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Abstract

We propose a novel interbank network model in which banks face systemic liquidity shocks,

flight-to-quality liquidity flows, and collapses of the interbank network during crises, and study

their impacts on the optimal liquidity control and the systemic risk of the interbank network. We

find that banks respond to negative shocks by holding positive precautionary liquidity, but once

the shock size is sufficiently large, the benefit of precautionary liquidity reduces, and banks lower

their precautionary liquidity. Lending (borrowing) banks also hold positive (negative) interbank

liquidity provision. Banks hold more provision for more interconnected networks, but when the

network is too interconnected, it is too costly to hold large provision, causing banks to lower the

provision. On the contrary, a higher degree of the flight-to-quality effect tends to make banks

act more aggressively on both precautionary liquidity and interbank provision. As a result, the

systemic risk tends to increase in the size of the negative shock, but is quite insensitive to the

degree of the flight-to-quality effect. Our analysis shows that the systemic risk increases if the

interbank market collapses or becomes too interconnected during crises. Rewards and penalties

from regulators can help reduce the systemic risk, but they come with a cost and have different

implications on the banks’ optimal policies. (JEL C44, C73, D81, D85, E02, G01, G21, G28, L14)
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1 Introduction

Interbank borrowing and lending markets are one of the most important parts of the financial

systems. Banks can lend and borrow money with one another in the markets in order to man-

age their short-term liquidity and meet some regulatory requirements, for instance, the reserve

requirement. Loan maturities in the markets are mostly shorter than one week, the main transac-

tions of which are being overnight. Therefore, if some banks suffer the liquidity shocks, the impact

will spillover through the markets almost instantaneously, and it could subsequently damage the

financial systems as well as the real economy. The global financial crisis during 2007-2008 is an

obvious evidence that many financial institutions were in liquidity shortage and volumes traded in

the markets were sharply reduced. This remarkably triggered the systemic liquidity risk, causing

further damages to the financial markets.

Liquidity shocks during a financial crisis usually greatly reduce the level of interconnectedness

in the interbank market due to liquidity hoarding and increased counterparty risk, and leave banks

to manage their liquidity outside the interbank market. It is questionable whether the reduction

in the interconnectedness would help moderate the liquidity risk and stabilize the financial system

at the time when the liquidity is most needed. In addition, a banking panic can cause withdrawals

of funds which will worsen the situation. There are two main questions we try to answer in this

research. The first question is what is the optimal policy for liquidity control of a bank in the

banking system that is subject to different sources of liquidity risk including (i) the idiosyncratic

shocks from daily deposits and withdrawals, (ii) systemic shocks such as bank runs, (iii) reduction

in the interconnectedness in the interbank market during a crisis, and (iv) panic-triggered liquidity

outflows following large shocks? An answer to this question will provide some useful guideline

for banks to manage their liquidity risk, not only in the crisis times, but also during the normal

times.

The second question concerns the risk of the banking system: how much each of the four

sources of liquidity risk contributes to the increase in the systemic risk of the banking system?

Regulators and policy makers should plan for possibilities of such liquidity risk, and develop

related preventive measures and risk mitigation plans. The answer of this research question

would provide some useful insights for the regulators and policy makers in developing effective

policies.

To answer the main research questions, we develop a novel interbank liquidity network model

that accounts for all of the four sources of liquidity risk. This extends greatly from the optimal

liquidity control literature in which banks are only subject to liquidity risk from daily deposits and

withdrawals. In particular, we allow the market conditions to switch between a normal regime and

a crisis regime in which the level of interconnectedness differs. This enables us to model a reduction

in the interconnectedness in the interbank market during a crisis regime, and study its effect on

the optimal liquidity control policy of banks as well as the effect on systemic risk of the banking

2



system. Our interconnectedness is measured by two factors: the interbank exposures (transaction

sizes) between banks, and the network topology (connectivity). We also allow random liquidity

shocks which can cause a sharp reduction in the banks’ liquidity. We consider two types of shocks:

within-regime shocks and regime-transition shocks. The within-regime shocks are shocks that do

not result in a change in the market regime, while regime-transition shocks not only cause a

reduction in the banks’ liquidity, but also lead to a change in the market regime. The latter

can be used to model a systemic bank run which is followed by a change from a normal market

to a crisis. We study both types of shocks and their impacts on the banks’ optimal controls

and systemic risk. Panic-triggered liquidity flows are also included in our model to represent

continuous outflows from withdrawals during a crisis period.

Our model can also be used as a tool for conducting stress testing and scenario analysis. Most

central banks have access to data such as interbank transactions and banks’ monetary reserves

and short-term liquidity. The central banks can use such data to fit our model and test various

scenarios on the fitted interbank network to measure the stability and fragility of the network

under different assumptions such as the size of the shock, the network topology during a crisis, or

the severity level of the panic. This will, for example, help the central banks estimate how much

the system can absorb shocks and identify banks that are systemically important. It can also

suggest which network topology and level of interbank exposure are appropriate during a normal

and a crisis regime.

The rest of the paper is organized as follows: Section 2 provides a literature review. Section 3

describes our interbank network model, formulates the optimal control problems, and character-

izes the optimal control policy. We study a special case of a large homogeneous complete network

with one regime in Section 4. We extend our analysis to a core-periphery network with numerical

examples in Section 5. Section 6 analyzes the implications on the systemic risk of the interbank

network. Section 7 discusses policy implications and concludes the study.

2 Literature review

Interbank markets play a key role in liquidity management for the banking system, but at

the same time create channels of shock transmission between banks. A liquidity shock at one

bank can spread to the other banks in the network, which can eventually lead to a systemic

loss. There is a growing literature about the relation between the stability of financial systems

and the degree of network interconnections. Allen and Gale (2000) and Freixas et al. (2000)

propose theoretical frameworks to explain contagion in financial networks in which banks are

interconnected via interbank exposures. Their findings suggest that the fragility of the financial

system depends on network structure. In particular, Allen and Gale (2000) conclude that the

complete (or fully-linked) network helps alleviate financial vulnerability as the risk sharing on
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more counterparties reduces the magnitude of the default contagion and non-distressed banks

can provide excess liquidity to the system. Nier et al. (2007) also show that a high degree of

interconnections in the banking system could enhance the ability to absorb shock. Other studies,

however, suggest that densely interbank interconnectedness could also promote instability in the

financial system due to adverse amplification of shock. So limited interconnectedness could handle

the distress propagation in banking system (see, for example, Gai et al. (2011), Mistrulli (2011),

and Blume et al. (2011, 2013)). Acemoglu et al. (2015) analyze the network stability conditional

on a shock, and show that when the shock is small, a more densely connected network provides

better stability due to risk-sharing benefits, while when the shock is large, the dense connection

creates fragility of the network by propagating shocks throughout the network. This is consistent

with the experiment of Gai and Kapadia (2010) who report that financial networks are robust-

but-fragile. Stiglitz (2010) has a similar conclusion that financial integration can increase the

risk of adverse contagion in the event of a large negative shock, and views the diversification and

contagion as two different sides of the same coin. Hence, the network topology seems to play

a crucial role on the system stability, and its role can be changed depending on the size of the

shock. For a recent literature survey related to financial contagion, see Glasserman and Young

(2016).

Our study also focuses on shifts in the network’s interconnectedness between normal and crisis

regimes. Martinez-Jaramillo et al. (2014) find that the topology of the exposures network in the

Maxican interbank market changed after the failure of Lehman Brothers. Affinito and Pozzolo

(2017) use the eigenvector centrality as a measure of interconnectedness, which depends on the

number of the strength of the connections, and conclude that after the 2007 liquidity crisis, there

was a marked reduction of the relative interconnectedness of the Italian banking sector. In ad-

dition, they find that the system recovered its patterns in the following years. Brunetti et al.

(2019) study the changes in the interconnectedness between European banks around the 2008

financial crisis. They find that the interconnectedness of the physical network based on the inter-

bank transactions markedly decreased during the crisis. The results are robust to the measures

of the interconnectedness, which include the degree, closeness, clustering coefficient, eigenvector

centrality, and largest strongly connected component. Similarly, Calomiris et al. (2019) report

that the U.S. interbank network was collapsed during the Great Depression. They also find that

the establishment of the Federal Reserve reduced banks’ incentive to maintain capital and cash

buffer as they expected helps from the Fed during the critical time, and this likely contributed to

the banking system’s vulnerability to contagion during the Depression. Gofman (2017) studies

the impact of interconnectedness restriction on the system stability and efficiency, and finds that

restricting the interconnectedness reduces trading efficiency but increases the stability, although

the results are not monotonic. However, Chiu et al. (2020) develop a model of interbank rela-

tionship in which banks could reduce the cost of trading liquidity and insure against liquidity
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shocks by maintaining their relationship. They find that interbank relationship can explain some

anomalies. This may suggest that banks are possible to maintain certain relationship even in the

bad times. In our model, we account for changes in the network’s interconnectedness between the

normal regime and the crisis regime. We model the changes by two components: the overall expo-

sures and the network topology. It is interesting to see how the changes in the interconnectedness

in the interbank markets contribute to the systemic risk when a liquidity crisis occurs.

