises because of the transport cost and the physical distances

between rice mills. Farmer price is determined through Nash bargaining between the farmer and

the rice mill. If the mill and the farmer cannot reach an agreement, the farmer transports and sells

rice to another mill. Since transport is subject to iceberg trade cost, the threat point of the farmer

in the Nash bargaining process is the value they would get if they sell rice to another mill after

accounting for the transport cost. Larger distances between mills mean that farmers have lower

threat points, resulting in lower equilibrium farmer prices. Therefore, mills situated in areas with

a higher mill density have lower market power and pay higher prices to farmers.

Heterogeneity in the spatial distribution of rice mills arises because rice mills make strategic entry

and location decisions that are influenced by the heterogeneity in market sizes and remoteness of the

locations. To endogenize the entry decisions of mills, I employ a static entry game with incomplete

information about the competitors’ entry cost as in Seim (2006). While making entry-location

decisions, mills face a trade-off between access to farmers and the level of competition. On the one

hand, mills want to locate in places with higher quantity of rice in order to make higher profits. On

the other hand, mills want to avoid locating close to other mills so that they face lower competition.

In equilibrium, areas with higher aggregate rice output, which I term productive areas, can support

a higher number of mills, leading to higher mill density. As a result, mills in productive areas face

a higher level of local competition, and farmers in productive areas receive higher prices relative to

1I define farmer price to be the price that farmers receive from a mill. Farmer price is different from farm gate
price, which is the farmer price subtracted by the cost of transporting rice from the farm to the mill.
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those in unproductive areas.

Due to the interdependencies in the mills’ decisions, solving the static entry game for an exact

equilibrium is a computationally intractable problem. A mill’s profit in a location depends on both

the number of mills in that location and the number of mills in other locations. Therefore, while

making an entry-location decision, mills have to consider all the potential location choices of all

other potential entrants. Since there are multiple locations and multiple potential entrants, the

space of mills’ actions becomes too large to be computationally feasible even when the number of

locations and the number of potential entrants are not too large. To address this dimensionality

challenge, I obtain an approximation of an equilibrium of the static entry game using the method

proposed by Aguirregabiria and Vicentini (2016). In particular, I assume that the location-specific

variable profit function is a second order polynomial in the number of entrants in each location.

For a game with 180 locations and 2,000 potential entrants in this paper, this approach reduces

the dimensionality down from over 2× 10268 to under 7× 104.

I quantify the model using micro-level data on locations of mills and farmers, prices, and rice

production. I solve the model sequentially and estimate parameters in the Nash-bargaining problem

and the entry game separately using a two-step procedure. In the Nash bargaining problem, the

structural relationship between farmer prices, density of rice mills, and retail prices depends on

the bargaining power of farmers and the transport costs. To estimate parameters governing this

relationship, I first take the number and the locations of rice mills in the data as given, which pins

down the distances between the rice mills. With the observed mill density in the data, I estimate

parameters that determine farmer prices in the Nash bargaining problem using simulated method of

moments. Specifically, I match coefficients of an auxiliary regression of farmer prices on the distance

to the mill, the retail price, and the maximum alternative price within a 100 kilometer radius, as

well as the parameters of the distribution of farmer prices in the data. With these estimated

parameters in the Nash-bargaining problem, I then estimate the parameters in the entry problem

to match the spatial distribution of rice mills observed in the data. Because the mill distribution is

an equilibrium in the entry game, I estimate the parameters using the nested fixed point maximum

likelihood algorithm. Specifically, for a given set of parameters in the entry problem, I solve for

a fixed point in the entry game and nest the fixed-point algorithm into the maximum likelihood

routine.

I then use the estimated model to conduct two counterfactual experiments, which highlight how the

intermediaries’ entry decisions and their subsequent market power impact farmers’ income. First,

motivated by the strategic plan of the Department of Highways of Thailand for investment in road

infrastructure in Thailand, I simulate a country-wide reduction in trade costs. Second, motivated

by ongoing projects in Thailand that promote new farming practices, I study how intermediaries

impact farmers’ decisions to adopt new technology. For each counterfactual scenario, I conduct two

exercises. In the first exercise, I examine the effect on farmers’ income while holding the number
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of mills in each location the same as the baseline scenario. Then, I study the change in farmers’

income after allowing mills to change their entry-location decisions.

In the first counterfactual scenario, based on the Department of Highways’ 2017 strategic plan, I

simulate a 9.09% country-wide reduction in the iceberg trade costs. I find that the intermediaries’

strategic entry decisions and spatial market power have significant distributional consequences.

While the aggregate farmer income increases by 16.75%, the percentage increase in income of the

top decile farmers is on average 25% larger than the percentage increase in income of the bottom

decile. Productive locations attract a larger number of intermediaries, leading to lower market

power of intermediaries. Therefore, a larger portion of the gains is passed from intermediaries to

farmers in productive areas relative to farmers in unproductive areas.

Furthermore, changes in mills’ entry-location decisions in response to the policy are regressive. A

reduction in trade costs can affect mills’ entry decisions in several ways. First, lower trade costs

reduce the costs of accessing nearby mills and increase the threat points for farmers in the Nash

bargaining, which force intermediaries to offer higher prices, reducing their per-unit profit. Second,

lower trade costs increase the quantity of rice that farmers produce and trade to mills, increasing the

total profit of rice mills. In unproductive locations, the increase in farmers’ output is not sufficient

to offset the effect of lower profit margin, leading to a net decline in profit. In contrast, in productive

locations, the additional profit brought about by higher output exceeds the loss from a lower profit

margin. Therefore, productive locations become relatively more attractive; the number of mills rises

in productive locations and falls in unproductive locations. Consequently, the percentage increase

in farmer prices in productive areas becomes larger than what would have been if there had been

no entry response of intermediaries and vice versa. As a result, farmers in productive areas enjoy a

larger percentage increase in income relative to unproductive farmers. Ignoring the entry response

of intermediaries leads us to underestimate the gap between the percentage increase in income of

the top decile and the bottom decile farmers by 53%.

In the second counterfactual analysis, I consider how intermediaries’ entry decisions and spatial

market power impact farmers’ adoption of new technology. Based on an ongoing project in Thai-

land, I model farmers’ decisions of whether to adopt a new agricultural technology that will increase

their productivity by 30% with an upfront investment cost. I illustrate the existence of multiple

equilibria, one of which results in a level of investment that is lower than socially optimal. Multiple

equilibria arise because farmers’ return to investment depends on the prices they receive, which

in turn depends on the market power of the intermediaries. Because farmers are small relative to

the rice market, they cannot individually directly influence the spatial distribution of rice mills.

Likewise, farmers do not internalize how their individual investment decisions could collectively

lead to a higher number of mills, which would increase farmer prices and return to investment. I

demonstrate that if farmers believe that no other farmers will invest in the new technology, their

estimated return will be sufficiently low that they believe it is not worthwhile to invest. On the
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other hand, if farmers collectively invest in the new technology, more intermediaries enter, driving

up the return such that it would be worthwhile for 62% of the eligible farmers to invest. Because

farmers do not internalize the strategic complementarity between their investment decisions and

the intermediaries’ entry decisions, farmers can end up in an equilibrium with a lower than socially

optimal level of investment. Thus, subsidies for technology adoption could be welfare improving.

This paper contributes to the existing literature in several dimensions. The first is a growing body

of work that examines the market power of intermediaries in agriculture. Tomar (2016) and Chat-

terjee (2020) estimate sizable welfare gains for the farmer as a result of policy reforms that reduce

the market power of intermediaries. Nevertheless, experimental evidence on intermediary market

structure shows mixed results; while results in Casaburi and Reed (2021) suggest a competitive

intermediary sector, Bergquist and Dinerstein (2020) estimate significant market power of inter-

mediaries. The majority of the existing literature focuses on measuring the market power among

intermediaries within a particular marketplace without accounting for the spatial locations of the

marketplace. While Chatterjee (2020) measures the competitiveness across marketplaces, in his pa-

per, the locations of intermediaries are exogenously determined by the government and fixed across

time. This paper contributes to the literature in two aspects. Empirically, I provide reduced-form,

causal evidence from the universe of intermediaries in a market with active entry and exit, showing

that the interaction of economic geography and spatial competition among intermediaries result in

variations in the local market power of intermediaries. When it comes to theory, instead of taking

the intermediaries’ locations as exogenously given, this paper endogenizes intermediaries’ entry and

location decisions. As I illustrate in my motivating observations, entry decisions of intermediaries

could potentially be important as intermediaries are spatially unevenly distributed. Modeling the

entry-location decisions allows me to examine how the extensive margin of intermediaries changes

in response to external shocks and their distributional implications on farmers’ income.

This paper also contributes to a growing literature in international trade that analyzes interde-

pendencies in firm-level decisions. While many papers have studied the interdependencies in firm’s

entry decisions arising from granularity of firms (Eaton et al., 2012; Gaubert and Itskhoki, 2021;

Gaubert et al., 2021), existing work limits the interactions across firms to be within a market. In

such a case, a firm’s decision to enter a market can be analyzed separately for each market by

assuming sequential entry. Since there are no interdependencies in firms’ decisions across markets,

the problem remains computationally feasible. The other strand of spatial and trade literature has

considered the interdependencies in sourcing decisions across suppliers within a firm. By focusing

on interactions within a firm, Antras et al. (2017) are able to limit their analysis to instances

where importing decision of a firm exhibits strategic complementarities across suppliers, which

means that the addition of a supplier to a firm’s sourcing strategy increases the marginal gain from

adding another supplier. The complementarities in sourcing decisions of a firm allow the problem

to be solved using an algorithm developed by Jia (2008). However, the approach cannot be ex-

tended to instances where firms’ decisions are strategic substitutes. Hoang (2020) estimates the
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fixed costs and sunk costs of sourcing inputs using moment inequalities, which can be applied both

when firms’ decisions are strategic complements and strategic substitutes, but does not conduct

any counterfactual analysis. This paper studies the location decisions of the rice mills, taking into

account the strategic interactions both across mills and across locations. Interdependencies across

locations mean that I cannot analyze the mills’ entry decisions separately by locations. Likewise,

interdependencies across mills mean that intermediaries’ entry strategies are strategic substitutes.

I overcome the combinatorial challenge in mills’ entry decisions by adopting the approach proposed

by Aguirregabiria and Vicentini (2016).

Additionally, this paper contributes to the literature that analyzes the distribution of gains from

increased integration under variable markups. The majority of the existing literature focuses on the

variable markups brought about by the producers (Badinger, 2007; Edmond et al., 2015; Feenstra

and Weinstein, 2017; Melitz and Ottaviano, 2008). While Chatterjee (2020) estimates gains from

increased integration arising from changes in the spatial market power of intermediaries, the setting

of the paper is in India, where locations of intermediaries are exogenously constrained by state

licensing and where there are no entry responses of intermediaries. A novelty in this paper is that

I examine how the strategic entry-location decisions and spatial variations in monopsony power

of intermediaries impact the distribution of gains from increased integration. I show that if there

is sufficiently large heterogeneity in underlying geographical features across space, strategic entry

decisions of intermediaries will result in the varying spatial market power of intermediaries across

space, leading to a regressive distribution of gains from increased integration.

The rest of the paper proceeds as follows. Section 2 describes the structure of the rice market in

Thailand and the data sources. Section 3 presents motivating observations about the rice mills in

Thailand and reduced-form evidence of the spatial market power of intermediaries that motivate

my choice of model. In section 4, I develop a quantitative spatial model informed by the empirical

findings. Section 5 describes how I recover structural parameters using the two-step estimation

strategy. Section 6 presents findings from the two counterfactuals based on policies in Thailand.

Section 7 concludes.

2 Background and Data

Rice is a staple crop in Thailand; 46% of the cropland in Thailand is devoted to rice production (Of-

fice of Agricultural Economics, 2019). Figure 1 shows the structure of the rice market in Thailand.

Within the rice value chain, rice mills are the key players in the midstream-level activities. In this

paper, I focus on the relationship between the farmers and the rice mills. The term intermediaries

in this paper refers to rice mills. In Thailand, there are very few regulatory barriers that prevent

businesses from entering the rice market. Therefore, rice mills are free to make their entry and

location decisions based on the profitability and the entry cost.
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Figure 1: Rice Market Structure

Examining how entry decisions of rice mills affect their spatial market power and the farmers

requires micro-level geospatial data on the rice mills and farmers. Since there is no publicly available

dataset, I assembled a micro-level dataset on the farmers, the rice mills, the general cropping

patterns, and rice prices between 2008-2018 from various sources. I outline below the primary

datasets that I use.

Rice Mills: Data on rice mills consists of the annual balance sheets of all firms registered with

Thailand Standard Industrial Classification (TSIC) code for “rice milling” that are submitted to

the Department of Business Development, Ministry of Commerce. This is an unbalanced panel

from 2007-2019. I identify the locations of the mills from their registered addresses using Google

Maps API.

Farmers: Farmer-level data on prices that farmers received, the input usage, and the quantity of

rice sold are taken from the socio-economic and labor survey on agricultural households between

2008-2018. The survey was conducted annually by the Office of Agricultural Economics. I identify

the locations of the farmers at the sub-district level.2 The latitudes and the longitudes of the

sub-districts are obtained from the Department of Provincial Administration and supplemented by

Google Maps API.