Another focus of our study is on the analyses of optimal liquidity control in banking system

and the relation between the control policy and the interbank network. Fouque and Ichiba (2013)

introduce a dynamic stochastic model for interbank lending in the continuous time framework.

They link interbank lending activities into a dynamic of monetary reserves that follows a Feller

diffusion process. In their model, banks are assumed to control their monetary reserves by lending

and borrowing money in the interbank market. The decision to borrow or to lend money depends

on the relative level of banks’ monetary reserves. With identical lending preferences, the model

reduces to a mean-field dynamic in which the lending decision depends on the level of banks’

monetary reserves relative to the average of the monetary reserve in the system.

There are many extensions to the the mean-field models for interbank lending. Bo and Capponi

(2015) and Borovykh et al. (2018) work on derivation of weak limits of measure-valued processes

to approximate systemic risk indicators when the number of banks in the system is large and

banks are subject to jump risk, but unlike Fouque and Ichiba (2013), Bo and Capponi (2015) and

Borovykh et al. (2018) do not allow banks to optimally control their monetary reserves in their

settings. Carmona et al. (2015, 2018), and Sun (2017, 2018) study optimal monetary reserve

control problems in a banking system, in which each bank tries to control its monetary reserve

to minimize the distance between its reserve and the average of monetary reserve in the system.

Nevertheless, under the mean-field assumption, reserves tend to convert to the average of the

reserve in the system. This is not a desirable property as different banks may not necessarily

adjust their reserve levels close to the level of the reserve average in the system. Bordeleau and

Graham (2010) show that there are optimal levels of banks’ liquidity for profit maximization which

depend on the banks’ business models. Minimum reserve requirements are also different between

banks. When the average reserve level of the system drops close to or below the requirement

level, it is not sensible that banks should try to control reserves to meet the average level. In

our study, we relax this assumption and allow banks to control their liquidity towards their own

targets.

Due to the drawbacks of mean-field models, Capponi et al. (2020) derive a set of weak

limiting measured-value processes to approximate systemic risk indicators under a dynamic model

of banks’ monetary reserves extended from the mean-field case. In their model, heterogeneous

bank clusters are allowed to capture different characteristics (e.g. rates of reserve adjustment)

and network topologies are incorporated. The lending decision in this model depends on whether
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the banks’ monetary reserves stay above or below the required reserves, instead of the average

of monetary reserves in the market. In other words, if the banks’ monetary reserves are higher

(lower) than their required reserves, the banks are prone to lend (borrow) the reserves in the

interbank market. However, the model of Capponi et al. (2020) assumes that banks simply

follow this rule and there is no room for banks to adjust their reserves, for instance, in response

to worsen financial conditions. In our study, we allow banks to adjust their liquidity levels in

addition to the relationship in the interbank markets.

One important factor that is missing from the literature is the presence of systemic liquidity

shocks to the interbank markets. These shocks can be used to model, for example, a large deposit

run-off during a financial crisis. Lim and Watewai (2012) develop a regime switching model for

stock markets in which shocks on asset prices can occur simultaneously with regime shifts. We

follow this framework, and allow the regime to change following an arrival of a systemic shock in

our banking system. There are many works that use Markov regime switching and jump processes

to model changes in the market regimes and event risk, respectively, in stock markets. See, for

example, Ang and Bekaert (2002) for a model with regime shifts, Das and Uppal (2004) for a

model with Poisson jumps, and Aı̈t-Sahalia et al. (2015) for a model with Hawkes processes.

3 Optimal liquidity control in an interbank network

In this section we first describe the interbank network model of banks’ liquidity that is subject

to liquidity shocks and regime-dependent interconnectedness. Then we formulate the optimal

liquidity control problem and define the equilibrium conditions of the liquidity network. We

characterize the optimality condition using the stochastic control theory.

3.1 Interbank liquidity network model

Consider an interbank liquidity network consisting of M banks. Each bank i has a liquidity

of Xi(t) at time t. Changes in the liquidity of bank i come from 5 different sources: (i) bank’s

own control, (ii) interbank borrowing and lending, (iii) idiosyncrasy in the bank’s liquidity (such

as changes due to daily deposits and withdrawals), (iv) liquidility shocks, and (v) panic-triggered

flows. In particular, the liquidity of bank i is given by

Xi(t) = Xi(0) + Ui(t) + Ii(t) +Bi(t) + Si(t) + Pi(t) (1)

where U, I,B, S and P represent the accumulated liquidity changes from the five sources, respec-

tively. The banking system is also subject to regime shifts. Let Y (t) ∈ {1, . . . ,K} denote the

regime of the banking system at time t. These regimes could represent the state of the economy

for the banking system such as a normal state and a crisis state. In this study, we assume that
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the regime process Y (t) follows a K−state continuous-time Markov chain with transition rate

λ(y, z) from regime y to regime z.

At each time t, bank i can control its liquidity by raising or removing the liquidity at a rate

αi(t) ∈ R:

dUi(t) = αi(t)dt. (2)

For example, the bank may raise its short-term liquidity by borrowing from the central bank

(α > 0).

The interbank borrowing and lending is one of the most important channels for short-term

liquidity management. We assume that each bank i has a regime-dependent liquidity target

θi(y) > 0 which represents an optimal level of liquidity in terms of the bank’s profitability for

bank i when the regime is y. This is consistent with the findings from Bordeleau and Graham

(2010) who show empirically that there is an optimal level of liquidity for which the profit is

maximized, and that the optimal level of liquidity varies depending on the bank’s business model

and the state of the economy. We assume also that banks lend and borrow money among each

other based on three factors: their liquidity levels relative to their targets, their lending preference,

and the overall network exposure. More specifically, let πi,j(y) ≥ 0 denote the lending preference

between bank i and bank j in regime y where πi,j = πj,i and πi,i = 0, and ζ(y) ≥ 0 denote the level

of the overall network exposure in regime y. The lending preference represents the relationships

between banks in the interbank market, which constitutes a network topology. A large value of

π indicates a good relationship between the banks (see, for example, Bech and Atalay (2010),

and Chiu et al. (2020) for evidence of banks maintaining relationships in the interbank markets.)

The exposure ζ(y) represents the overall level of the interbank activities in regime y. Both of the

lending preference π and overall exposure ζ jointly determine the level of the interconnectedness

of the network. The regime-dependent interconnectedness allows us to model, for example, a high

level of interbank activities with dense linkages in a good economy, and a lower level of activities

with sparse linkages during crises due to liquidity hoarding and increased counterparty risk (see

Brunetti et al. (2019) for an evidence of the reduction in the interbank activities during the 2008

financial crisis.) In summary, the rate at which bank j lends to bank i at time t when the regime

is y is given by

ζ(y)πi,j(y)
{

[Xj(t)− θj(y)]− [Xi(t)− θi(y)]
}
. (3)

Observe that bank j will lend to (borrow from) bank i if bank j has more (less) excess liquidity

(Xj − θj) than bank i.1 Hence, the interbank borrowing and lending affects the liquidity of bank

1One might argue that there should be no interbank lending between bank i and bank j if both have positive or

negative excess liquidity. In our study, we assume that banks give a high priority to maintaining a good relationship

with their peers (if πi,j > 0) and thus banks with a better condition will help banks with a worse condition regardless
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i as follows:

dIi(t) = ζ(Y (t))
M∑
j=1

πi,j(Y (t))
{

[Xj(t)− θj(Y (t))]− [Xi(t)− θi(Y (t))]
}
dt. (4)

Given πi,j = πj,i, the interbank market clearing condition
∑M

i=1 dIi(t) = 0 is always met. We

normalize the values of π so that maxi,j{πi,j} = 1 to avoid the identification problem between π

and ζ.

The third source of the liquidity changes is the idiosyncrasy of the bank, reflecting, for example,

daily deposits and withdrawals of retail customers. The idiosyncratic term of bank i is given by

dBi(t) = σi(Y (t))
√
Xi(t)dWi(t) (5)

where σi(y) > 0 is a regime-dependent volatility parameter, and Wi(t), i = 1, . . . ,M are indepen-

dent standard Brownian motions.