Rice production and Yields: Data on rice production and yields come from the Office of

Agricultural Economics. I have data on the monthly quantity of rice harvested at the province

level between 2008-2018. Additionally, I have the annual quantity of rice at the district level

between 2012-2018. I supplement this dataset with data from the 2003 and 2013 Agricultural

Census and the 2008 and 2018 Agriculture Intercensal Survey provided by the National Statistical

Office.

Retail Prices: I obtain data on retail prices from the Bureau of Trade and Economic Indices,

Ministry of Commerce. Retail prices are collected on a monthly frequency and are available at the

province level.

In addition, I supplement my dataset with high-spatial-resolution data. I obtain data on crop-

suitability-index from the Global Agro-Ecological Zone (GAEZ) v.3 and data on area equipped

2The administrative levels in Thailand are provinces, districts, and sub-districts. There are 77 provinces, 928
districts, and 7,435 sub-districts (Department of Enviromental Quality Promotion, n.d.).

8



with irrigation from AQUAMAPS. I further utilize the terrain ruggedness measure developed by

Nunn and Puga (2012). Lastly, I obtain data on the population density from the Gridded Population

of the World (GPWv4) provided by NASA Socioeconomic Data and Applications Center (SEDAC).

3 Characteristics of Thailand’s Rice Market

In this section, I present key characteristics of rice mills and farmer prices in Thailand that motivate

my choice of model. First, I provide two motivating observations about the endogenous entry and

location decisions of the rice mills. I show that 1) there is a positive correlation between spatial

density of mills and quantity of rice grown in the area, implying heterogeneity in the level of local

competition among rice mills and the existence of economies of scale for rice mills, and 2) there is

an active margin of entry and exit of rice mills. Having done so, I provide reduced-form, causal

evidence that spatial competition among rice mills impacts farmer prices.

3.1 Entry, Exit, and Spatial Density of Rice Mills

I first present two observations about the rice mills in Thailand that motivate me to endogenize

entry decisions of rice mills. First, there is an uneven spatial distribution of rice mills across the

country. Figure 2(a) displays the locations of rice mills in 2018, while Figure 2(b) shows the quantity

of rice harvested in each province in 2018. We can see a large number of mills concentrated in the

central region and the northeastern region. In particular, Figure 2(c) shows a positive correlation

between the density of rice mills and the quantity of rice grown, which is indicative of the existence

of fixed costs and economies of scale. Although there is no regulatory barrier for rice mills to enter

the rice market in Thailand, the presence of fixed costs means that mills would only enter if they

can achieve a certain level of sales. Therefore, areas with more productive farmers will experience

higher mill densities. Higher spatial density of rice mills in productive areas suggests that mills

in productive areas face a higher level of spatial competition relative to those in unproductive

areas. Therefore, the observed distribution of rice mills along with its positive correlation with the

quantity of rice output are important features that the model should reflect.

Second, there is an active margin of entry and exit of rice mills. Table 1 reports the summary

statistics of the rice mills between 2007-2019. While there are on average about 1,011 mills operating

each year, the margin of entry and exit fluctuates across the years; the net entry rate varies from

-4.7% to 4.7%, resulting in the number of mills across the sample period that ranges between 944

and 1,084. Entry and exit of rice mills mean changes in spatial density of mills, impacting the

rice mills’ level of spatial competition and market power. Furthermore, there is heterogeneity in

the entry and exit of rice mills across the provinces. Figure 3 displays variations in the average

net entry rate of each province between 2008-2019, indicating heterogeneity in changes in spatial

density of rice mills across the country. Given that changes in spatial density of mills may impact

farmer prices, entry and exit form an important margin that the model needs to capture.
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Figure 2: Spatial Distribution of Rice Mills

(a) Locations of Mills in 2018 (b) Output in 2018

(c) Binned Scatter Plot of Mill Density and Average Output per
km2 in Each Province

Notes: Panel (a) plots the locations of rice mills in 2018. Panel
(b) shows the quantity of rice produced per province in 2018.
Panel (c) shows a binned scatter plot of the average number of
mills per km2 in each province against the average output per
km2 (thousand tonnes) in each province between 2008-2018.
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Table 1: Summary Statistics of Rice Mills

Mean Std. Dev. Min Max

No. of mills 1,010.85 45.14 944.00 1,084.00
% entering 8.23 2.33 5.65 13.24
% exiting 8.34 1.41 6.86 10.95
% net entry -0.06 2.90 -4.65 4.72

Notes: This table reports the average of the total number
of mills, entry rate, exit rate and net entry rate in Thailand
between 2007-2019.

Figure 3: Histogram of Average % Net Entry in Each Province

Notes: Net entry rate of mills in each province, averaged across 2008-2019.

3.2 Spatial Competition and Farmer Price

Having shown that there are variations in the spatial distribution of rice mills across Thailand,

I now provide reduced-form evidence that a higher density of rice mills results in higher prices

that farmers receive. In a market with imperfect competition among rice mills, higher mill density

means a higher level of local competition, which reduces the mills’ market power. Therefore, farmers

situated in areas with a higher density of rice mills benefit from higher competition among rice

mills.

I first construct a measure that captures the degree of spatial competition among rice mills. I

define local competition as the sum of the number of rice mills surrounding a farmer weighted by

the inverse of the distances between the farmer and the mills. The local competition among rice

mills that farmer f experiences is the sum of all the mills within 100 km radius from the farmer,
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where the weights are inverse to the distance between the farmer and the mills. Specifically,

COMPft =
∑

m∈M100km,t

{
1

distancefm

}
, (1)

where M100km,t is the set of all the mills situated within 100 km radius around farmer f at time

t and distancefm is the geodesic distance between farmer f and mill m. A farmer situated close

to a large number of rice mills will exhibit a higher competition measure. This measure is similar

to the competition measure in Chatterjee (2020) and the market access measure in Donaldson and

Hornbeck (2016).3 As a robustness check, I also use an alternative measure of competition, defining

local competition as simply the number of mills within a 100 km radius from the farmer.

Having constructed the competition measure, I can show the relationship between local competition

and farmer prices using the following reduced-form specification:

pffrct = β0 + β1COMPft + β′2Zft + γr + γc + γt + εfrct , (2)

where pffrct is the log of price that farmer f in region r receives for crop type c at time t. Zft

denotes other control variables. γr and γc controls for the region and crop-type4 fixed effects, and

γt controls for the time fixed effects. To allow spatial correlation, I adjust the standard errors as

in Conley (1999).

Table 2 reports the results from the OLS regressions.5 Column 1 reports the results when I only

control for the fixed effects, namely the year fixed effects, the fixed effects for the month in which

the farmers sell the majority of their crops, the region fixed effects, and the crop-type fixed effects.

There is a positive and significant relationship between local competition and farmer prices; a one

standard deviation increase in competition among rice mills corresponds to a 1.4% increase in price

that farmers receive. To account for other factors that may influence farmer prices, I add in four

more control variables. Since the local supply of rice could affect local price, I control for the

quantity of rice that the farmer sells and the quantity of rice harvested in the province. I also

control for land suitability for growing rice using the crop-suitability-index from the FAO GAEZ

dataset. Likewise, I control for the distance between the farmer and Bangkok, which is the capital of

Thailand and close to the largest port in Thailand. The results after controlling for other variables

3Chatterjee (2020) creates a competition measure for a marketplace as the weighted sum of other marketplaces
within the same state since the Agriculture Produce and Marketing Committee Acts of Indian states prohibit farmers
from selling their output to government-regulated marketplaces outside of their own state. There is no regulatory
restriction on whom the farmers could sell the rice to in Thailand, though in practice, farmers generally sell rice
to nearby mills. Therefore, I use 100 km as a cutoff for the competition measure. As robustness checks, I conduct
the same analysis using an analogous competition measure with different distance cutoffs. Results can be found in
Appendix A.1.

4The crop types I am able to observe in the data are in-season white rice, out-of-season white rice, in-season sticky
rice, and out-of-season sticky rice.

5The surveys in 2016-2018 do not contain data on the month in which farmers sell the majority of their rice.
Therefore, I only use farmer prices in 2008-2015 in my regressions.
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are shown in column 2. After controlling for other factors, a one standard deviation increase in

local competition corresponds to a 2.3 % increase in farmer prices.

Table 2: OLS Results

log(farmer price)
(1) (2) (3) (4)

COMP (std) 0.014** 0.023***
(0.006) (0.008)

No. of mills (std) 0.036** 0.036**
(0.014) (0.015)

log(crop sold) -0.006 -0.006 -0.006
(0.005) (0.005) (0.005)

log(province-level output) -0.012 -0.013 -0.012
(0.008) (0.008) (0.008)

Crop-suitability-index 0.010* 0.008 0.009
(0.006) (0.006) (0.006)

log(distance to BKK) 0.024 0.040* 0.040*
(0.017) (0.023) (0.023)

log(distance to nearest mill) 0.003
(0.003)

Year FE Yes Yes Yes Yes
Month-of-highest-sales FE Yes Yes Yes Yes
Region FE Yes Yes Yes Yes
Crop-type FE Yes Yes Yes Yes

N 54,323 54,252 54,252 54,252
R2 0.509 0.511 0.512 0.512

Notes: This table reports the OLS estimates of equation (2). COMP (std) is
the standardized competition measure constructed using equation (1). No. of
mills (std) is the standardized number of mills within 100 km from the farmer.
All regressions use data from 2008 to 2015. Standard errors are adjusted to
allow for spatial clustering as in Conley (1999), with a bandwith of 1.5 degree
using Bartlett kernel. *p < 0.1, ** p < 0.05, *** p < 0.01

As robustness checks, I run the same regression using an alternative measure of local competition.

Instead of using the measure constructed using equation (1), I use the number of rice mills within

a 100 km radius from the farmer. Column 3 of Table 2 reports results when I use an alternative

measure of competition. Column 3 shows that the positive and significant relationship between

competition and farmer prices is not sensitive to the competition measure I use. I perform additional

robustness checks using the average farmer prices betweeen 2016-2018 as an additional control

variable and using alternative competition measures with different cutoffs. The results can be

found in Appendix A.1.

Finally, one may be concerned that the higher prices received by farmers with higher competition

measures may arise from lower transport costs for farmers situated closer to rice mills rather than

from the higher local competition among the mills. Column 4 addresses this by controlling for
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the distance between the farmer and the nearest mill. The results indicate that this concern is

unfounded. First, the coefficient of interest is not affected by the inclusion of the additional control

variable. Second, after controlling for the number of mills within 100km from the farmer, the

distance between the farmer and the nearest mill does not have a significant effect on the farmer

prices.

Overall, the results from the OLS regressions indicate a positive and significant relationship between

local competition among rice mills and farmer prices. Farmers who are located in areas with a higher

spatial density of rice mills tend to receive higher prices on average.

However, despite controlling for observable characteristics, there could still be concerns over other

unobserved heterogeneity. Ex-ante, it is unclear how the bias would affect the coefficient of interest.

For example, the direction of the bias from the quality of rice could be positive or negative. On

the one hand, areas that are more suited for growing rice may produce higher quality rice and

receive higher prices, leading to an upward bias. On the other hand, areas suitable for growing rice

may choose to grow varieties of rice that give higher yield at the cost of lower quality and receive

lower prices, leading to a downward bias. Given this, I turn to an instrumental variable strategy

to establish a causal relationship between local competition among rice mills and farmer prices.

Taking advantage of the fact that farmers are small, I instrument for local competition among

rice mills using the neighboring farmers’ productivity. The intuition behind the instrument can be

explained as follows. Mills’ entry decisions depend on the profitability of the location. The total

profit of any given mill depends on the quantity of rice that the mill sells, which is dictated by

the quantity of rice that the mill can buy from the farmers. As a result, areas that produce a

higher quantity of rice attract a larger number of rice mills, leading to a higher density of mills and

higher competition. Since an area comprises a large number of farmers, the overall quantity of rice

produced in an area depends on the aggregate productivity of farmers in that area. Therefore, the

local competition among rice mills that farmer f experiences depends not only on farmer f ’s own

productivity, but also on the productivity of the neighboring farmers. In other words, two farmers

who have the same productivity may face different levels of local competition among the mills if

the productivity of their neighbors is different.

Given this intuition, conditional on farmer f ’s own productivity, competition among rice mills

can be instrumented using the productivity of the neighboring farmers. To further illustrate this,

consider Figure 4. The center of the circle is the location of farmer f . Farmer f ’s own productivity

is the productivity of the land within 50 km from the farmer, represented by the inner yellow circle.

The neighboring farmers’ productivity is the productivity of the land between 50 km and 100 km

from the farmer, represented by the outer orange ring.6 I employ the productivity in the outer ring

as the instrument competition, controlling for the productivity in the inner circle. My instrument

6For alternative distance cutoff for the farmer’s own productivity and the neighboring area’s productivity, see
Appendix A.2.
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is similar to the instrument used by Macchiavello and Morjaria (2021). The first stage is given by:

COMPfrct = α0 + α1A
50−100
f︸ ︷︷ ︸

Instrument

+α2A
0−50
f︸ ︷︷ ︸

Control

+α′3Zft + γr + γc + γt + µft, (3)

where A50−100
f is the productivity of neighboring area that lies between 50 km and 100 km from

the farmer, and A0−50
f is the productivity of the land within 50 km from the farmer, which is used

as a control for farmer f ’s own productivity. The predicted competition measure is then used in

the second stage:

pffrct = β0 + β1ĈOMP frct + β2A
0−50
f︸ ︷︷ ︸

Control

+β′3Zft + γr + γc + γt + εfrct. (4)

The exclusion restriction is that, conditional on farmer f ’s own productivity and other controls

included in the regression, the instrument only affects farmer prices through competition among

the rice mills.7 In the regressions, I proxy for the productivity using FAO crop-suitability-index

and the area equipped for irrigation.8

Table 3 reports the 2SLS estimates. Columns 1 and 2 report the results using the competition

measure constructed using equation (1). Column 1 shows that the instruments strongly correlate

with competition, with an F-stat of 24.5. Column 2 reports results from the second stage. A one

standard deviation increase in local competition measure increases the farmer prices by 7.7 %. The

IV estimate (0.074) is about three times as large as the OLS estimate (0.023) in Column 2 of Table

2. The downward bias in the OLS estimate can be explained by the measurement error or the

unobserved heterogeneity as outlined earlier. Columns 3 and 4 show that the results are robust to

an alternative measure of competition. A one standard deviation increase in the number of mills

7This exclusion restriction would be violated if the productivity of the neighboring area correlates with other
factors, such as distance to local roads, that correlate with farmer prices. Appendix A conducts additional robust-
ness checks by controlling for terrain ruggedness and performing falsification exercises to show that the concern is
unfounded.

8Specifically, I run the following first-stage:

COMPfrct =α0 + α1Suit
50−100
f + α2Suit

50−100
f × Irri50−100

f + α3Irri
50−100
f︸ ︷︷ ︸

Neighbors’ productivity (instrument)

+ α4Suit
0−50
f + α5Suit

0−50
f × Irri0−50

f + α6Irri
0−50
f︸ ︷︷ ︸

Own productivity (controls)

+ α′7Zfrct + γr + γc + γt + µfrct ,

and the second stage:

pffrct = β0 + β1ĈOMP frct + α4Suit
0−50
f + α5Suit

0−50
f × Irri0−50

f + α6Irri
0−50
f

+ β′3Zft + γr + γc + γt + εfrct .

where Suit50−100
f and Irri50−100

f represent the crop-suitability-index and the area equipped for irrigation of the land

between 50 km and 100 km from the farmer. Similarly, Suit0−50
f and Irri0−50

f represent the crop-suitability-index
and the area equipped for irrigation within 50km from the farmer.
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Figure 4: Instrument for Local Competition

Notes: This figure illustrates the instrument for local
competition among rice mills. The orange outer ring
represents the productivity of the neighboring farmers,
specifically the productivity of the farmers situated be-
tween 50 to 100 km from the farmer. This is used as
an instrument for local competition. The inner yellow
circle represents the farmer’s own productivity, which
is used as a control variable.

within 100 km from the farmer leads to a 7.1 % increase in farmer prices. Further robustness checks

can be found in Appendix A. I check for sensitivity of the instrument to different distance cutoffs,

control for terrain ruggedness, and conduct falsification exercises. Overall, my results are robust

to different specifications and alternative measures.

To summarize, this section provides empirical evidence of the spatial competition among rice mills.

First, I show that there are variations in the spatial density of rice mills across Thailand and that

the density of rice mills positively correlates with the quantity of rice harvested in the area. Second,

I show that there is an active margin of entry and exit of rice mills, which impact the density of

rice mills. Having done so, I provide reduced-form, causal evidence that local competition among

rice mills, which is driven by the mills’ spatial density, has significant effects on the farmer prices.

4 Model

I now develop a spatial model of trade that captures the empirical findings in the previous section.

In the model, the market power of rice mills is captured through a Nash bargaining framework.

The density of mills matters for farmer prices because it affects the farmer’s threat point in the

Nash bargaining process. Variations in the density of rice mills arise because mills make strategic

entry and location decisions, which I model using a static entry game with incomplete information.

4.1 Setup

The economy consists of two types of agents, the farmers and the mills, who are distributed across

the Euclidean space R2. There are F plots of land at different geographical locations. Each plot of

land, f , is owned by a representative farmer. I index the farmer by their plot of land. There are M
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Table 3: IV Results

COMP (std) log(price) No. of mills (std) log(price)

COMP (std) 0.074***
(0.020)

No. of mills (std) 0.069***
(0.027)

Suit50−100 (std) 0.308*** 0.205***
(0.043) (0.060)

Suit50−100 × Irri50−100 (std) 0.183*** 0.073**
(0.038) (0.037)

Irri50−100 (std) 0.232*** 0.413***
(0.062) (0.150)

Suit0−50 (std) 0.070 0.013 0.113*** 0.012
(0.064) (0.008) (0.039) (0.010)

Suit0−50 × Irri0−50 (std) 0.067 0.007 0.073** 0.008
(0.051) (0.009) (0.035) (0.010)

Irri0−50 (std) 0.405*** -0.048*** 0.254*** -0.037**
(0.124) (0.015) (0.064) (0.015)

First-stage F-stats 24.514 38.837
Hansen’s p-value 0.870 0.222

Notes: This table reports the IV estimates of equations (3) and (4). COMP (std) is the standardized
competition measure constructed using equation (1). No. of mills (std) is the standardized number
of mills within 100 km from the farmer. All regressions include controls for quantity of crop sold,
province-level output, distance to Bangkok, and fixed effects for year, month-of-highest-sales, region,
and crop-type. All regressions use data from 2008 to 2015. Standard errors are adjusted to allow for
spatial clustering as in Conley (1999), with a bandwidth of 1.5 degree using Bartlett kernel. *p < 0.1,
** p < 0.05, *** p < 0.01

potential entrants of rice mills. LetM be a set of mills that are operating. Each mill m is identified

by the co-ordinates of their geographical location. Geography matters since the transportation of

rice across space is subject to iceberg trade costs. τij ≥ 1 units of rice must be shipped in order for

one unit of rice from i to arrive at j. I assume that trade costs are symmetric (i.e. τij = τji) and

that triangular inequality holds (i.e. τij ≤ τik × τkj).

The timing of events is outlined in Figure 5. First, the mills make their entry and location decisions.

The farmers then choose the quantity of rice to grow. After the rice has been harvested, the farmers

choose which mill to sell their rice to. Once the farmers have arrived at the mill, the farmer prices

are determined through Nash-bargaining. After the intermediary markets clear, the mills then sell

the rice to the retailers.
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Figure 5: Timing of Events

4.1.1 Farmers

Farmer produces rice according to the production function:

yf = AfH
γ
fL

α
fX

β
f , (5)

where Af is the total factor productivity of the land owned by farmer f , Hf is the amount of

land, Lf is the quantity of labor, and Xf is the quantity of intermediate inputs. I assume that the

production function has constant returns to scale, so α+β+ γ = 1. The amount of land and labor

available to the farmer is fixed. I assume that the farmers are price takers in the intermediate input

and the labor markets. Farmers optimally choose the quantity of input to maximize their income,

producing the profit maximizing output y∗f .

After the production has taken place, the farmer chooses mill m to sell their crop to in order to

maximize their income. Since transporting rice from location f to m is subject to iceberg trade

cost τfm, their maximization problem is given by:

max
m∈{M}

pfmy∗f
τfm

, (6)

where pfm is the farmer price at mill m, and y∗f is the profit-maximizing output.

4.1.2 Mills

Mills are price takers in the retail sector. Mill m buys a unit of rice from the farmer at a price

pfm and sells it to the retailer at an exogenously given retail price prm. Mills can have different

retail prices, depending on their locations. I assume that there is no marginal cost; therefore, the

per-unit profit for the mill from trading rice is prm − p
f
m.
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4.1.3 Price Determination

Price in the intermediary markets is determined by Nash bargaining as in Chatterjee (2020). Once

farmer f has arrived at mill m, the initial transport cost from f to the m is sunk. The farmer

could either sell their rice to mill m and receive pfm per unit of rice, or travel to another mill k

and receive
pfk
τmk

since it is costly to transport crop from m to k. Therefore, for a farmer who has

already arrived at mill m, the outside option is:

p
m

= max
k∈M−{m}

{
pfk
τmk

}
, (7)

which is the highest value that farmers could get if they travel to another mill and sell their crop

there. Farmer’s outside option forms their threat point in the Nash bargaining problem. The

outside option of the mill is 0.

The farmer price is determined by the Nash bargaining solution, which solves the following maxi-

mization problem:

max
pfm

(pfm − pm)δ(prm − pfm)1−δ , (8)

where δ is the bargaining power of the farmer. The left-hand side bracket is the difference between

the farmer price and the farmer’s threat point. The right-hand side bracket is the per-unit profit

that rice mills receive from this transaction. Solving the Nash bargaining problem provides an

expression for the farmer price at each mill in terms of the threat point and the retail price:

pfm = (1− δ)p
m

+ δprm . (9)

We have one such equation for all m ∈ M. The threat point p
m

is a function of the farmer prices

at all other locations, as defined by (7). Therefore, the equilibrium is a Nash-in-Nash solution,

consisting of a vector of farmer prices that solves the fixed-point mapping (9). The fixed-point

problem (9) is a contraction mapping and therefore has a unique solution.9 Note that all farmers

arriving at mill m have the same outside option p
m

. Therefore, all the farmers arriving at the same

mill receive the same price. In other words, there is only one farmer price at each mill.

4.1.4 Entry Decision

Following the framework in Seim (2006), I model the entry and location decisions of rice mills as a

static game of incomplete information. There are M potential entrants who simultaneously choose

whether to enter and where to locate from a set of L possible locations. Location l is defined as a

non-overlapping grid cell containing all points
(
x ∈ [xl, xl], y ∈ [y

l
, yl]
)

. Each mill can only choose

to operate in one location in any given period. Upon entering location l, mill m randomly draws

9See Appendix B for details.
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xm ∼ U(xl, xl), ym ∼ U(y
l
, yl). Intuitively, if one think of L as a set of possible districts; then, a

mill can choose which district they want to locate in, but the exact co-ordinates within a district

that they get depends on many exogenous factors such as the availability of land; therefore, each

mill has their own unique co-ordinates. All distance calculations in the model use the mills’ actual

co-ordinates.

The variable profit of mill m in location l is (prl − p
f
ml)Qml, where the retail price prl is exogenously

given, the farmer price pfml is determined from the Nash bargaining problem, and Qml is the

quantity of rice that mill m buys from farmers. I assume that all the mills in the same location

receive the same retail price. Let the spatial distribution of mills be represented by a vector

N = {n1, n2, ..., nL}, where nl is the number of mills in location l. Conditional on N , the expected

variable profit of a mill located in location l is given by:

vpel (N,P
r, A,H,L) = E

[
(prl − p

f
ml)Qml

]
, (10)

where P r = {pr1, pr2, ..., prL} is a vector of exogenously given retail price across locations and A =

{A1, A2, ..., AF } is a vector representing the farmers’ productivity, H = {H1, H2, ...,HF } is a vector

representing the farmers’ land endowment, and L = {L1, L2, ..., LF } is a vector representing the

farmers’ labor endowment. Note that A,H, and L are all exogenous characteristics of the farmers

that determine their output; therefore, for ease of notation, I omit H and L from the subsequent

writing of the function vpel .

The total profit is the variable profit minus the entry cost. Mills make location decisions based on

total profit in each location. Conditional on N , the expected total profit of mill m in location l is:

πeml(N,P
r, A) = vpel (N,P

r, A)− ecml . (11)

The cost of entry into location l for mill m is given by:

ecml = ECl − εECml , (12)

where ECl is the location-specific entry cost that is common for all mills and εECml is the mill and

location-specific cost that is private information of millm. Because mills possess private information

about their cost of entry, N is unknown ex-ante. Each mill has to form beliefs about their rivals’

choices of locations. Since the mills are homogeneous apart from their private information, all mills

have the same belief about all their rivals. Let Ψ = {ψ1, ψ2, ..., ψL} be the mill’s belief about their

rivals’ location strategy, where ψl is the probability a rival will choose to enter location l. The

expected total profit for a mill located in location l without conditioning on N is:

EN [πeml(N,P
r, A)] = ṽpel (Ψ, P

r, A)− ECl + εml , (13)
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where ṽpel (Ψ, P
r, A) = EN [vpel (N,P

r, A)] is the expected variable profit over the distribution of

N . Note that since mills never know the realized variable profit vpl prior to entering, they make

all entry decisions based on vpel (N,P
r, A). Therefore, to avoid confusion, I henceforth refer to

vpel (N,P
r, A) as the variable profit and ṽpel (Ψ, P

r, A) as the expected variable profit.

Given its beliefs, Ψ, a mill chooses the entry-location decision that maximizes its expected profit.