The liquidity of each bank is subject to systemic shocks, which can be due to, for example, bank

runs. There are two types of shocks: within-regime shocks and regime-transition shocks. The

within-regime shocks are shocks to liquidity within each regime, while regime-transition shocks

are shocks to liquidity that also trigger a regime transition. Let Nz(t) denote a Markov-modulated

Poisson process, the arrival intensity of which is λ(y, z) when the regime is Y (t−) = y. An arrival

from Nz(t) when Y (t−) = y causes a jump in the liquidity of bank i of size ηi(y, z)X(t−) and

causes a transition from the current regime y to regime z if z 6= y (regime-transition shocks), but

does not cause any regime shift when z = y (within-regime shocks). Note that λ(y, z) is also the

transition rate of the regime process Y (t) when y 6= z. We assume that these Poisson processes

are independent given the regime Y (t−). The changes in liquidity due to systemic shocks for bank

i are given by

dSi(t) =
K∑
z=1

ηi(Y (t−), z)Xi(t
−)dNz(t). (6)

This set of Poisson processes enables us to model an event such as a systemic bank run with

negative shocks to banks’ liquidity, which is followed immediately by a transition to a crisis

regime. We assume that the relative jump size ηi(y, z) is a constant in (−1,∞).

The last source of liquidity changes is from the panic-triggered flows. As the name suggested,

these flows of liquidity are caused by panic. For example, large withdrawals in a systemic bank

run can cause a panic to other depositors who consequently start to withdraw their money. At

the same time, borrowing firms may start to use their remaining credit lines. However, banks

of the sign of their excess liquidity. After all banks can use their own control α to adjust their preferred direction of

liquidity changes.
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with high liquidity may receive more deposits due to flight-to-quality effects. We model these

liquidity flows as follows

dPi(t) = µi(Y (t))[Xi(t)− θi(Y (t))]dt (7)

where µi(y) ≥ 0 is the proportional rate of the flow to bank i when the regime is y. Note that

a positive value of µi during the crisis regime can be use to imply a flight-to-quality effect which

causes a reduction in the liquidity of the banks whose excess liquidity is negative, and an increase

in the liquidity of the banks whose excess liquidity is positive.

Putting everything together, we have the following dynamic of the liquidity of bank i

dXi(t) = αi(t)dt+ ζ(Y (t))
M∑
j=1

πi,j(Y (t))
{

[Xj(t)− θj(Y (t))]− [Xi(t)− θi(Y (t))]
}
dt

+ σi(Y (t))
√
Xi(t)dWi(t) +

K∑
z=1

ηi(Y (t−), z)Xi(t
−)dNz(t)

+ µi(Y (t))[Xi(t)− θi(Y (t))]dt. (8)

Finally, we assume that the Brownian motions Wi(t), i = 1, . . . ,M are independent of the Poisson

processes Nz(t), z = 1, . . . ,K.

The effect of liquidity hoarding during a crisis regime modelled by the regime-dependent in-

terconnectedness together with the flight-to-quality effect can jeopardize banks with low liquidity

during a crisis regime. One of our focuses is to study the impacts of these effects on the banks’

optimal liquidity controls in both normal and crisis regimes, as well as the corresponding systemic

risk of the banking system.

3.2 Liquidity control problems

We assume that each bank i controls its liquidity through αi to minimize its expected dis-

counted running cost over an infinite horizon. To proceed, define a complete filtered probability

space (Ω,F , {Ft}t≥0,P) that satisfies usual conditions on t ∈ [0,∞) on which M−dimensional

standard Brownian motion W (t) = [W1(t), . . . ,WM (t)]′ and K−dimensional Markov modulated

Poisson processes N(t) = [N1(t), . . . , NK(t)]′ are defined. Let X(t) = [X1(t), . . . , XM (t)]′ denote

the vector of banks’ liquidity. Let α−i = [α1, . . . , αi−1, αi+1, . . . , αM ]′ denote the vector of strate-

gies of all bank j 6= i. The problem of each bank i is to find the best response strategy αi that

minimizes the expected total discounted cost:

Ji(αi;α−i, x, y)

= E
[ ∫ ∞

0
e−δi(Y (t))tfi(αi(t), Xi(t), Y (t))dt

∣∣∣∣α−i, X(0) = x, Y (0) = y

]
(9)
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where X(t) follows the dynamic given by (8) under the strategy (αi, α−i), δi(y) > 0 is the discount

rate in regime y for bank i, and fi is the running cost for bank i and is given by

fi(αi, xi, y) =
1

2
α2
i − bi(y)αi(θi(y)− xi) +

qi(y)

2
(θi(y)− xi)2 (10)

where bi(y) ≥ 0 with bi(y)2 < qi(y) to ensure that fi is strictly convex in (αi, xi) for each regime

y ∈ {1, . . . ,K}. The first term in (10) represents the cost of adding or removing liquidity through

borrowing from or lending to a party outside the interbank market (e.g. borrowing from the

central bank). The second term represents the incentive of the bank to control the liquidity closer

to the target θi. For example, when Xi(t) < θi(Y (t)), raising the liquidity with αi(t) > 0 can

reduce the running cost. To give such an incentive, the regulator or the central bank may impose

lower fees on transactions that could raise the bank’s liquidity such as lowering a lending rate

with the central bank. The regulator or the central bank may prefer that banks maintain their

liquidity at their ideal liquidity levels θ to generate the highest (risk-adjusted) profits to reduce

the insolvency risk. The third term represents the loss of profit due to a deviation from the best

target θ. On one hand, holding too less liquidity increases the credit risk, and hence it could lead

to a higher expected cost of bankruptcy, as well as a higher financing cost. On the other hand,

holding too much liquidity creates opportunity costs as banks have less ability to extend credit

or invest in higher-yield assets. A quadratic running cost is also used by Sun (2017, 2018) and

Carmona et al. (2015, 2018) in the context of mean-field models. Note that under the assumption

that bi(y)2 < qi(y), fi(αi, xi, y) ≥ 0, and fi(αi, xi, y) = 0 if, and only if, xi = θi(y) and αi = 0.

So banks have to find a balance between keeping their liquidity levels close to their targets and

keeping the cost of controlling their liquidity as low as possible.

Given the strategies of the other banks α−i, the optimal strategy for bank i denoted by α̂i

can be derived from the Hamilton-Jacobi-Bellman (HJB) equation using the stochastic control

theory, which will be given below. To further characterize an equilibrium behavior of the optimal

control α̂ = [α̂1, . . . , α̂M ]′ and their associated liquidity processes X̂(t) = [X̂1(t), . . . , X̂M (t)]′, we

focus on the Markov-Nash equilibrium in which only Markov strategies are considered (Sun (2017,

2018) and Carmona et al. (2015) also considers a Markov-Nash equilibrium). In particular, let

Ai denote the set of all admissible Markov policies of αi satisfying the integrability condition

E
[∫ T

0
|αi(t)|2dt

]
<∞, ∀T > 0. (11)

The policy α̂ = [α̂1, . . . , α̂M ]′ with α̂j ∈ Aj , j = 1, . . . ,M is a Markov-Nash equilibrium if

Ji(α̂i; α̂−i, x, y) = inf
αi∈Ai

Ji(αi; α̂−i, x, y) (12)

for all i = 1, . . . ,M and (x, y) ∈ [0,∞)M × {1, 2, . . . ,K}.
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3.3 Optimality conditions

First, we write the dynamic of vectors of liquidity levels X(t) = [X1(t), . . . , XM (t)]′ as follows:

dX(t) = α(t)dt+ ζ(Y (t))Π(Y (t)) [X(t)− θ(Y (t))] dt+ σ(Y (t))D(X(t))dW (t)

+
K∑
z=1

η(Y (t−), z)X(t−)dNz(t) + µ(Y (t))[X(t)− θ(Y (t))]dt (13)

where

α(t) = [α1(t), . . . , αM (t)]′

Π(y) =


−
∑

j 6=1 π1,j(y) π1,2(y) · · · π1,M (y)

π2,1(y) −
∑

j 6=2 π2,j(y) · · · π2,M (y)
...

. . .

πM,1(y) πM,2(y) · · · −
∑

j 6=M πM,j(y)


θ(y) = [θ1(y), . . . , θM (y)]′

σ(y) =


σ1(y) 0 · · · 0

0 σ2(y) · · · 0
...

. . . 0

0 0 · · · σM (y)



D(x) =



√
x1 0 · · · 0

0
√
x2 · · · 0

...
. . . 0

0 0 · · · √xM



η(y, z) =


η1(y, z) 0 · · · 0

0 η2(y, z) · · · 0
...

. . . 0

0 0 · · · ηM (y, z)



µ(y) =


µ1(y) 0 · · · 0

0 µ2(y) · · · 0
...

. . . 0

0 0 · · · µM (y)

 .
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Define the value function of bank i at a Markov-Nash equilibrium by

Vi(x, y) = Ji(α̂i; α̂−i, x, y) (14)

where α̂1, . . . , α̂M are the optimal controls at the equilibrium. The optimality conditions for the

value functions Vi(x, y) for each i = 1, . . . ,M and (x, y) ∈ [0,∞)M × {1, . . . ,K} are given by the

Hamilton-Jacobi-Bellman (HJB) equation:

min
αi

{
∇xVi(x, y)′

[
α̂(i,−i)(x, y) + ζ(y)Π(y)(x− θ(y)) + µ(y)(x− θ(y))

]
+

1

2
tr
(
∇2
xxVi(x, y)σ(y)2D(x)2

)
+

M∑
z=1

λ(y, z) [Vi(x+ η(y, z)x, z)− Vi(x, y)]

+
1

2
α2
i − bi(y)αi[θi(y)− xi] +

1

2
qi(y)[xi − θi(y)]2 − δi(y)Vi(x, y)

}
= 0 (15)

where the values of Vi(x, y) have to be solved simultaneously for all i ∈ {1, . . . ,M} and (x, y) ∈
[0,∞)M × {1, . . . ,K}, and α̂(i,−i)(x, y) = [α̂1(x, y), . . . , α̂i−1(x, y), αi, α̂i+1(x, y), . . . , α̂M (x, y)]′.

The optimal liquidity control for bank i when X(t) = x and Y (t) = y is given by

α̂i(x, y) = bi(y)(θi(y)− xi)−
∂Vi(x, y)

∂xi
. (16)

The first term is to minimize the current running cost, while the second term is to minimize the

future cost. Observe that, in general, the optimal control of bank i depends on the liquidity level

of every bank in the system, as well as the current regime.

It can be shown that the value function of each bank i is of the following form:

Vi(x, y) =
1

2
Ai(y) +Bi(y)′x+

1

2
x′Ci(y)x (17)

where Ai(y) ∈ R, Bi(y) ∈ RM and Ci(y) is an M−dimensional symmetric matrix for y = 1, . . . ,K.

Substituting Vi(x, y) in (17) into the HJB equation (15), we have Ai(y), Bi(y) and Ci(y) are the

12



solution of the following system of equations for i = 1, . . . ,M and y = 1, . . . ,K:

0 =
1

2

∑
z 6=y

λ(y, z) [Ai(z)−Ai(y)]− 1

2
δi(y)Ai(y) + θ(y)′ [b(y)− ζ(y)Π(y)− µ(y)]Bi(y)

−Bi(y)′

∑
j 6=i

ejjBj(y)

− 1

2
Bi(y)′eiiBi(y)− 1

2
θi(y)2

[
bi(y)2 − qi(y)

]
(18)

0 =−

∑
j 6=i

Cj(y)ejj

Bj(y)− Ci(y)

∑
j 6=i

ejjBj(y)

− Ci(y)eiiBi(y)

+

M∑
z=1

λ(y, z) [(I + η(y, z))Bi(z)−Bi(y)]− [b(y)− ζ(y)Π(y)− µ(y)]′Bi(y)− δi(y)Bi(y)

+
1

2
σ(y)2

M∑
j=1

ejjCi(y)ejj1 + Ci(y) [b(y)− ζ(y)Π(y)− µ(y)] θ(y) +
[
b(y)2 − q(y)

]
eiiθ(y)

(19)

0 =
1

2
Ci(y)eiiCi(y)− Ci(y)

M∑
j=1

ejjCj(y) +
1

2

K∑
z=1

λ(y, z)
[
(I + η(y, z))′Ci(z)(I + η(y, z))− Ci(y)

]
− Ci(y)

[
b(y)− ζ(y)Π(y)− µ(y) +

1

2
δi(y)I

]
− 1

2

[
b(y)2 − q(y)

]
eii (20)

where ejj is anM×M matrix of zeros except the (j, j) entry being one, 1 is anM−dimensional vec-

tor of ones, b(y) and q(y) are the diagonal matrices with diagonal elements being b1(y), . . . , bM (y),

and q1(y), . . . , qM (y), respectively.

The system of equations (18) - (20) for i ∈ {1, . . . ,M}, y ∈ {1, . . . ,K} cannot be solved

explicitly in the general case. To study the optimal control policy and the equilibrium of the

network, we next consider a special case in which the optimal control at the equilibrium can be

solved explicitly. Then we use a numerical method to solve (18) - (20) for a more complex case.

4 Large homogeneous complete network with one regime

In this section we consider a special case of a single-regime interbank network in which banks

are homogeneous and all banks are connected to each other (complete network) with an equal

level of interconnectedness. More precisely, we assume that θi = θ̄, σi = σ̄, ηi = η̄, µi = µ̄, bi =

b̄, qi = q̄, δi = δ̄ and πi,j = 1 for all i, j = 1, . . . ,M and j 6= i. Furthermore, we will consider the

case of a large network when the number of banks M →∞. Consequently, we set

ζ =
ζ̄

M − 1
(21)
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for some constant ζ̄ so that the total level of interconnectedness of each bank, which is measured

by the ζ
∑

j 6=i πi,j , remains the same at ζ̄, independent of the number of banks in the network.

The dynamic of the liquidity of bank i given by (8) is now simplified to

dXi(t) = αi(t)dt+ ζ̄[X̄−i(t)−Xi(t)]dt+ σ̄
√
Xi(t)dWi(t) + η̄Xi(t

−)dN(t) + µ̄[Xi(t)− θ̄]dt (22)

where

X̄−i(t) =
1

M − 1

∑
j 6=i

Xj(t) (23)

denotes the average liquidity level of all banks except bank i, or the peer’s average of bank i.

Although this simple case does not allow us to study the effect of reduction in the intercon-

nectedness during a crisis regime, or the effect of panic-triggered liquidity outflows following a

large shock, it will provide us some structural results for the optimal control policy when banks

encounter idiosyncratic and systemic shocks, as well as a flight-to-quality effect. The results will

be useful when we consider a more complex network where explicit solutions are not available.

4.1 Value functions

We first consider a system of M banks where M < ∞. We use Vi(x) to denote the value

function of bank i when the vector of liquidity levels is equal to x as we have only one regime.

Under this homogeneous complete network assumption, the HJB equations reduce to

min
αi

{ M∑
j=1

∂Vi(x)

∂xj

(
αi1j=i + α̂j(x)1j 6=i + ζ̄[x̄−j − xj ] + µ̄[xj − θ̄]

)
+

1

2

M∑
j=1

∂2Vi(x)

∂x2
j

σ̄2xj

+ λ [Vi(x+ η̄x)− Vi(x)] +
1

2
α2
i − b̄αi(θ̄ − xi) +

1

2
q̄(xi − θ̄)2 − δ̄Vi(x)

}
= 0 (24)

where 1A is an indicator function taking value 1 if A is true and 0 otherwise, and α̂1(x), . . . , α̂M (x)

simultaneously solve (24) for all i = 1, . . . ,M . This result is similar to the mean-field approach

where banks compares its liquidity level with the network’s average. Consequently, the value

function of bank i can be defined as a function of its own liquidity xi and the average of all other

banks’ liquidity x̄−i:

Vi(x) ≡ Vi(xi, x̄−i) =
1

2
γ1(xi − θ̂)2 +

1

2
γ2(x̄−i − xi)2 +

1

2
γ3(x̄−i − θ̃)2 + γ4 (25)

for some constants γ1, γ2, γ3, γ4, θ̂ and θ̃. Under the limiting case when the number of banks

M →∞, we are able to derive their values.
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Proposition 4.1. Suppose that q̄ > b̄2. As M →∞, we have

γ1 =

√(
β̄ +

ζ̄

2

)2

+ q̄ − b̄2 − β̄ − ζ̄

2
(26)

γ2 =

√(
β̄ + ζ̄

)2
+ q̄ − b̄2 −

√(
β̄ +

ζ̄

2

)2

+ q̄ − b̄2 − ζ̄

2
(27)

γ3 =
ζ̄γ1

2(γ1 + β̄)
(28)

γ4 =
1

2δ̄

{
− γ2

1(θ̂ − θ̄)2 − 2γ1γ3(θ̂ − θ̄)(θ̃ − θ̄) + (γ1 + γ2)σ̄2θ̄

+ λη̄θ̄
[
γ1

(
η̄θ̄ − 2(θ̂ − θ̄)

)
+ γ3

(
η̄θ̄ − 2(θ̃ − θ̄)

)]}
− γ1

2
(θ̂ − θ̄)2 − γ3

2
(θ̃ − θ̄)2 (29)

θ̂ = θ̄ +
−θ̄λη̄(η̄ + 1)− 1

2 σ̄
2
(

1 + γ2
γ1

)
γ1 + β̄ + ζ̄ + 1

2λη̄
2 + δ̄

2

(30)

θ̃ = θ̄ +
−θ̄λη̄(η̄ + 1) + (γ1 + 2β̄)(θ̂ − θ̄)

γ1 + β̄ + 1
2λη̄

2 + δ̄
2

(31)

where

β̄ = b̄− µ̄− 1

2
λη̄(η̄ + 2) +

δ̄

2
. (32)

Proof. Substitute the value function (25) and its derivatives in the HJB equation (24) to obtain

a system of equations. The results are obtained from solving the system of equations.