The best response of mill m is to locate in location l if:

ṽpel (Ψ, P
r, A)− ECl + εml ≥ ṽpel′(Ψ, P r, A)− ECl′ + εml′ ∀l′ 6= l . (14)

Following the IO literature on entry of firms (Seim, 2006; Zhu and Singh, 2009; Datta and Sud-

hir, 2013; Aguirregabiria and Vicentini, 2016), I assume that the private information shocks are

independently and identically distributed across mills and locations with type 1 extreme value dis-

tribution.10 The probability that the best response of a mill is to locate in location l can then be

expressed as multinomial logit probabilities:

ψl(Ψ) =
exp

{
λ
[
ṽpel (Ψ, P

r, A)− ECl
]}

1 +
L∑
l′=1

exp
{
λ
[
ṽpel′(Ψ, P

r, A)− ECl′
]} , (15)

where 1 in the denominator accounts for the option for a mill to not enter the market. λ is the scale

parameter the captures the dispersion of the private information shock. The lower the value of λ,

the higher the dispersion and the more disconnected the entry decision is to the expected profit.

The equilibrium is a symmetric Bayesian Nash equilibrium in which the mills’ beliefs are consis-

tent with other mills’ best responses. Given that mills are homogenous apart from their private

information shocks, in equilibrium, all mills have the same strategy. This gives us a system of L

equations with L unknown that defines a fixed point mapping in the space of vector of entry-location

probabilities:

ψ∗l (Ψ
∗) =

exp {λ [ṽpel (Ψ
∗, P r, A)− ECl]}

1 +
L∑
l′=1

exp {λ [ṽpel′(Ψ
∗, P r, A)− ECl′ ]}

. (16)

By Brouwer’s fixed point theorem, an equilibrium exists. However, the equilibrium is not necessarily

unique. Seim (2006) shows that there is a unique solution if the locations are not too homogeneous

and if the degree of competition decreases with distance. This means that in my model, the iceberg

trade cost must be sufficiently large. I check ex-post through simulations that the equilibrium

appears to be unique.

10This assumption is computationally attractive because it provides a closed-form expression for the mill’s best
response function. However, it comes at a cost since it implies that there is no spatial correlation in the private
information.
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4.2 Equilibrium Definition

Given the parameters α, β, γ, δ, and λ, iceberg trade cost function {τ}, endowments {Af , Hf , Lf}f∈{1,...,F},
intermediate input price wX , and a vector of retail prices P r, location-specific component of entry

cost {ECl}l∈{1,...,L}, and number of potential entrants M , an equilibrium is a set of entry loca-

tion probabilities Ψ∗ = {ψ∗1, ..., ψ∗L}, farmer prices P f = {pf1 , ..., p
f
|M|}, intermediate input choices

{X1, ..., XF }, and the mill choice for each farmer {µ1, ..., µF } such that:

1. Farmers optimally choose the quantity of intermediate input to maximize their incomes:

max
Xf

pfµf
τfµf

AfH
γ
fL

α
fX

β
f − w

XXf ∀f (17)

2. Farmers make an optimal choice on which mill to sell their output:

µf = arg max
m∈M

pfmy∗f
τfm

∀f (18)

3. Farmer prices across all mills are the Nash-in-Nash equilibrium solution:

pfm = (1− δ) max
k∈M−{m}

{
pfk
τmk

}
+ δprm ∀m ∈M (19)

which combines equations (9) and (7) into one equation.

4. Mill’s entry-location probabilities, Ψ, across all locations satisfy the symmetric Bayesian Nash

equilibrium given by equation (16).

4.3 Equilibrium Computation

I solve the model backward from the timeline in Figure 5. First, conditional on the retail prices

and the number of mills at each location, I solve the Nash bargaining problem for the farmer prices

as given by equation (19). Next, given the farmer price at each mill, I solve each farmer’s optimal

choice of mill as given by equation (18). Subsequently, I know the price that each farmer receives

and can solve for each farmer’s optimal choice of intermediate input, which gives me the quantity

of rice each farmer produces. Finally, given the retail prices, farmer prices, farmers’ output, and

farmers’ optimal mill choice, I solve for the mills’ expected profit then solve for the Bayesian Nash

equilibrium, which determines mills’ entry-location decisions. In what follows, I describe how I

compute the Bayesian Nash Equilibrium.
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4.3.1 Bayesian Nash Equilibrium Computation

The Bayesian Nash equilibrium from the mills’ entry problem is a solution to the fixed point prob-

lem in equation (16). Solving this requires knowledge of the expected variable profit, ṽpel (Ψ, P
r, A).

Let S = {N1, ..., N|S|} be a set of all possible combinations of the number of mills in each location.

In theory, one can calculate the expected variable profit, ṽpel (Ψ, P
r, A), by computing the variable

profit, vpel (N,P
r, A), for each Ns ∈ S and calculate the expected variable profit conditional on Ψ,

as ṽpel (Ψ, P
r, A) = EN [vpel (N,P

r, A)]. To do so, one would have to keep track of |S| × L variable

profits corresponding to each N to compute the expected variable profit. However, it is compu-

tationally infeasible to enumerate all possible configurations of N and solve for the corresponding

vpel (N,P
r, A). To illustrate the extent of this dimensionality challenge, consider a small entry game

with only 10 locations and 100 potential entrants. Even in such a small entry game, we already have

|S| > 1013; this means that, in order to compute the exact expected variable profit, one would need

to keep track of over 1013 × L parameters.11 Even in such a small entry game, the dimensionality

of the space of mills’ actions is already too large to be computationally feasible. In the data, I

observe an average of 1,011 mills per year. Therefore, the number of potential entrants that I need

to consider must be over a thousand, posing a much larger dimensionality challenge than in the

illustrative example above.

The literature generally approaches this computational issue by approximating the equilibrium. For

example, in order to deal with the dimensionality problem in a dynamic entry game, Aguirregabiria

and Vicentini (2016) approximate the best response functions of firms using an interpolation func-

tion that is second order polynomial in the number of firms and distances between firms. In the

same spirit, I compute the approximated Bayesian Nash Equilibrium by approximating the variable

profit function. As explained earlier, for a given set of retail prices and productive capacity of the

farmer, the only information I need to compute the variable profit is the number of mills in each

location. Since P r and A are exogenously given, I write the expected variable profit conditional on

N , vpel (N,P
r, A), from (10) as a function of N i.e. vpel (N,P

r, A) = FP r,A,l(N). For ease of nota-

tion, I omit P r and A from subsequent writing of the variable profit and approximation functions;

however, please note that the variable profit and the approximation function are specific to given

P r and A. I approximate the function Fl(N) as a second order polynomial in the number of mills

11|S| is computed as follows. There are 10 locations, and potential entrants can choose not to enter, resulting in
11 options for potential entrants to choose from. Since mills are homogeneous apart from the private information
shocks, the ordering does not matter. Therefore, this is equivalent to an unordered sampling with replacement; we
are choosing from a set of 11 a hundred times such that repetition is allowed and such that order does not matter.
The number of possible spatial configurations of N in this small game is

(
110!

10!100!

)
> 1013. More generally, for a game

with L locations and M potential entrants, the number of possible realizations of N is
(
(L+M)!
L!M !

)
.
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in each location:12

vpel (N) ≈ β(0)
l +

L∑
k=1

β
(1)
kl nk +

L∑
k=1

β
(2)
kl n

2
k + νl ∀l. (20)

By doing so, I am able to reduce the dimension of the problem from |S| × L down to (2L+ 1)L.13

I now describe in detail the procedure I use to obtain the approximation function for the variable

profit. Let S = {N1, N2, ..., N|S|} be a subset of S, which is a set of all possible N . Given P r

and A, I compute the simulated variable profit vpel (Ns, P
r, A) for each Ns ∈ S. This means that I

have a simulated dataset consisting of |S| observations. For each l ∈ L, I obtain the approximation

function (20) by running the following OLS regression on the simulated dataset:

vpels = β
(0)
l +

L∑
k=1

β
(1)
kl nks +

L∑
k=1

β
(2)
kl n

2
ks + νls . (21)

Having obtained β
(0)
l , {β(1)

1l , β
(1)
2l , ..., β

(1)
Ll }, and {β(2)

1l , β
(2)
2l , ..., β

(2)
Ll }, for a given belief Ψ, I can ap-

proximate for the expected variable profit as:

ṽpel (Ψ) ≈ β(0)
l +

L∑
k=1

β
(1)
kl E[nk] +

L∑
k=1

β
(2)
kl E[n2

k] , (22)

where

E[nk] = ψk · (M − 1) + Ik=l , (23)

E[n2
k] = V ar(nk) + E[nk]

2 . (24)

For a mill considering whether to enter location l, the expected number of mills at location k when

k 6= l is the probability that a rival would choose to enter location k, (ψk), multiplied by the number

of potential rivals (M − 1). If k = l, then the mill includes itself into the expected number of mills,

resulting in E[nl] = ψl · (M − 1) + 1. The approximated Bayesian Nash equilibrium is therefore the

solution to the fixed point problem:

ψ∗l (Ψ
∗) =

exp

{
λ

(
β

(0)
l +

L∑
k=1

β1
klE[nk] +

L∑
k=1

β
(2)
kl E[n2

k]− ECl

)}

1 +

L∑
l′=1

exp

{
λ

(
β

(0)
l′ +

L∑
k=1

β1
kl′E[nk] +

L∑
k=1

β
(2)
kl′ E[n2

k]− ECl′
)} . (25)

12This approach is equivalent to assuming that agents are boundedly rational in their perception of the variable
profit as has been done in the literature (Krusell and Smith, 1998; Dingel and Tintelnot, 2021).

13By approximating the variable profit as a second order polynomial in the number of mills in each location, I am
making the following assumptions: 1) the marginal effect of nk on vpel is β

(1)
kl + β

(2)
kl nk, and 2) the marginal effect of

nk is not affected by nj , j 6= k.
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A critical question is how well the approximated equilibrium matches up to the true equilibrium.

To validate the approximation method, I apply the method to the same entry problems but with a

much smaller number of locations and a much smaller number of potential entrants. I consider the

case with four locations and 50 potential entrants. At this scale, the problem is small enough to

compute the Bayesian Nash equilibrium using the exact expected variable profit, which is computed

over all spatial configurations of N . Table 4 shows the resulting expected number of mills at each

location. We can see that the approximated equilibrium is very similar to the exact equilibrium. I

repeat the exercise with five locations. The approximation method yields a very similar equilibrium

to the exact equilibrium across various specifications. The key takeaway is that the approximation

method provides a reasonably good approximation to the exact solution to the Bayesian Nash

equilibrium.

Table 4: Exact vs Approximated Bayesian Nash Equilibrium

L = 4, M = 50 L = 5, M = 40 L = 5, M = 50
Exact Approx. Exact Approx. Exact Approx.

E(N) 9.39 9.66 5.62 5.76 7.15 7.29
11.58 11.44 8.27 8.21 9.91 9.96
11.74 11.46 7.17 7.04 8.82 8.74
7.62 7.72 7.89 7.90 9.57 9.57

4.88 4.94 6.41 6.41

Notes: This table reports the equilibrium expected number of mills in three
different entry games. L denotes the number of locations and M denotes the
number of potential entrants. Each row shows the expected number of mills
in each location. “Exact” column reports the true equilibrium. “Approx”
column reports the approximated equilibrium, where the expected variable
profit is approximated using equation (20).

5 Estimation

In this section, I estimate key parameters in the model. To take the model to the data, I partition

Thailand into 0.5 degrees by 0.5 degrees grid, creating 180 locations where mills can choose to

enter (L = 180). To represent the farmers, I divide Thailand into 0.1 degrees by 0.1 degrees grid,

resulting in 1,175 farmer locations (F = 1,175). I calibrate the farmers’ production function using

data from the agricultural survey. I then estimate key parameters in the model in two steps. First,

taking N in the data as given, I jointly estimate the bargaining power δ and the trade cost in

the Nash bargaining problem using method of simulated moments. Second, using the estimated

Nash-bargaining parameters and the calibrated production function, I estimate parameters in the

entry problem using the nested fixed point maximum likelihood algorithm.
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5.1 Nash-bargaining parameters: δ and τ

Equilibrium in the Nash-bargaining problem is defined by the Nash-in-Nash equilibrium equation

(19). I assume that trade cost between m and k takes the functional form:

τmk = 1 + φdmk , (26)

where dmk is the geodesic distance between m and k calculated using m and k actual co-ordinates.14

By definition, τmk = 1 if m = k. Nash-in-Nash equilibrium equation (19) then becomes:

pfm = (1− δ) max
k∈M−{m}

{
pfk

1 + φdmk

}
+ δprm ∀m ∈M , (27)

The two parameters I need to estimate for the Nash-bargaining problem are the trade cost parameter

φ and the bargaining power parameter δ.

Given that the farmer prices across different mills are interrelated through the outside options, I

estimate the Nash-bargaining parameters ΘNB = (δ, φ) by the method of simulated moments. I use

the annual average of the prices of white rice and sticky rice between 2008-2018. I search over ΘNB

that minimizes the distance between the simulated moments and the data moments, achieving:

Θ̂NB = arg min
ΘNB

(
ϕd − ϕs(ΘNB)

)
W
(
ϕd − ϕs(ΘNB)

)′
, (28)

where ϕd represents the data moments, ϕs(ΘNB) represents the simulated moments, and W is the

inverse of the variance-covariance matrix.15 For each iteration of simulation at a new value of ΘNB,

I solve for the Nash-in-Nash equilibrium for each year and rice type between 2008-2018, taking the

number of mills in the data as given.

The moments I choose to identify δ and φ come from an auxiliary regression and the distribution

of farmer prices. First, following Chatterjee (2020), I adopt an auxiliary linear regression model

that closely reflects the equilibrium equation (27):

pfmt = β0 + β1

(
max

k s.t. dmk<100km
pfkt

)
+ β2dmk + β3p

r
mt + εmt (29)

14This functional form is similar to Chatterjee (2020). However, whereas Chatterjee (2020) explicitly includes
and exogenous trade cost term in the functional form, in this paper, the randomness in trade cost is driven by the
realization of the mill’s co-ordinates.

15I calculate W by bootstrapping the initial dataset. Specifically, I resample with replacement from the initial
dataset 1,000 times and calculate the corresponding moments from each sample. I then calculate the covariance
between the bootstrapped moments.
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where m indexes the mill, t indexes the year, and dmk is the distance between mill m and mill k.16

The moments I target are the coefficients β1, β2, and β3. Second, I also match the distribution of

farmer prices by targeting the mean, the 5th, the 25th, the 50th, the 95th percentile of the farmer

prices. Although all parameters are jointly estimated and there is no one-to-one mapping between

the parameters and the moments, some moments are more sensitive to certain parameters than

others. Intuitively, δ is identified from β1 and β3 which capture the correlation between farmer

price at mill m and farmer price at a competing mill and the correlation between farmer prices and

retail prices respectively, whereas φ is identified through β1 and β2, which captures how distances

between mills correlate with the farmer prices.

Note that to estimate the auxiliary regression (29), I make the following assumptions about the

data. First, since I only observe the prices that farmers received and not which mills they sold

the rice to in my dataset, in order to run this auxiliary linear regression, I assume that if a mill is

situated in the same grid cell as the farmer, then the farmer sold rice to that mill and the reported

price that the farmer received is pfmt, the price that the mill gave the farmer. Second, I only observe

retail prices at the province level. Therefore, I assume that all mills located in the same province

receive the same retail price. For province-year with missing retail prices, I linearly interpolate the

retail prices from adjacent provinces.

Table 5 reports the estimated values of the parameters. The bargaining power of farmer δ is

estimated to be 0.39, and the trade cost parameter φ is estimated to be 0.84. The estimated trade

cost parameter is relatively high since it also captures elements of trade costs beyond the distance-

related transport cost. For instance, in transporting rice to sell to another mill, the farmer faces the

risk that they may not make it in time before the other mill closes their buying window, meaning

the farmer may have to make another trip on the next day. Additionally, it is difficult for farmers

to arrange transportation to another mill in practice since the agreement to transport rice from the

farm to the rice mill is often done on a leg basis. Table 6 displays the moments from the data and

simulated data. Column 1 provides the moments calculated from the data, which are the moments

that I target, and column 2 displays the moments generated by the model.

I check for the goodness of fit in the following ways. Figure 6(a), shows the binned scatter plot

of the log of the farmer prices that I observe in the data and the log of farmer prices generated

in the model. The farmer prices simulated in the model strongly correlate with the data. The

coefficient from a linear fit without an intercept term is 0.984. Figure 6(b) displays the histogram

of the log of farmer prices in the data and the farmer prices simulated in the model. Overall, the

model is able to capture the distribution of farmer prices, although the model generates a slightly

16I do not use the reduced form IV regression (4) as my auxiliary regression model because it does not help with
identification of δ and φ since the reduced form regression (4) captures all the competition effect through the COMP
measure. Instead, I will use the coefficient of the COMP measure as an untargeted moment to assess the goodness
of fit.

27



Table 5: Estimated Parameters from MSM

Parameter Point Estimate SE
δ 0.3876 0.0010
φ 0.8352 0.0058

Notes: This table reports the point estimates of the δ, the bar-
gaining power of the farmer, and φ, the trade cost parameter using
the method of simulated moments. Parameters are estimated using
farmer prices between 2008-2018.

Table 6: MSM Targeted Moments

Data Model
β1 0.840 0.889
β2 -0.014 -0.004
β3 0.013 0.049
Mean 10.829 10.948
25th 8.600 9.452
50th 10.750 10.825
75th 12.828 12.489

Notes: This table reports the targeted moments used in MSM to
estimate parameters in the Nash bargaining problem. β1, β2, and β3
are coefficients from the auxiliary regression. (29). The last four rows
show the mean, the 25th, the 50th, and the 75th percentile of farmer
prices.

wider variation in price compared to the data.17 I further check how well my model is able to

match the empirical results I presented in Section 3. Since I did not use the IV specification (4) in

my estimation, I use β1, the coefficient that captures how local competition impacts farmer prices,

from the IV regression as my untargeted moment. An equivalent IV regression using the simulated

data yields a coefficient of 0.079, which is relatively close to the coefficient of 0.074 in the data.

5.2 Parameters in Entry Problem: λ and EC

The equilibrium in mills’ entry-location problem is given by the Bayesian Nash equilibrium equation

(16). The parameters I need to estimate are the scale parameter, λ, and the common knowledge

component of entry costs, ECl. I assume that ECl takes the following specification:

ECl = θEC0 + θEC1 ruggednessl + θEC2 % of in season ricel + θEC3 population densityl + γr (30)

17Farmer prices in the data can be more compressed than the model-generated prices because of several reasons.
First, farmers could have other outside options not captured by the model, such as keeping the rice at home. Likewise,
mills may also have an upper bound on the prices they are willing to give to farmers, beyond which they consider
to be unprofitable to buy rice from the farmers. In addition, some rice mills may choose to buy only certain rice
varieties, which affects the degree of local competition in a way that is not captured in the model.
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Figure 6: MSM Goodness of Fit

(a) Binned Scatter Plot of Farmer Prices (b) Distribution of Farmer Prices

Notes: Panel (a) shows a binned scatter plot of the log of farmer prices observed in the data against the
log of farmer prices simulated from the model using estimates from the MSM. The red line is the 45-degree
line. Panel (b) shows a histogram of the log of farmer prices in the data and the log of the model generated
farmer prices. Both panels use farmer prices of white and sticky rice between 2008-2018.

Table 7: MSM Untargeted Moment

log(price)
Data Model

COMP (std) 0.074 0.079

Notes: This table reports the coefficient for the standardized com-
petition measure from the IV regression (4). The first column re-
ports the estimated coefficient from the data and the second column
reports the estimated coefficient from the model generated data.
Note that because data from the model is generated at an annual
frequency, I exclude the fixed effects for the month-of-highest-sales
from the regression using the model simulated data.

where ruggednessl is the ruggedness of the location, % of in season ricel is the percentage of rice

in the area that is grown in season, population densityl is the population density of the location,

and γr is the region fixed-effect.18 Given the specification of ECl, the set of parameters I need to

estimate for the entry problem ΘEC = {λ, θEC0 , ..., θEC3 , γr∈R}.

Estimation of ΘEC proceeds via nested fixed-point algorithm. Given ψ∗l
(
ΘEC , Xt

)
, the probability

18I choose the variables in the specification for ECl the following reasons. Terrain ruggedness matters for the cost
of doing busing, as Nunn and Puga (2012) have stated, ”geographical ruggedness is an economic handicap,... making
it more expensive to do business.” The percentage of rice grown in season likely affects the fixed operating cost of the
mill since it indicates whether farmers in the area grow rice consistently throughout the year or only during certain
time period. If farmers only grow rice during a specific part of the year, mills in the area will likely have to shut down
during some part of the year. The percentage of rice grown in season captures the costs arising from mills’ inability
to conduct businesses continuously. The population density captures variations in the cost of land. The region-fixed
effects captures variations in the entry cost across the regions.
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that the best response of a mill is to enter location l as given by the equilibrium probability (16),

the number of mills at a location follows a multinomial distribution. The probability that we would

observe {n1t, ..., nLt} number of mills at time t is:

Pr
(
n1t, ..., nLt|Ψ∗

(
ΘEC , Xt

))
=

M !

n1t! · · · nL+1,t!

L+1∏
l=1

ψ∗l
(
ΘEC , Xt

)nlt , (31)

where Xt are the variables needed to determine the expected variable profit. Assuming there is no

unobserved location heterogeneity, the log-likelihood function is then given by:

l
(
Ψ∗
(
ΘEC , Xt

))
=

T∑
t=1

L+1∑
l=1

{
nlt lnψ∗l

(
ΘEC , Xt

)}
. (32)

The log-likelihood function is summed up to L + 1 to account for the mills’ option to not enter

altogether, where ψ∗L+1

(
ΘEC , Xt

)
= 1 −

L∑
l=1

ψ∗l
(
ΘEC , Xt

)
and nL+1t = M −

L∑
l=1

nlt. Calculation

of log-likelihood function therefore requires knowledge of M , the number of potential entrants,

which is unobserved. Following the literature, I fix the number of potential entrants, M , to be an

exogenous value, setting M = 2, 000.19

The nested fixed point maximum-likelihood estimation proceeds as follows. For a given set of

variables Xt which determines the variable profits, I randomly sample a subset S of size 60, 000

from all possible configurations of N and compute the simulated variable profit for each Ns ∈ S.20

I then calculate the approximation function for the variable profit according to (20). Having done

so, or a given set of parameter values ΘEC and approximated variable profit function, I solve for

an approximated fixed point solution to the Bayesian Nash equilibrium (25). This Bayesian Nash

equilibrium is then nested into the maximum-likelihood procedure to estimate the parameters ΘEC .

To calculate the variable profit, I need data on the quantity of crop output. Data on the quantity

of rice harvested at the district level is only available between 2012-2018. Therefore, I restrict my

sample size to that time period. Additionally, I use the retail price of white rice in my estimation

since white rice is more widely grown across Thailand.

Table 8 reports the estimated parameters. The goodness of fit can be seen in Figure 7. Figure

7(a) displays the binned scatter plot of the number of mills in each location that I observe in the

19Since the number of potential entrants is unobserved, it is standard in the literature to set this to an exogenous
number. For instance, one of the specifications that Seim (2006) use is to assume that there is an entrant pool of 50
firms and the other specifications is to set the number of potential entrants such that 50% of the potential entrants
enter the market. since the number of mills per year I observe on average is 1,011 and the highest number of mills
observed in the data is 1, 084, I set M to be 2, 000. Appendix C reports results when I use a different value of M .
Intuitively, as long as M is sufficiently high such that the observed number of mills is below M in any of the baseline
or counterfactual scenarios, the exact value of M is not important.

20As a sensitivity analysis, I estimate the parameters using a subset of size 70, 000, which yields very similar results.
Appendix C reports the results.

30



data and the number of mills generated in the model. The linear fit without an intercept has a

coefficient of 1.02. Visual representation of the goodness of fit can be seen in Figure 7(b) and 7(c),

which plot the number of mills in each location. The model does a relatively good job capturing

the variation in the number of mills across Thailand.

Table 8: Estimated Parameters from NFP

Point estimate SE
λ 2.913 0.102
constant 1.790 0.047
I(east) 0.426 0.021
I(north) -0.319 0.027
I(northeast) 0.326 0.022
I(south) 1.106 0.055
I(west) 0.180 0.032
ruggedness 0.772 0.017
% in season -0.002 0.001
population density 0.005 0.001

Notes: This table reports the point estimates and bootstrapped
standard errors for the scale parameter, λ, and entry cost pa-
rameters using the nested fixed-point algorithm. Entry cost is
assumed to be a function of the location’s region, the ruggedness
of the location, the percentage of rice that is grown in season at
the location, and the population density. Parameters are esti-
mated using data from 2012-2018.

5.3 Farmers’ Production Function

To calculate the change in the production of rice in response to a change in farmer prices, I only need

to calibrate the share of intermediate input β. I calibrate the share of intermediate input using data

from the socio-economic and labor survey of agricultural households, obtaining β = 0.25. Details

of how I calculate changes in rice production are given in Appendix D.1.

6 Counterfactual Analysis

Having estimated the relevant parameters, I will now examine two counterfactual scenarios, both

guided by real-world policies in Thailand. In the first scenario, I study the impact of a country-wide

improvement in road infrastructure. In the second scenario, I examine how intermediaries impact

farmers’ decisions to invest in new technology. To separately examine the role of entry-location

decisions of intermediaries, I conduct two exercises for each counterfactual scenario. First, I keep

the number of mills in each location the same as in the baseline scenario. Then, I allow mills to

change their entry-location decisions.