So the minimum total discounted cost depends on three types of distances: (i) distance between

xi and θ̂, (ii) distance between x̄−i and xi, and (iii) distance between x̄−i and θ̃. From our

assumption that q̄ > b̄2, we can see that γ1 > 0 and it is not difficult to show that γ2 ≤ 0. If we

assume further that β̄ ≥ 0, which is true if b̄ ≥ µ̄ and η̄ ≤ 0, then γ3 ≥ 0. Interestingly, the first

distance is the distance between the current liquidity xi and an adjusted target θ̂ instead of its

original target θ̄. This difference is related to the notion of precautionary liquidity that suggests

banks to hold liquidity more or less than their original targets. Also, the fact that γ2 ≤ 0 is

related to the notion of liquidity provision for the interbank relationship, in which banks that are

net liquidity providers should raise their liquidity from outside the interbank network to increase

the liquidity in the system. We discuss these two notions in more details in the next section. We

finish this section with the following proposition.

Proposition 4.2. Suppose that q̄ > b̄2. Then the following results hold:

(i) γ1 > 0

(ii) γ2 ≤ 0 where γ2 = 0 if, and only if, ζ̄ = 0.

(ii) If β̄ ≥ 0 then γ3 ≥ 0 where γ3 = 0 if, and only if, ζ̄ = 0.
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4.2 Optimal liquidity control

Based on the value function (25) and the optimal control structure (16), the optimal control

for bank i at the equilibrium is given by

α̂i(xi, x̄−i) = b̄(θ̄ − xi) + γ1(θ̂ − xi) + γ2(x̄−i − xi). (33)

The first term in (33) comes directly from the second term in the running cost (10), while the

second and the third terms in (33) come directly from the value function (25). The first two

terms suggest that the bank should control its liquidity toward some fixed targets. Combining

these two terms, we can rewrite the optimal control (33) as follows:

α̂i(xi, x̄−i) = (b̄+ γ1)
(
[θ̄ + ∆θ̄]− xi

)
+ γ2(x̄−i − xi) (34)

where

∆θ̄ = [θ̂ − θ̄]
(

γ1

γ1 + b̄

)
=
−θ̄λη̄(η̄ + 1)γ1 − 1

2 σ̄
2 (γ1 + γ2)

(γ1 + b̄)(γ1 + β̄ + ζ̄ + 1
2λη̄

2 + δ̄
2)
. (35)

That is, the bank should control its liquidity toward its original target θ̄ plus a precautionary

liquidity ∆θ̄ with a total adjustment speed of b̄ + γ1. As mentioned earlier, the precautionary

liquidity comes from the difference between the original target θ̄ and the adjusted target θ̂. It

also depends on the ratio γ1/(γ1 + b̄) which measures the relative importance between the future

cost through γ1 and the current running cost through b̄. Without the future cost, γ1 = 0 and it

is optimal for the bank to drive its liquidity level toward its original target θ̄ at the speed of b̄

to balance the controlling cost from the term 1
2α

2
i and the reward from the term −b̄αi(θ̄ − xi) in

the cost function (10). However, the bank has to consider the future cost and adjust its target to

account for possible uncertainties such as idiosyncrasy from daily deposits and withdrawals, and

systemic liquidity shocks that could cause its liquidity level to deviate from its optimal path. We

refer to this new target θ̄ + ∆θ̄ as the optimal target θ̄∗. The bank also increases the adjustment

speed from b̄ to b̄ + γ1 to bring its liquidity close to the optimal target faster, which will help

reduce the cost bank has to pay in the future as long as its liquidity level is still not at the original

target from the term q̄
2(θ̄ − xi)2 in (10).

To further understand the precautionary liquidity, let’s consider the case when the relative

size of the liquidity shock η̄ is negative, and the incentive parameter b̄ is greater than the flight-

to-quality parameter µ̄. Under these assumptions, the expression in (35) implies that bank i

should adjust its target upward due to the shock term −θ̄λη̄(η̄ + 1)γ1 (positive precautionary)

and it should adjust the value downward due to the volatility term −1
2 σ̄

2(γ1 + γ2) (negative

precautionary). Intuitively, as liquidity shocks are negative, the bank should hold extra liquidity

so that once a shock occurs, its liquidity level would not be too far away from its original target.

Observe further that −η̄(η̄ + 1) increases as the shock size η̄ goes from 0 down to −0.5 and it
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decreases as the shock size goes down from −0.5 to −1. This implies that bank should maintain

higher liquidity as the relative shock size becomes larger in magnitude upto the point where the

shock size is equal to −50%. This is to make sure that when a shock occurs, the liquidity level

of the bank will not be too low relatively to its original target θ̄. However, if the shock size gets

larger than −50% in magnitude, the bank should not further increase the level of its target, but

it should hold less precautionary liquidity compared to that when the shock size is −50%. The

reason is that there is no benefit of keeping the liquidity level too high if a jump will wipe out

most of it.

On the other hand, the volatility term suggests that bank should maintain its liquidity lower

than its original target θ̄. This term comes from the fact that the volatility of the liquidity

depends on the liquidity level through the term
√
Xi(t). So banks have an incentive to keep the

liquidity lower than their original targets θ̄ to reduce the volatility. This adjustment term due to

volatility will disappear if the volatility term in (8) does not depend on X(t).

The last term in (34) suggests the bank to hold liquidity provision for interbank relationship.

More specifically, assuming ζ̄ > 0, when the average liquidity in the network is lower than the

bank’s liquidity (equivalently x̄−i < xi), the interbank relationship given in (22) demands bank

i to be a net liquidity provider. To server this role, it is optimal for bank i to raise its liquidity

from outside the network from the term γ2(x̄−i−xi) in (34) which is positive. On the other hand,

when the average liquidity in the network is higher than bank i’s liquidity (equivalently x̄−i > xi),

the term γ2(x̄−i − xi) is negative, implying that bank i should hold negative liquidity provision

to reduce the liquidity in the system and at the same time act as a net borrower in the interbank

network as demanded from the interbank relationship in (22). The size of the liquidity provision

depends on how much bank i is expected to lend to/borrow from its peer banks (x̄−i − xi) and

the coefficient γ2. We refer to γ2 as the proportional liquidity provision. In this section in which

all banks are homogeneous, we simply call it liquidity provision.

Now observe from (22) that the total level of interconnectedness of each bank is equal to

ζ̄. When banks hold liquidity provision for the interbank relationship, the total level of the

interconnectedness reduces to

ζ̄ + γ2 =
ζ̄

2
+

√(
β̄ + ζ̄

)2
+ q̄ − b̄2 −

√(
β̄ +

ζ̄

2

)2

+ q̄ − b̄2 > 0. (36)

It is easy to see that ζ̄/2 ≤ ζ̄ + γ2 ≤ ζ̄. That is, banks choose to use liquidity provision to reduce

the total level of interconnectedness by no more than 50%. Recall that under the cost function

(10), banks try to keep their liquidity levels close to their targets as much as they can, and at the

same time they try not to control their liquidity too much to keep the cost of adding or removing

liquidity by borrowing from or lending to a party outside the interbank system as small as possible.

The role of the liquidity provision for the interbank relationship is to reduce the impact from the

interbank relationship on the liquidity level so that banks can control their liquidity levels more
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effectively. We now consider the effects of the interconnectedness levels, systemic liquidity shocks

and the flight-to-quality flows on the precautionary liquidity and liquidity provision terms.

4.3 Effect of interconnectedness level

As the interconnectedness level ζ̄ increases, the impact from the interbank relationship in-

creases. One might think that it is optimal for banks to hold more liquidity provision to reduce

this impact, and increase the adjustment speed toward the optimal target to ensure that the

liquidity levels are not too far from the targets. However, we show that it is optimal for banks to

reduce the adjustment speed b̄+ γ1, and when the interconnectedness level is sufficiently high, it

is optimal for banks to hold less liquidity provision as well.

Proposition 4.3. Suppose q̄ > b̄2. Then the following results hold:

(i) γ1 is decreasing in ζ̄.

(ii) There exists ζ∗ > 0 such that γ2 is decreasing in ζ̄ on [0, ζ∗) and it is increasing in ζ̄ on

(ζ∗,∞).

(iii) Suppose η̄ < 0 and b̄ > µ̄.

(a) If −θ̄λη̄(η̄ + 1) < σ̄2

4 , then ∆θ̄ < 0 and is increasing in ζ̄.

(b) If −θ̄λη̄(η̄ + 1) ≥ σ̄2, then ∆θ̄ > 0 and is decreasing in ζ̄.