Computation of equilibrium in the baseline and counterfactual scenarios requires data on retail
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Figure 7: NFP Goodness of Fit

(a) Binned Scatter Plot of No. of Mills

(b) No. of Mills in Data
(c) No. of Mills in Generated from

Model

Notes: Number of mills in each location between 2012-2018. Panel (a) shows a binned
scatter plot of the number of mills in each location observed in the data against the
number of mills generated from the model. The red line is the 45-degree line. Panels
(b) and (c) show a heatmap of the average number of mills in each location in the data
and the simulated data, respectively. Mill locations consist of 0.5 degree × 0.5 degree
grid cells.
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prices and farmers’ output, which I will use to deduce farmer’s output in the model. I use the

average retail prices for white rice and the output per district between 2012-2018 to compute

equilibrium in the baseline scenario. Note that since farmer prices and the output depend on the

realization of the number of mills in each location, for each scenario, I compute the equilibrium

farmer prices and output across 1,000 simulations and average the farmer prices and output across

the simulations. In each counterfactual scenario, I keep the retail price the same as in the baseline

scenario.21

6.1 Improvement in Road Infrastructure

In 2017, the Department of Highways released a strategic plan, setting a goal to reduce highways-

related transportation cost down by 9.09%, from 4.4% of GDP to 4% of GDP. Therefore, I map

this into the model as a 9.09% country-wide reduction in the iceberg trade costs.22 To isolate the

role of intermediaries’ entry decisions from the rest of the channels, I first simulate a reduction in

trade costs keeping the intermediaries’ entry-location decisions the same as in the baseline scenario.

Then, I let the rice mills change their entry-location decisions, allowing the last channel to come

into play.

Shutting Off Entry Response of Rice Mills

I first study what happens when I reduce trade costs if I shut down the entry response of the mills.

I do this by keeping the number of mills in each location, N , the same as the baseline scenario.

The results from this exercise are presented in the first column of Table 9. The aggregate income

of the farmers increases by 15.79%. More importantly, the gains to farmers are regressive. The

second and the third rows of Table 9 show the percentage change in income of the farmers whose

incomes in the baseline scenario are in the top and bottom decile. We can see that the top decile

farmers benefit from 11% higher percent increase in income relative to the bottom decile farmers.

To further understand the channels through which a reduction in trade costs impacts the farmers’

income, Table 10 decomposes the percentage increase in farmers’ incomes that arises from a decrease

in trade costs into three different channels: 1) the direct reduction in transport cost, 2) the increase

in prices that farmers receive, and 3) the changes in farmers’ output. The second channel is a

result of higher spatial competition among rice mills, which results from higher outside options of

the farmers due to lower trade costs, and the opportunity for farmers to re-optimize which mills

to sell their rice to. The third channel arises because farmers re-optimize their intermediate input

21The decision to keep the retail price unchanged can be justified by the fact that Thailand exports a large
proportion of the rice it produces. According to the USDA (2021), the percentage of rice that Thailand exported
ranges from 29.7% of the rice it produces in 2020/21 and 54.5% in 2017/18. Furthermore, the total quantity of rice
produced in Thailand forms a very small percentage of the global rice production, producing about 1.1% of the rice
produced globally in 2020/21 (USDA, 2021).

22Specifically, I reduce τ everywhere by 9.09%. Since the quantity of rice reaching the mill is
yf
τfm

, if τfm falls by

9.09%, farmers are going to arrive at the mill with 10% more rice than before.
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Table 9: % Change in Farmer Income following 9.09% Decrease in Trade Costs

% Change in Income
Baseline N Flexible N

Aggregate 15.79 16.75
Top 10% (avg.) 16.14 17.27
Bottom 10% (avg.) 14.54 13.84
SD 0.82 1.50

Notes: This table reports the percentage change in farmer income following a country-
wide 9.09% decrease in iceberg trade costs. The first column reports the results when
the number of mills in each location is the same as in the baseline scenario. The second
column reports the results when mills are allowed to change their entry and location
decisions. The second and thirds rows show the average percentage change in income
of the farmers whose incomes in the baseline scenario are in the top and bottom decile.

usage in response to higher prices. Column 1 shows the percentage increase in income that results

directly from lower transport costs paid by farmers to transport rice from their farms to the mills.

When τ falls by 9.09%, farmers arrive at the mill with 10% more rice than in the baseline scenario.

Therefore, if farmers had produced the same quantity of rice and sold it to the same mills at the

same prices as in the baseline scenario, all farmers’ incomes would have risen by 10%. The direct

effect of reduction in trade cost on farmers’ income is homogeneous across all farmers.

Table 10: Decomposition of % Change in Income following 9.09% Decrease in Trade Costs

Baseline N Flexible N
Transport Price Output Price Output

(1) (2) (3) (4) (5)
Aggregate 10.00 1.63 4.16 2.32 4.44
Top 10% (avg.) 10.00 1.92 4.22 2.65 4.62
Bottom 10% (avg.) 10.00 0.65 3.90 0.20 3.64
SD 0.00 0.59 0.22 1.09 0.41

Notes: This table decomposes the total percentage change in farmer income into the percentage
change arising from three different channels. Column 1 reports the percentage point increase in
income arising directly from the reduction in transport cost. Column 2 reports the additional
percentage point increase arising from the increase in prices that farmers receive, holding the
number of mills and the farmers’ output the same as in the baseline scenario. Column 3 reports the
additional percentage point increase coming from changes in farmers’ production decisions, holding
the number of mills constant at the baseline level. Columns 4 and 5 report the equivalence of
columns 2 and 3 when mills can change their entry and location decisions.

The percentage increase in income arising from further changes in the prices that farmers receive

is presented in column 2 of Table 10. Prices that farmers receive increase because of two reasons.

First, lower trade costs mean that the value of farmers’ threat points in the Nash bargaining process

is higher, leading to higher equilibrium farmer prices. Second, farmers reoptimize their choices of

mill to trade with. Holding the quantity of rice produced by farmers the same as in the baseline

scenario, the aggregate income of the farmers further increase by 1.63 percentage points as a result
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of changes in prices that farmers receive. Note that the gains arising through this channel are

regressive. While the income of top decile farmers further rises by 1.92 percentage points from

this channel, the income of the bottom decile farmers only increases by 0.65 percentage points.

Likewise, the standard deviation in the percentage increase in farmers’ incomes increases from 0 to

0.59 percentage points.

This regressive effect results from the uneven spatial distribution of rice mills in the baseline sce-

nario, which arises from mills’ strategic location decisions. Productive places are more profitable;

therefore, in the baseline scenario, the number of mills is higher in productive areas. Since farmer

prices are determined by equation (19), higher density of mills in productive locations means shorter

distances between mills. Therefore, the threat points of productive farmers form a larger proportion

of the equilibrium farmer prices. Since lower trade cost impacts farmers’ outside option, the reduc-

tion in trade costs has larger impacts on farmer prices at productive locations. This is illustrated

through the positive correlation between the percentage change in farmer prices and the baseline

number of mills in Figure 8(a).

Figure 8: Impacts of Improvement in Road Infrastructure: Baseline N

(a) % Change in farmer prices (b) % Change in income

Notes: Counterfactual results from 9.09% reduction in the iceberg trade costs when the number of mills
in each location, N , is fixed at the baseline level. Panel (a) shows a binned scatter plot of the average
percentage increase in farmer prices in each location against the log of the number of mills in the location
in the baseline scenario. Panel (b) shows a binned scatter plot of the percentage change in farmer income
against farmer access to rice mills, measured using the log of the number of mills within 100 km from the
farmer in the baseline scenario.

Subsequent changes in farmers’ production decisions further widens the gap between the percentage

increase in income of the top and bottom decile farmers. In response to price changes, farmers

reoptimize their use of intermediate inputs in their rice production, increasing the quantity of rice

that they produce. In particular, for farmer f , the ratio of the new output (y′f ) to the baseline

35



output (y′) is a function of the ratio of the new farmer price and iceberg trade cost
(
pf ′
m′

τ ′
fm′

)
to the

baseline farmer price and iceberg trade cost
(
pfm
τfm

)
:23

y′f
yf

=

(
pf ′m′/τ

′
fm′

pfm/τfm

) β
1−β

. (33)

Column 3 of Table 10 reports the further increase in income once farmers reoptimize their produc-

tion decisions. Productive farmers who benefit from a larger increase in prices increase their output

by more than the unproductive ones, thus widening the gap between the top and bottom decile

farmers. The top decile farmers experience a further 4.22 percentage points increase in income

after we account for changes in farmers’ production decisions. In contrast, the bottom decile only

experience an additional 3.90 percentage points increase.

The heterogeneity in the changes in prices that farmers receive and changes in farmers’ production

decisions lead to the overall regressive effects on the gains to the farmers. Productive farmers,

surrounded by a larger number of mills, experience a larger percentage increase in income relative

to the unproductive ones. This is reflected in Figure 8(b), which shows the percentage change in

farmers’ incomes against the number of mills within 100 km from the farmer. Because productive

areas have a higher density of mill, mills in productive areas face a greater reduction in market

power following a reduction in trade costs, causing productive farmers to experience larger gains.

Allowing for Entry Response of Rice Mills

In this exercise, I incorporate the entry response of rice mills into the counterfactual simulation.

The second column of Table 9 shows the percentage change in farmer income once mills are able to

change their entry-location decisions. Entry responses of rice mills have important implications on

the gains to farmers. The first row of Table 9 shows that after accounting for the entry responses

of rice mills, the percentage change in the aggregate income of the farmers increases from 15.79%

to 16.75%. Hence, if we had ignored the changes in entry decisions of rice mills, we would have

underestimated the percentage increase in aggregate farmer income by 5.7%. More importantly,

the entry responses of intermediaries have important distributional consequences. Changes in the

entry decisions of the rice mills exacerbate the regressive nature of the gains to the farmer. The

gap between the percentage change in income of the top and bottom decile farmers increases by

2.1 times as a result of the entry response of mills.

To shed light on why the intermediaries’ entry responses are regressive, let us consider how inter-

mediaries change their entry-location decisions following a reduction in trade costs. Ex-ante, it is

unclear how a decrease in trade costs will impact the entry decisions of the rice mills. When trade

cost falls, there are three competing forces at play. First, a lower trade cost increases the value of

23See Appendix D.1 for details.
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the farmer’s threat point in the Nash bargaining problem, putting upward pressure on farmer prices

and subsequently lowering per-unit profit, making mills less likely to enter. Second, lower trade

costs and higher farmer prices mean farmers increase their output, leading to higher total profit for

mills. The increased profitability makes mills more likely to enter. Third, lower trade costs mean

that farmers are more likely to travel further to places with higher farmer prices, increasing the

profitability in places with high farmer prices and vice versa.

Simulations indicate that the second and the third channels dominate in productive locations,

resulting in higher overall profitability. As a result, productive farmers experience a larger increase

in income, as shown in Figure 9. In Figure 9(a), we can see the positive correlation between

the percentage change in N and baseline N . Since in the baseline scenario, the number of mills

positively correlates with the productivity of the location, this means that entry following a decrease

in trade costs is regressive; productive locations experience an increase in the number of mills while

unproductive locations experience a decrease in the number of mills on average. As a result,

locations with higher baseline number of mills experience a larger percentage increase in farmer

prices following a decrease in trade costs, as shown in Figure 9(b). This causes a chained response

in rice production; farmers in productive locations increase their output by a larger percentage

than the unproductive ones, further amplifying the distributional consequences. Figure 9(c) and

9(d) illustrate this regressive effect. After we account for changes in entry-location decisions of rice

mills, productive farmers who have higher baseline income and are located in areas with higher

mill density experience a larger percentage increase in income relative to when we do not account

for entry response of mills. In comparison, unproductive farmers experience a smaller percentage

increase in income.

Overall, this counterfactual scenario indicates that intermediaries’ entry decisions and market power

have important distributional consequences. Entry is regressive. Intermediaries’ strategic entry

decisions lead to higher density of rice mills in productive areas, resulting in lower market power of

rice mills in productive areas. As a result, farmers in productive areas experience a larger percentage

increase in income relative to those in unproductive areas. Entry decisions of rice mills following the

shock further exacerbate the gap in the gains between the productive and unproductive farmers.

Country-wide reduction in trade costs causes productive areas to become relatively more profitable

than the unproductive ones, leading to a higher number of mills in productive areas and vice versa.

Therefore, entry responses of intermediaries further widen the gap in the percentage increase in

farmer prices between the productive and unproductive farmers. Ignoring the entry response of

rice mills would cause us to underestimate the gap in the percentage change in income between the

top and bottom decile farmers by 53%.
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Figure 9: Impacts of Improvement in Road Infrastructure: Flexible N

(a) % Change in N vs Baseline N (b) Percentage Point Change in %∆pfl after
Allowing N to Change vs Baseline N

(c) Percentage Point Change in %∆ Income after
Allowing N to Change vs Baseline Income

(d) Percentage Point Change in %∆ Income After
Allowing N to Change vs No. of Mills within 100

km in Baseline Scenario

Notes: Counterfactual results from 9.09% reduction in the iceberg trade costs after allowing mills to change
their entry-location decisions. Panel (a) shows a binned scatter plot of the percentage change in the number
of mills against the baseline number of mills in each location. Panel (b) shows binned scatterplot of the
percentage point difference in the percentage change in farmer price before and after the entry response
of mills against the baseline number of mills in each location. Panels (c) and (d) show the percentage
point difference in the percentage change in farmer income before and after the entry response of mills. A
positive percentage point difference means that the percentage increase in farmer income (farmer price) is
larger after accounting for mills’ entry response.
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6.2 Opportunity for Farmers to Invest in New Technology

In the second counterfactual, I consider the role of spatial market power and strategic entry in

shaping farmers’ decisions to invest in new farming technology. In Thailand, there are many

ongoing efforts to encourage farmers to adopt new farming practices or technology. For instance,

in 2018, the Thai Rice Department budgeted over 60 million USD for projects aimed to develop

the production potential of the agricultural sector (Rice Department, 2018). A significant factor

determining the success of these projects is the farmers’ uptake of the technology. In what follows,

I show that the entry response of intermediaries impacts farmers’ decisions to invest in the new

technology, resulting in multiple equilibria.

I build this counterfactual scenario on one of the ongoing projects, the Thai Rice NAMA, which

encourages farmers to adopt low-carbon emission technology and practices. Mapping this into the

model, I allow farmers in the six targeted provinces in the central plains to decide whether to invest

in the new technology at the beginning of the period, as shown in Figure 10. The publicly available

information on the project suggests that the new technology will increase farmers’ productivity by

30% and that farmers will break even at the current prices (NAMA Facility, n.d.). I implement this

into the model by setting the investment costs such that farmers will break even at the baseline

prices.24 I assume that farmers will only invest if the return on investment is strictly positive.

Figure 10: Timeline with Opportunity to Invest in New Technology

Because farmers are small, they do not consider how their individual investment decisions impact

the aggregate output in the area and subsequently the number of mills in each location. Farmers’

investment decisions are determined solely from the expected return from the investment given the

expected farmer prices. Since rice mills’ density impacts farmer prices and thus the return from

investment, farmers’ investment decisions are affected by their beliefs on whether other farmers will

invest and what the subsequent mill density will be. Multiple equilibria arise, depending on the

farmers’ beliefs about others’ decisions. In the non-socially optimal equilibrium, farmers believe

that no one else will invest. They believe that the number of mills and subsequently the farmer

prices will be the same as in baseline scenario. Therefore, there will be no positive gains to farmers

24See Appendix D.3 for further details on the project and how I map the project to the model.
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from investing in the technology. As a result, no investment is made.25

However, such equilibrium is not socially optimal. If farmers collectively invest in the new tech-

nology, the increase in output would result in a higher number of mills. Higher number of mills

means higher farmer prices. As such, ex-post, the majority of farmers would be willing to invest

in new technology. Such equilibrium is shown in Figure 11. If 62% of the targeted farming loca-

tions adopt the new technology as shown in Figure 11(a), a higher number of mills will enter those

corresponding areas as depicted in Figure 11(b). Subsequently, farmer prices in those areas rise;

this increases the return to investment for those farmers such that it is worthwhile for that same

62% of the farming areas to invest in the new technology. As a result, the farmer income rises, as

displayed in Figure 11(c).

Figure 11: Technology Adoption in a Socially Optimal Equilibrium

(a) Investment made (b) %∆N (c) %∆Income

Notes: This figure shows a socially optimal equilibrium when farmers are presented with an opportunity
to invest in new technology. N/A denotes that farmers are not in the provinces targeted by the project
and are not offered an opportunity to invest. Panel (a) shows the investment decisions of the farmers.
Panel (b) shows the percentage change in the number of mills. Panel (c) shows the percentage change in
farmer income.

This counterfactual analysis shows the importance of the entry response of intermediaries in shaping

the farmers’ investment decisions. Because farmers do not internalize the strategic complementarity

arising from endogenous strategic decisions, it is possible to be in an equilibrium in which the level

of investment in technology is lower than the socially optimal level.

25This equilibrium would also be achieved if farmers are myopic and do not realize that mills’ entry decisions are
affected by the quantity of rice harvested.
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7 Conclusion

The key message in this paper is that strategic entry decisions of intermediaries matter in the

presence of trade frictions. Even in the absence of regulatory barriers to entry, due to the existence

of fixed costs of entry and trade costs, intermediaries strategically choose their locations. This

results in an uneven spatial distribution of intermediaries, with higher density of intermediaries

in productive areas. The presence of trade costs means that intermediaries situated in areas with

low density of intermediaries enjoy higher spatial market power. Therefore, farmers situated in

productive areas, surrounded by a larger number of intermediaries, receive higher prices relative to

those in unproductive areas.

While a country-wide infrastructure policy, which reduces trade costs, increases the income of

the farmers, the gains from the policy are regressive. Because intermediaries in productive areas

have lower market power, farmers in these areas benefit from higher percentage increase in prices

relative to those in unproductive areas. The entry response of intermediaries following the policy

further exacerbate this regressive effect. Counterfactual simulation indicates that in Thailand,

the percentage increase in income of the top decile farmers is on average 25% larger than that

of the bottom decile farmers. Ignoring changes in entry decisions of rice mills would lead us to

underestimate the gap in gains to the top and bottom decile by 53%.

In addition, the strategic entry decisions and the market power of intermediaries have important

implications for farmers’ technology adoption. Since farmers may not internalize the strategic

complementarity between farmers’ adoption of technology and the endogenous entry decisions of

intermediaries, farmers can be stuck in a non-socially optimal equilibrium in which there is under-

investment in new technology relative to the socially optimal level. I demonstrate the existence of

such equilibrium in the context of Thailand. To encourage farmers to adopt new technology, it may

not be sufficient for policymakers to simply present the new technology know-how to farmers and

expect farmers to invest in the new technology themselves. Since farmers’ investment decisions are

influenced by the behaviors of their peers, policymakers may need to provide additional incentives,

for instance in the form of subsidies, to overcome the initial inertia among the farmers.
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Appendices

A Empirics: Robustness

A.1 OLS

In this section, I present robustness checks for the OLS regression results. To further address

concerns about location-specific unobserved heterogeneity, I use the average province-level farmer

prices between 2016-2018 as an additional control variable. These are the years that do not contain

data on the month-of-highest-sales and are therefore excluded from the regressions. I average the

prices at the province level because the districts and sub-districts in the sample do not always

overlap across the years. Table A.1 reports the results. For ease of comparison, the first column

contains the results from the baseline specification, which are taken from column 2 of Table 2.

Column 2 presents results once I control for the average farmer prices between 2016-2018.

Table A.1: OLS Robustness Checks

log(farmer price)
r = 100 km r = 75 km r = 125 km

(1) (2) (3) (4)

COMP (std) 0.023*** 0.019** 0.019*** 0.024***
(0.008) (0.008) (0.007) (0.008)

log(crop sold) -0.006 -0.003 -0.006 -0.006
(0.005) (0.004) (0.005) (0.005)

log(province-level output) -0.012 0.001 -0.012 -0.012
(0.008) (0.008) (0.008) (0.008)

Crop-suitability-index 0.010* 0.006 0.011* 0.010*
(0.006) (0.005) (0.006) (0.006)

log(distance to BKK) 0.024 0.016 0.020 0.026
(0.017) (0.018) (0.016) (0.017)

Average farmers’ price in 2016-2018 0.025***
(0.007)

Year FE Yes Yes Yes Yes
Month-of-highest-sales FE Yes Yes Yes Yes
Region FE Yes Yes Yes Yes
Crop-type FE Yes Yes Yes Yes

N 54,252 54,252 54,252 54,252
R2 0.511 0.520 0.511 0.511

Notes: This table reports the OLS estimates of equation (2). COMP (std) is the standardized compe-
tition measure constructed using equation (1). r specifies the distance cutoff that is used to construct
the competition measure. All regressions use farmer prices between 2008-2015 as the dependent vari-
able. Standard errors are adjusted to allow for spatial clustering as in Conley (1999), with a bandwith
of 1.5 degree using Bartlett kernel. *p < 0.1, ** p < 0.05, *** p < 0.01

Additionally, I check for the sensitivity of the competition measure to different distance cutoffs.
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I construct competition measures analogous to equation (1) using 75 km and 125 km as distance

cutoffs instead of the original 100 km cutoff. Column 3 and 4 of Table A.1 report the results. The

positive and significant relationship between local competition level and farmer prices is robust to

different distance cutoffs in the competition measure.

A.2 IV

I check the validity of the instrument in several ways. First, I test the sensitivity of the instrument

to the distance cutoffs. I use alternative distance cutoffs for the neighbor’s productivity and the

farmer’s own productivity. I define neighbor’s productivity as the productivity of land between 75

km - 100 km from the farmer and the farmer’s own productivity as the productivity of the land

within 25 km from the farmer. Table A.2 reports the results. The results are robust to alternative

distance specifications.

Table A.2: IV Results Using Alternative Distance Cutoffs

COMP (std) log(price) No. of mills (std) log(price)

COMP (std) 0.071***
(0.019)

No. of mills (std) 0.070***
(0.023)

Suit75−100 (std) 0.285*** 0.214***
(0.036) (0.050)

Suit75−100 × Irri75−100 (std) 0.159*** 0.082**
(0.034) (0.038)

Irri75−100 (std) 0.244*** 0.338***
(0.059) (0.117)

Suit0−25 (std) 0.097* 0.015** 0.121*** 0.013
(0.055) (0.007) (0.034) (0.008)

Suit0−25 × Irri0−25 (std) 0.060 0.011 0.067** 0.011
(0.049) (0.007) (0.033) (0.008)

Irri0−25 (std) 0.281*** -0.038*** 0.181*** -0.030***
(0.100) (0.010) (0.057) (0.009)

First-stage F-stats 47.952 47.667
Hansen’s p-value 0.862 0.417

Notes: This table reports the IV estimates analogous to those from equations (3) and (4) using
alternative distance cutoffs: neighbor’s productivity is defined as the productivity between 75 km - 100
km from the farmer and farmer’s own productivity is defined as the productivity within 25km from the
farmer. COMP (std) is the standardized competition measure constructed using equation (1). No. of
mills (std) is the standardized number of mills within 100 km from the farmer. All regressions include
controls for the log of quantity of crop sold, province-level output, distance to Bangkok, and fixed
effects for the year, the month-of-highest-sales, the region, and the crop-type. All regressions use data
from 2008 to 2015. Standard errors are adjusted to allow for spatial clustering as in Conley (1999),
with a bandwidth of 1.5 degree using Bartlett kernel. *p < 0.1, ** p < 0.05, *** p < 0.01
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Table A.3: IV Results Controlling for Ruggedness

COMP (std) log(price) COMP (std) log(price)

COMP (std) 0.087*** 0.094***
(0.026) (0.025)

Suit50−100 (std) 0.307*** 0.301***
(0.049) (0.048)

Suit50−100 × Irri50−100 (std) 0.183*** 0.184***
(0.037) (0.037)

Irri50−100 (std) 0.231*** 0.229***
(0.062) (0.061)

Suit0−50 (std) 0.070 0.014* 0.067 0.017**
(0.063) (0.009) (0.063) (0.009)

Suit0−50 × Irri0−50 (std) 0.067 0.006 0.067 0.005
(0.050) (0.008) (0.051) (0.008)

Irri0−50 (std) 0.405*** -0.054*** 0.404*** -0.055***
(0.123) (0.018) (0.123) (0.016)

Rugged0−100 -0.026 0.034
(0.057) (0.022)

Rugged50−100 (0.004) 0.018
(0.061) (0.019)

First-stage F-stats 19.123 20.643
Hansen’s p-value 0.898 0.876

Notes: This table reports the IV estimates analogous to those from equations (3) and (4). COMP
(std) is the standardized competition measure constructed using equation (1). No. of mills (std) is
the standardized number of mills within 100 km from the farmer. All regressions include controls
for log of quantity of crop sold, province-level output, distance to Bangkok, and fixed effects for
year, month-of-highest-sales, region, and crop-type. All regressions use data from 2008 to 2015.
Standard errors are adjusted to allow for spatial clustering as in Conley (1999), with a bandwidth
of 1.5 degree using Bartlett kernel. *p < 0.1, ** p < 0.05, *** p < 0.01

There may be a concern that neighbors’ productivity may be correlated with provisions of public

goods such as roads, which can affect farmer prices. To address this, I use ruggedness as an

additional control variable in the IV regression since ruggedness hinders the provision of public

goods. Results are reported in Table A.3. Overall, IV estimates are robust to the inclusion of

additional control variables.

I further conduct falsification exercises to test the validity of the instrument. I run IV regressions

like (3) and (4), but use farmer prices for other crops as the dependent variable instead of the

farmer prices for rice. If unobserved factors such as the provision of public goods correlate with

the instrument, one would expect the coefficient of the competition measure, instrumented using

neighbor’s productivity, to be positive and significant. Table A.4 shows that this is not the case.
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Table A.4: Falsification Exercises

Maize Cassava Longan Rubber Vegetables

COMP (std) -0.074 0.092 0.102 0.297 -0.136
(0.080) (0.093) (0.344) (0.196) (0.177)

N 4,211 5,697 926 1,769 1,209

Notes: This table reports the IV estimates analogous to those from equa-
tions (3) and (4). COMP (std) is the standardized competition measure
constructed using equation (1). All regressions use the same instrument
and control variables as the main IV regression. Standard errors are ad-
justed to allow for spatial clustering as in Conley (1999), with a bandwidth
of 1.5 degree using Bartlett kernel. *p < 0.1, ** p < 0.05, *** p < 0.01
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B Show that Solution to the Nash Bargaining Problem is a Con-

traction Mapping

The equilibrium farmer price is given by the a system of equations (19). Define f : [0,max
m

prm]|M| →

[0,max
m

prm]|M| where

f(m) = (1− δ) max
k∈M−{m}

{
f(k)

τmk

}
+ δprm (B.1)

and τmk ∈ [1,∞], δ ∈ (0, 1), pm ∈ R.