(iv) The limits of γ1, γ2 and ∆θ̄ as ζ̄ →∞ are zero.

Proof. Consider

∂γ1

∂ζ̄
=

1

2

 β̄ + ζ̄
2√(

β̄ + ζ̄
2

)2
+ q̄ − b̄2

− 1

 < 0, (37)

which proves (i). Now consider

∂γ2

∂ζ̄
=

1

2

 β̄ + ζ̄√
(β̄ + ζ̄)2 + q̄ − b̄2

−
β̄ + ζ̄

2√
(β̄ + ζ̄

2)2 + q̄ − b̄2

− 1

2

[
1− β̄ + ζ̄√

(β̄ + ζ̄)2 + q̄ − b̄2

]
. (38)

It can be seen that ∂γ2
∂ζ̄

< 0 when ζ̄ = 0, and that ∂γ2
∂ζ̄
→ 0 as ζ̄ → ∞. Now consider the second

order derivative:

∂2γ2

∂ζ̄2
=

q̄ − b̄2[
(β̄ + ζ̄)2 + q̄ − b̄2

]3/2 − q̄ − b̄2

4
[
(β̄ + ζ̄

2)2 + q̄ − b̄2
]3/2

. (39)
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It is not difficult to show that the equation ∂2γ2
∂ζ̄2

= 0 has one positive (ζ̄+ > 0) and one negative

(ζ̄− < 0) real roots, and that ∂2γ2
∂ζ̄2

> 0 when ζ̄ = 0 and ∂2γ2
∂ζ̄2

< 0 for sufficiently large ζ̄. So

by the continuity of ∂2γ2
∂ζ̄2

, we have ∂2γ2
∂ζ̄2

> 0 for ζ̄ ∈ [0, ζ̄+) and ∂2γ2
∂ζ̄2

< 0 for ζ̄ ∈ (ζ̄+,∞). As

a consequent, ∂γ2
∂ζ̄

is increasing in ζ̄ on [0, ζ̄+) and decreasing in ζ̄ on (ζ̄+,∞). Since ∂γ2
∂ζ̄

< 0

when ζ̄ = 0, and that ∂γ2
∂ζ̄
→ 0 as ζ̄ → ∞, the continuity of ∂γ2

∂ζ̄
implies that ∂γ2

∂ζ̄
= 0 at some

ζ∗ ∈ (0, ζ̄+). Consequently, the value of γ2 must be decreasing for ζ̄ ∈ [0, ζ̄∗) and increasing for

ζ̄ ∈ (ζ̄∗,∞). This completes the proof for (ii).

It can be shown that

∂∆θ̄

∂ζ̄
= γ1

[
A

(
θ̄λη̄(η̄ + 1) +

σ̄2

2

(
γ1 + γ2

γ1

)
B

)
+ C

(
θ̄λη̄(η̄ + 1) +

σ̄2

2

(
γ1 + γ2

γ1

))]
/D (40)

where

A =
1

2

(
γ1 + b̄

γ1 + β̄ + ζ̄
2

)(
γ1 + ζ̄ + β̄ +

1

2
λη̄2 +

δ̄

2

)
(41)

B = 2

(
γ1 + β̄ + ζ̄

2

γ1 + γ2 + β̄ + ζ̄

)
(42)

C = b̄− 1

2
(µ̄+ λη̄(η̄ + 1))

(
γ1

γ1 + β̄ + ζ̄
2

)
(43)

D = (γ1 + b̄)2

(
γ1 + β̄ + ζ̄ +

1

2
λη̄2 +

δ̄

2

)2

. (44)

It is easy to see that A > 0, D > 0 and under the assumption that η̄ < 0 and b̄ > µ̄, C > 0. It is

not difficult to show that

γ1 + β̄ + ζ̄
2

γ1 + γ2 + β̄ + ζ̄
=

√√√√√(β̄ + ζ̄
2

)2
+ q̄ − b̄2(

β̄ + ζ̄
)2

+ q̄ − b̄2
(45)

is equal to 1 when ζ̄ = 0 and it is decreasing in ζ̄ and converges to 1
2 as ζ̄ approaches infinity

when β̄ > 0 which is true if η̄ < 0 and b̄ > µ̄. Now γ1+γ2
γ1

can be written as

γ1 + γ2

γ1
=

√(
β̄ + ζ̄

2

)2
+ q̄ − b̄2 + β̄ + ζ̄

2√
(β̄ + ζ̄)2 + q̄ − b̄2 + β̄ + ζ̄

(46)

which is equal to 1 when ζ̄ = 0, decreasing in ζ̄, and converges to 1
2 as ζ̄ →∞. As a consequence,

we have γ1+γ2
γ1
∈ (1

2 , 1] and γ1+γ2
γ1

B ∈ (1
2 , 2].
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Now let’s consider the case when −θ̄λη̄(η̄ + 1) < σ̄2

4 . We have

θ̄λη̄(η̄ + 1) +
σ̄2

2

(
γ1 + γ2

γ1

)
B > − σ̄

2

4
+
σ̄2

4
= 0 (47)

θ̄λη̄(η̄ + 1) +
σ̄2

2

(
γ1 + γ2

γ1

)
> − σ̄

2

4
+
σ̄2

4
= 0 (48)

and thus from (35) and (48), we have ∆θ̄ < 0 and from (40), (47) and (48), we have ∂∆θ̄
∂ζ̄

> 0.

For −θ̄λη̄(η̄ + 1) ≥ σ̄2, we have

θ̄λη̄(η̄ + 1) +
σ̄2

2

(
γ1 + γ2

γ1

)
B ≤ −σ̄2 + σ̄2 = 0 (49)

θ̄λη̄(η̄ + 1) +
σ̄2

2

(
γ1 + γ2

γ1

)
≤ −σ̄2 +

σ̄2

2
< 0 (50)

and thus from (35) and (50) we have ∆θ̄ > 0 and from (40), (49) and (50), we have∂∆θ̄
∂ζ̄

< 0. This

completes the proof for (iii). To prove that γ1 and γ2 converge to zero as ζ̄ →∞, we use the fact

that limx→∞
√
x2 + a− x = 0 for any positive constant a. Then ∆θ̄ converges to zero as γ1 and

γ2 converge to zero.

From the above results, we can see that, when the interconnectedness level is sufficiently small

(ζ̄ < ζ∗), it is optimal for banks to increase liquidity provision for the interbank relationship as

the level of interconnectedness increases to reduce the impact of the interbank relationship, and

at the same time banks should reduce the speed of adjusting their liquidity toward their optimal

targets as the benefit of controlling their own liquidity can be less if it is going against a stronger

interbank relationship. Once the interconnectedness level is large enough (ζ̄ > ζ∗), the benefit

of reducing the interbank impact by holding liquidity provision is no longer worth the increased

cost. So it is optimal for banks to lower their liquidity provision for the interbank relationship.

Now we focus on the effect of the interconnectedness level on the precautionary liquidity for

negative shocks. When the effect from the liquidity shocks is sufficiently less than the volatility

effect (−θ̄λη̄(η̄ + 1) < σ̄2

4 ), banks always hold negative precautionary liquidity. However, when

the interconnectedness level increases, the banks’ liquidity levels are moving toward the peer

average with faster speed, and thus the effect from unexpected changes in the liquidity level

due to the volatility term quickly disappears by the interbank relationship. As a result, the

benefit from keeping the liquidity lower than the original target to reduce the volatility is less.

So banks should hold less negative precautionary liquidity. On the other hand, when the effect

from the liquidity shocks is large enough compared to the volatility effect (−θ̄λη̄(η̄ + 1) ≥ σ̄2),

banks always hold positive precautionary liquidity. However, when the interconnectedness level

increases, a bigger portion of the bank’s positive precautionary liquidity is likely to be shared to

the peer banks, and hence its benefit is less. As a consequence, banks hold less precautionary

liquidity. When the effect from the liquidity shocks and that from the volatility are not much
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different ( σ̄
2

4 ≤ −θ̄λη̄(η̄ + 1) < σ̄2), the relationship between the precautionary and the level of

interconnectedness is unclear. However, it is worth noting that the importance of the effect of

the liquidity shocks depends also on γ1, and the importance of the the effect of the volatility

depends also on γ1 + γ2 as can be seen from (35). When the interconnectedness level is low

(ζ̄ < ζ∗), γ1 and γ2 decrease as the interconnectedness level increases. So the importance of the

effect from the volatility is reduced more, and it is possible that banks hold more precautionary

liquidity as the liquidity shocks become relatively more important. Nevertheless, when the level

of interconnectedness is large enough (ζ̄ > ζ∗), γ2 becomes increasing in the interconnectedness

level, making the relative importance of the volatility effect higher. As a result, banks could

now reduce the precautionary liquidity as the interconnectedness level increases. We, in fact,

see this behavior in our numerical examples presented below. As the level of interconnectedness

level approaches infinity, all of γ1, γ2 and ∆θ̄ converge to zero, implying banks hold zero liquidity

provision and precautionary liquidity when the interbank relationship is very strong. That is,

there is no benefit to control liquidity for their own future as any benefit will be quickly shared

to their peer banks. The optimal control for the banks in that case is to focus on the current

reward as determined by the incentive parameter b̄.