The max function is continuous. Therefore, f is a continuous function. By Brouwer’s Theorem, a

fixed point exists. Chatterjee (2020) shows that f satisfies Blackwell’s sufficient condition and is,

therefore, a contraction mapping.

C Estimation

C.1 How important are the threat points to farmer prices?

Given the estimated bargaining power parameter, δ, and the trade cost parameter, φ, in section 5,

how important are the threat points in the Nash bargaining problem? Table the size of the threat

point as a percentage of the equilibrium farmer prices. On average, the sizes of farmers’ threat

points are about 20.13% of the equilibrium farmer prices. However, there is substantial heterogene-

ity. Farmer’s threat points can be as high as 88.62% and as low as 0.54% of the equilibrium farmer

prices.

Table C.1: Size of Threat Points

Threat point as % of farmer price

Average 20.13%
Max 88.62%
Min 0.54%
SD 13.13%

Notes: This table shows the size of farmers’ threat

points, max
k∈M−{m}

{
pfk
τmk

}
, as a percentage of equi-

librium farmer prices. Results are simulated using
estimates presented in Table 5.
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C.2 Sensitivity Analysis on the Choice of |S| and M

In this section, I check for the sensitivity of the estimated parameters to the specified number of

potential entrants, M , and the size of the subset S that I use to approximate the variable profit,

as described in section 4.3.1. Table C.2 reports the estimated parameters when I set M = 3, 000.

Table C.3 reports the point estimates for different sizes of S. The alternatives I consider are a

subset of size 55, 000, 65, 000, and 70, 000. Overall, the estimated parameters are not sensitive to

the choice of |S| and M .

Table C.2: Entry Parameters Estimates Using Different M

M = 2,000 M = 3,000
Point estimate SE Point estimate SE

lambda 2.913 0.102 2.890 0.105
constant 1.790 0.047 2.048 0.048
I(east) 0.426 0.021 0.429 0.021
I(north) -0.319 0.027 -0.322 0.027
I(northeast) 0.326 0.022 0.327 0.022
I(south) 1.106 0.055 1.114 0.055
I(west) 0.180 0.032 0.182 0.030
ruggedness 0.772 0.017 0.778 0.017
% in season -0.002 0.001 -0.002 0.001
population density 0.005 0.001 0.005 0.001

Notes: This table reports the point estimates and bootstrapped standard errors
for the scale parameter, λ, and entry cost parameters using the nested fixed-point
algorithm. Entry cost is assumed to be a function of the location’s region, the
ruggedness of the location, the percentage of rice that is grown in season at the
location, and the population density. Parameters are estimated using data from
2012-2018. M = 2, 000 is the baseline specification; the estimates in the first
two columns are the same as those in Table 8 and are provided here for ease of
comparison.
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Table C.3: Entry Parameters Using Different |S|

|S| = 60, 000 |S| = 55, 000 |S| = 65, 000 |S| = 70, 000

λ 2.913 2.686 2.411 2.289
constant 1.790 1.934 2.141 2.278
I(east) 0.426 0.489 0.519 0.529
I(north) -0.319 -0.323 -0.377 -0.393
I(northeast) 0.326 0.373 0.393 0.425
I(south) 1.106 1.217 1.342 1.410
I(west) 0.180 0.205 0.248 0.259
ruggedness 0.772 0.835 0.930 0.985
% in season -0.002 -0.002 -0.004 -0.003
population density 0.005 0.005 0.006 0.006

Notes: his table reports the point estimates of the scale parameter, λ, and entry cost
parameters using the nested fixed-point algorithm. Entry cost is assumed to be a function
of the location’s region, the ruggedness of the location, the percentage of rice that is grown
in season at the location, and the population density. Parameters are estimated using data
from 2012-2018. The first column shows the estimates from the baseline specification; the
estimates in the first column are the same as those in Table 8 and are provided here for
ease of comparison.

D Counterfactuals

D.1 Calculating Change in Rice Production

In this section, I illustrate how I compute the new output level. Solving the farmer’s maximization

problem (17) for the first order condition gives the optimal quantity of intermediate input:

X = β
pf

τfm

y

wX
(D.1)

Plugging this back into the production function gives:

y =
(
AH

γ
L
α
) 1

1−β

(
β

wX

) β
1−β
(
pf

τfm

) β
1−β

(D.2)

Let y′ be the new output corresponding to the new price pf ′ and new iceberg trade cost τ ′fm, then

we have:

y′

y
=

(
pf ′/τ ′fm
pf/τfm

) β
1−β

(D.3)
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D.2 Additional Figures for Improvement in Road Infrastructure

Figure D.1: Plot of Percentage Change in Farmer Income

(a) Baseline N (b) Flexible N

Notes: Percentage change in farmer income after a 9.09% reduction in the iceberg trade costs. Panel (a)
shows the percentage change when the number of mills is held fixed at the baseline level. Panel (b) shows
the percentage change when mills are allowed to change their entry-location decisions.
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Figure D.2: Difference before and after Mills Can Change Their Entry Decisions

(a) %∆N (b) PP Difference in %∆pfl

(c) PP Difference in %∆ Farmer Income
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(d) Percentage Point Change in %∆pfl after Allowing N to Change

(e) Percentage Point Change in %∆ Income after Allowing N to
Change

Notes: Changes in counterfactual results from a 9.09% reduction in the iceberg trade costs before and
after mills are allowed to change their entry-location decisions. Panel (a) shows heatmap of the percentage
change in the number of mills. Panels (b) and (d) show of the percentage point difference in the percentage
change in farmer prices. Panels (c) and (e) show the percentage point difference in the percentage change
in farmer income. A positive percentage point difference means that the percentage increase in farmer
income (farmer price) is larger after accounting for mills’ entry response.
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D.3 Thai Rice NAMA

D.3.1 Mapping Projects to the Model

The Thai Rice NAMA aims to promote farmers to adopt low emission technology. The project tar-

gets farmers in six provinces in the Central Plains: Chainat, Ang Thong, Pathum Thani, Singburi,

Ayutthaya, and Suphanburi (SNRD Asia and the Pacific, 2017). Publicly available information on

the project suggests that the technology will reduce farmers’ costs by 53% and increase crop yields

by 8%. The project expects that the required investment will break even within a year (NAMA

Facility, n.d.).

I map the technology improvement into the model, I modify the farmer’s production function to

take the following form:

yf = AfH
γ
fL

α
f (BfXf )β (D.4)

where B is the intermediate input augmenting technology. Using the profit maximizing quantity

of intermediate input (D.1), farmer’s optimal output is:

yf =
(
AfHf

γ
L
α
f

) 1
1−β

B
β

1−β
f

(
β

wXf

) β
1−β
(
pff
τfm

) β
1−β

(D.5)

Let y′ be the new output corresponding to the new price pf ′ and new technology A′ and B′, then

we have:

y′f
yf

=

[
A′f
Af

(
B′f
Bf

)β] 1
1−β
(
pf ′f

pff

) β
1−β

(D.6)

I map the 8% increase in crop yield as
A′f
Af

= 1.08 and the 53% reduction in cost as
B′f
Bf

= 1
0.47 .

Since β = 0.25, we have
A′f
Af

(
B′f
Bf

)β
= 1.30, which is equivalent to approximately 30% increase in

productivity.

To map the investment cost into the simulation, I assume that the investment will break even in

one year and that estimates were made using current prices. I assume that farmers are completely

present biased and only care about the return in the current period. Therefore, in the simulation,

I assume that the investment cost is such that farmers will break even at the baseline prices.

Specifically

investment costf = pff,baseline

[
A′f
Af

(
B′f
Bf

)β] 1
1−β

yf,baseline − pff,baselineyf,baseline (D.7)
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where investment costf is the investment cost for farmer f , pff,baseline is the price that farmer f

receives in the baseline scenario, and yf,baseline is farmer f ’s output in the baseline scenario.

D.3.2 Algorithm to Compute Socially Optimal Equilibrium

I adopt the following algorithm to compute the socially optimal equilibrium in the second counter-

factual scenario.

1. Start by guessing that all targeted farmers invest in the new technology.

2. Compute the Bayesian Nash Equilibrium and simulate the mills’ entry decisions.

3. Solve for equilibrium farmer prices.

4. Find which targeted farmers are willing to adopt the new technology at the new equilibrium

prices. Farmers will adopt the new technology if

[
A′f
Af

(
B′f
Bf

)β] 1
1−β
(
pf ′f

pff

) β
1−β

yfp
f ′
f −

(
pf ′f

pff

) β
1−β

yfp
f ′
f > investment costf (D.8)

where variables without dash denote the baseline level. If farmers who are willing to invest

are the same as the guess, then stop. Otherwise repeat step 2-4.

D.4 Perfect Competition

In this section, I consider the counterfactual results if the rice mills have no market power. To

compute equilibrium under perfect competition, I assume that there is no markup and that farmer

prices are equal to the retail prices.

D.4.1 Improvement in Road Infrastructure

Table D.1 reports the percentage change in farmer income and Table D.2 reports the percentage

change in farm gate prices. Note that the percentage change when rice mills have no market power

is calculated relative to the baseline where rice mills have no market power. There are two main

takeaways from this exercise. First, the gains to farmers are homogeneous when rice mills have

no market power. Second, the percentage increase in farmer income is larger when rice mills have

market power. The intuition behind the results is as follows.

When rice mills have no market power, the farmer prices, which are the prices that mills give to

farmers, are not affected by the trade costs; farmers always receive the retail prices regardless of

the trade costs. Therefore, when there is no market power, farmer income only increases because

of two channels: 1) direct lower cost of transporting rice from the farm to the mill, and 2) increase

in farmers’ rice production. Since lower trade costs affects all farmers in the same way, there is no
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heterogeneity in the gains to farmers.

However, when rice mills have market power, farmer prices are affected by trade costs and rice

mills’ entry response. Trade costs impact farmers’ threat points in the Nash bargaining problem,

which impacts the equilibrium farmer prices. In places with higher mill density, farmers’ threat

points form a larger percentage of the equilibrium farmer prices. Therefore, lower trade costs

have greater impact on farmer prices in places with higher mill density. Additionally, mills’ entry

response affects mill density, which in turn affects farmer prices. Changes in farmer prices generate

heterogeneity in the gains to farmers.

Table D.1: % Change in Farmer Income following 9.09% Reduction in Trade Costs

% Change in Farmer Income
No market power Baseline N Flexible N

Aggregate 13.55 15.79 16.75
Top 10% (avg.) 13.55 16.14 17.27
Bottom 10% (avg.) 13.55 14.54 13.84
SD 0.01 0.82 1.50

Notes: This table reports the percentage change in farmer income following
a country-wide 9.09% decrease in iceberg trade costs. The first column
reports the results when rice mills have no market power. The second
column reports the results when the number of mills in each location is
held the same as in the baseline scenario. The third column reports the
results when mills are allowed to change their entry and location decisions.
The second and the third columns are the same as the results in Table 9
and are provided here for ease of comparison.

Table D.2: % Change in Farm Gate Price following 9.09% Reduction in Trade Costs

% Change in Farm Gate Price
No market power Baseline N Flexible N

Average 10.00 10.88 11.02
Top 10% (avg.) 10.00 11.92 12.65
Bottom 10% (avg.) 10.00 10.65 10.20
SD 0.00 0.59 1.09

Notes: This table reports the percentage change in farm gate prices
following a country-wide 9.09% decrease in iceberg trade costs. Farm

gate price is the farmer prices accounting for trade cost i.e. pfm
τfm

. The

first column reports the results when rice mills have no market power.
The second column reports the results when the number of mills in
each location is held the same as in the baseline scenario. The third
column reports the results when mills are allowed to change their
entry and location decisions.
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D.4.2 Opportunity for Farmers to Invest in New Technology

Under perfect competition, the farmer prices are equal to the retail price and are unaffected by the

number of mills. The retail prices are higher that the baseline prices when mills have market power.

The return to investment is greater than the investment cost. Therefore, if mills have no market

power, there is only one equilibrium in which all targeted farmers invest in the new technology.

E Data Appendix

E.1 Mill

My dataset for rice mills comprise of firms that are registered under rice milling category, specifically

under TSIC code 10611. However, firms registered in the dataset may not be actively operating

the rice mill in a given year. To address this concern, I only consider mills that report at least 100

THB revenue in their balance sheet in a given year to be operating in that given year. Additionally,

to ensure that I do not count firms that are registered under the wrong category in my analysis, I

only consider firms that have the words ”rice”, ”mill”, or ”agriculture” (or the Thai counterpart)

in either their name or their listed business purpose as rice mills.

To ensure that firms generally only have one rice mill, I examine the list of rice mills that are active

in 2021 from the Department of Internal Trade. In 2021, there are active mills. 95% of these mills

are individually owned. In addition, firms that have more than one mill generally have mills in

areas with a large number of mills. Therefore, undercounting the mills that belong to those firms

do not significantly impact my estimated level of local competition.

Table E.1: Number of Active Mills in 2021 from the Department of Internal Trade

No. of mills per firm No. of firms

1 1,015
2 18
3 4
4 1
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