4.4 Effects of systemic liquidity shocks

There are two key parameters for systemic liquidity shocks. The first is the shock arrival rate

λ̄, and second is the relative size of the shock η̄. In this section we focus on the negative shocks

η̄ ∈ (−1, 0) to represent adverse shocks such as bank runs. Also, we assume that ζ̄ > 0 when we

analyze the effect of γ2 since γ2 = 0 if ζ̄ = 0. We have the following results.

Proposition 4.4. Suppose q̄ < b̄2 and η̄ ∈ (−1, 0). Then γ1 is decreasing in the arrival rate (λ)

and the absolute shock size (|η̄|), while γ2 is increasing in the arrival rate (λ) and the absolute

shock size (|η̄|) when ζ̄ > 0. In addition, γ1 ↓ 0, γ2 ↑ 0 and ∆θ̄ → 0 as λ→∞.

Proof. It can be shown that

∂γ1

∂λ
=
η̄

2
(η̄ + 2)

1−
β̄ + ζ̄

2√(
β̄ + ζ̄

2

)2
+ q̄ − b̄2

 < 0, (51)

and that

∂γ2

∂λ
= − η̄

2
(η̄ + 2)

 β̄ + ζ̄√
(β̄ + ζ̄)2 + q̄ − b̄2

−
β̄ + ζ̄

2√(
β̄ + ζ̄

2

)2
+ q̄ − b̄2

 > 0 (52)
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if ζ̄ > 0. For η̄ ∈ (−1, 0), it can be shown that

∂γ1

∂η̄
= λ(η̄ + 1)

1−
β̄ + ζ̄

2√(
β̄ + ζ̄

2

)2
+ q̄ − b̄2

 > 0, (53)

and that

∂γ2

∂η̄
= −λ(η̄ + 1)

 β̄ + ζ̄√(
β̄ + ζ̄

)2
+ q̄ − b̄2

−
β̄ + ζ̄

2√(
β̄ + ζ̄

2

)2
+ q̄ − b̄2

 < 0 (54)

if ζ̄ > 0. To prove the limit of γ1 and γ2, note that β̄ → ∞ as λ → ∞ for η̄ < 0, and the result

follows from the fact that limx→∞
√
x2 + a− x = 0 for any positive constant a. The limit of ∆θ̄

is clear from (35) and the limits of γ1 and γ2. This completes the proof.

The above results imply that when the systemic liquidity shocks become more significant

either through a higher arrival rate or a larger negative shock size, it is optimal for banks to hold

less liquidity provision for the interbank relationship and to lower the adjustment speed toward

the optimal target. This simply comes from the fact that higher arrival rate of negative shocks or

larger negative shock sizes will reduce the liquidity banks prepare for their future, and thus the

benefit of having liquidity provision or moving faster toward the optimal target is greatly reduced.

In other words, banks choose to accept the consequences of worsen adverse shocks rather than

fighting against them because the cost of doing so is too expensive.

The relationship between the precautionary liquidity ∆θ̄ and the shock’s characteristics λ and

η̄ is complex and unclear. However, as discussed in Section 4.2, the effect of the liquidity shocks

−θ̄λη̄(η̄ + 1) is clearly increasing in λ and is large for shocks of size around −50%. The effect is

small for small absolute shock sizes (low impact) or very large absolute shock sizes (no value for

precautionary liquidity as it will be mostly gone when shocks occur). However, as the arrival rate

or the absolute size of the negative shock increases, the importance of the effect of the shocks on

the precautionary liquidity as measured by γ1 decreases. In fact, as the shock arrival rate goes to

infinity, banks hold zero liquidity provision for the interbank relationship and zero precautionary

liquidity with no additional adjustment speed. This behavior of banks may induce an increased

systemic risk of the banking system.

4.5 Effects of flight-to-quality flows

The degree of flight-to-quality effect is measured by µ̄. The higher the value of µ̄, the faster

the liquidity flows out of low quality banks and the faster the liquidity flows into high quality

banks. We have the following results.
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Proposition 4.5. Suppose q̄ > b̄2. Then γ1 is increasing in µ̄, and γ2 is decreasing in µ̄ when

ζ̄ > 0.

Proof. It can be shown that

∂γ1

∂µ̄
= 1−

β̄ + ζ̄
2√(

β̄ + ζ̄
2

)2
+ q̄ − b̄2

> 0, (55)

and that

∂γ2

∂µ̄
= −

 β̄ + ζ̄√(
β̄ + ζ̄

)2
+ q̄ − b̄2

−
β̄ + ζ̄

2√(
β̄ + ζ̄

2

)2
+ q̄ − b̄2

 < 0 (56)

if ζ̄ > 0.

The above results imply that when the flight-to-quality effect is stronger, banks hold liquidity

provision for the interbank relationship more aggressively to further reduce the impact from the

interbank relationship. They also increase the adjustment speed for their liquidity toward their

optimal targets. These actions are opposite to the case in which the arrival rate or the size of the

negative liquidity shock increases. There are three main differences between the liquidity shocks

and the flight-to-quality flows in our model. First, shocks are assumed to be negative, while the

flight-to-quality flows have both negative and positive effects. That is, banks with liquidity levels

being below their targets encounter liquidity outflows, but banks with liquidity levels being above

their targets receive liquidity inflows. So keeping the liquidity level high not only avoids the

liquidity outflows, but the banks also receive liquidity inflows. Second, the effect of the liquidity

shocks is larger when the liquidity levels of the banks are high. This is because the size of the

shock is a fixed percentage of the current liquidity level or η̄Xi(t) for a fixed η̄. On the contrary,

the flight-to-quality effect is less if the liquidity levels of the banks are close to their targets. So

banks have incentive to respond to the flight-to-quality effect by controlling their liquidity levels

to be close or even above their targets. Third, the effect of liquidity shocks tends to have less

impact for consequent shocks, but the flight-to-quality flows tend to get amplified over time. More

specifically, an arrival of a shock reduces the banks’ liquidity, and hence the absolute impact from

the next shock is likely to be smaller. On the other hand, when a bank encounters flight-to-quality

outflows, its liquidity level tends to go further below its target, and as a consequence makes the

flight-to-quality outflows larger due to a larger gap between the liquidity level and the target. As

the results of Proposition 4.5 show, the benefit for banks to respond to an increased effect of the

flight-to-quality flows more aggressively outweighs the cost.

The effect of flight-to-quality flows on the precautionary liquidity level is complex. However,

from the numerator of ∆θ̄ in (35), the importance of the liquidity shock term −θ̄λη̄(η̄ + 1) is
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measured by γ1, which is increasing in the degree of flight-to-quality effect µ̄. It can also be shown

that γ1 +γ2, which measures the importance of the volatility term 1
2 σ̄

2, is also increasing in µ̄ but

at a slower rate. Hence, we expect that, when either the shock or volatility term is sufficiently

larger than the other term, banks tend to increase the magnitude of their precautionary liquidity

levels when the flight-to-quality effect is stronger. That is, banks reinforce their precautionary

liquidity policy more in response to a higher flight-to-quality effect. We in fact observe this

behavior in our numerical examples below.

4.6 Effects of reward and penalty parameters

There are two parameters in the cost function (10). The first parameter is the incentive or

reward parameter b̄. This parameter provides a reward to any bank that controls its liquidity level

in the direction that makes it closer to the target. This could represent reductions in the lending

rates at the central bank’s lending facilities. The second parameter is the penalty parameter q̄

which penalizes any bank that has liquidity level above or below its target. This could represent

a loss in the bank’s profit due to having a sub-optimal liquidity level. However, the central bank

may impose additional fees on banks that hold liquidity above or below their targets to reinforce

the balance between the stability/resilience of the banking system and its efficiency. Hence, the

levels of b̄ and q̄ can be controlled partly or entirely by the central bank. We study their impacts

on the banks’ optimal policy and discuss some policy implications. We first present the results.

Proposition 4.6. Suppose q̄ > b̄2. Then γ1 is decreasing in b̄ and increasing in q̄, while γ2 is

increasing in b̄ and decreasing in q̄ when ζ̄ > 0. Assume further that β̄ > max(0, b̄ − ζ̄
2). Then

the following results hold.

(i) γ1 + b̄ is increasing in b̄.

(ii) If −θ̄λη̄(η̄ + 1) > σ̄2

2 then ∆θ̄ is positive and is decreasing in b̄.

(iii) If −θ̄λη̄(η̄ + 1) < σ̄2

8 then ∆θ̄ is negative and is increasing in b̄.

(iv) γ1, γ2 and ∆θ̄ converge to zero as b̄ ↑
√
q̄.

(v) As q̄ ↑ ∞, we have γ1 ↑ ∞, γ2 ↓ − ζ̄
2 and ∆θ̄ → 0.

Proof. It can be shown that

∂γ1

∂b̄
=

β̄ + ζ̄
2 − b̄√(

β̄ + ζ̄
2

)2
+ q̄ − b̄2

− 1 < 0, (57)

and that

∂γ2

∂b̄
=

β̄ + ζ̄ − b̄√(
β̄ + ζ̄

)2
+ q̄ − b̄2

−
β̄ + ζ̄

2 − b̄√(
β̄ + ζ̄

2

)2
+ q̄ − b̄2

> 0 (58)
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if ζ̄ > 0. Also, it is clear that γ1 is increasing in q̄. For γ2, it can be shown that

∂γ2

∂q̄
=

1

2

 1√(
β̄ + ζ̄

)2
+ q̄ − b̄2

− 1√(
β̄ + ζ̄

2

)2
+ q̄ − b̄2

 < 0 (59)

if ζ̄ > 0.

Now let’s consider the precautionary liquidity ∆θ̄. It can be shown that

∂∆θ̄

∂b̄
=

[
A

(
θ̄λη̄(η̄ + 1) +

σ̄2

2
B

)
+ C

(
θ̄λη̄(η̄ + 1) +

σ̄2

2

(
γ1 + γ2

γ1

))]
/D (60)

where

A =

(
(γ1 + b̄)2

γ1 + β̄ + ζ̄
2

)(
γ1 + ζ̄ + β̄ +

1

2
λη̄2 +

δ̄

2

)
(61)

B =

(
γ1 + β̄ + ζ̄

2

γ1 + γ2 + β̄ + ζ̄

)(
γ1 + γ2 + b̄

γ1 + b̄

)
(62)

C = γ1

(
2γ1 + ζ̄ + β̄ + b̄+

1

2
λη̄2 +

δ̄

2

)(
β̄ + ζ̄

2 − b̄
γ1 + β̄ + ζ̄

2

)
(63)

D = (γ1 + b̄)2

(
γ1 + β̄ + ζ̄ +

1

2
λη̄2 +

δ̄

2

)2

. (64)

It is clear that D > 0. Now if β̄ > max(0, b̄ − ζ̄
2), then it can be shown that A > 0 and C > 0.

From the proof of Proposition 4.3 we know that

γ1 + β̄ + ζ̄
2

γ1 + γ2 + β̄ + ζ̄
=

√√√√√(β̄ + ζ̄
2

)2
+ q̄ − b̄2(

β̄ + ζ̄
)2

+ q̄ − b̄2
(65)

is equal to 1 when ζ̄ = 0 and it is decreasing in ζ̄ and converges to 1
2 as ζ̄ approaches infinity

when β̄ > 0 which is true if µ̄ < min(b̄, ζ̄2) + δ̄
2 −

1
2λη̄(η̄ + 2). We also know that γ1+γ2

γ1
∈ (1

2 , 1].

Now observe that

γ1 + γ2 + b̄

γ1 + b̄
=

(
γ1+γ2
γ1

)
γ1 + b̄

γ1 + b̄
>

1
2γ1 + b̄

γ1 + b̄
=

1

2
+

1

2

(
b̄

γ1 + b̄

)
≥ 1

2
(66)

and that it is less than or equal to one as γ2 ≤ 0. Combining these results, we have B ∈ (1
4 , 1].

Now let’s consider the case in which −θ̄λη̄(η̄ + 1) > σ̄2

2 . Then we have

θ̄λη̄(η̄ + 1) +
σ̄2

2
B < − σ̄

2

2
+
σ̄2

2
= 0 (67)

θ̄λη̄(η̄ + 1) +
σ̄2

2

(
γ1 + γ2

γ1

)
< − σ̄

2

2
+
σ̄2

2
= 0. (68)
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So from (35) and (68), we have ∆θ̄ > 0, and from (60), (67) and (68), we have ∂∆θ̄
∂b̄

< 0.

Now consider the case in which −θ̄λη̄(η̄ + 1) < σ̄2

8 . Then we have

θ̄λη̄(η̄ + 1) +
σ̄2

2
B > − σ̄

2

8
+
σ̄2

8
= 0 (69)

θ̄λη̄(η̄ + 1) +
σ̄2

2

(
γ1 + γ2

γ1

)
> − σ̄

2

8
+
σ̄2

4
=
σ̄2

8
> 0. (70)

So from (35) and (70), we have ∆θ̄ < 0, and from (60), (69) and (70), we have ∂∆θ̄
∂b̄

> 0. Finally,

the proof for (iv) and (v) is straightforward.

Recall that banks adjust their liquidity levels toward their optimal targets with speed b̄+ γ1

where b̄ comes from the incentive or reward term in the cost function, and γ1 comes from a

component in the value function. Banks use γ1 to increase the speed above b̄ to minimize the cost

in the future. From the above results, we can see that when the incentive parameter b̄ increases,

banks increase the total adjustment speed but lower the γ1 component in response to the increase

in the b̄ component. Banks also reduce their liquidity provision as now they can obtain the

liquidity outside the interbank network at a lower cost (higher reward). When the liquidity shock

term is sufficiently higher than the volatility term in the precautionary liquidity (−θ̄λη̄(η̄ + 1) >
σ̄2

2 ), banks hold positive precautionary liquidity, but they decrease it as the incentive parameter b̄

increases. On the other hand, when the volatility term significantly dominates the liquidity shock

term (−θ̄λη̄(η̄ + 1) < σ̄2

8 ), banks hold negative precautionary liquidity, and they increase it as b̄

becomes higher. That is, banks reduce the magnitude of the precautionary liquidity level knowing

that when more liquidity is needed, it can be obtained at a low cost. That also means the benefit

of keeping the volatility low with negative precautionary liquidity is less. As the results show,

when b̄ is closing to its upper limit
√
q̄, banks simply drive their liquidity toward their original

target θ̄ at the speed of b̄ without holding any liquidity provision or precautionary liquidity. If

b̄ is large enough, this implies that banks would respond quickly to negative shocks or any type

of liquidity drop by injecting more liquidity into the system utilizing the central bank’s lending

facilities. As a result, the overall stability of the banking system may be improved as banks tend

to keep their liquidity levels at their original targets, which are now their optimal ones, but of

course, at the cost of the central bank.

Now let’s consider the effect of the penalty parameter q̄. The results show that when the

penalty of deviating from the target is high, banks implement more aggressive control policy.

Specifically, as the penalty parameter q̄ increases, banks hold more liquidity provision for the

interbank relationship, and increase the adjustment speeds toward their optimal targets to keep

their liquidity levels closer to the targets. The relationship between the precautionary liquidity

and the penalty parameter is unclear. However, as the penalty parameter q̄ approaches infinity,

banks set the optimal targets to their original targets (zero precautionary liquidity) but with

adjustment speeds approaching infinity, and hold liquidity provision at half of their total interbank
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exposures, or ζ̄
2 . In other words, if the penalty cost is large enough, banks aim to keep their

liquidity levels at their original targets using the highest adjustment speeds, and at the same

time try to reduce the impact from the interbank relationship by half. This type of banks’ control

policies should make the banking system more stable, but, unlike the case of using the reward

parameter b̄, it comes at the cost of the banks. So the question is would this excessive liquidity

control cost lead to other types of systemic risk in the banking system?

5 Core-periphery network with group homogeneity

and multiple regimes

In this section we consider a multiple-regime core-periphery interbank network with a finite

number of banks. This network consists of core and peripheral banks. Core banks represent

important banks in the interbank network and are connected to each other. Peripheral banks, on

the other hand, are smaller banks and are connected to core banks, but not any other peripheral

banks. We assume that banks of the same type are homogeneous. This group homogeneity

assumption simplifies the structure of the value functions, and hence allows us to study the

structure of the optimal controls. The interbank network is subject to changes between regimes.

We first provide the forms of the value function and the optimal control policies, and use numerical

examples with two regimes to study how the optimal liquidity controls respond to various scenarios

including (i) the changes in the interbank interconnectedness during crises due to changes in the

network topology and the overall network exposure, (ii) systemic shocks representing, for example,

bank runs, and (iii) panic-triggered flows which could represent a flight-to-quality effect. We also

study the effects of the incentive and penalty parameters on the optimal control policy. Finally,

we use simulation to study the systemic risk of the interbank network and draw some policy

implications.

5.1 Value function and optimal control

In the core-periphery network, banks are divided into two groups: core and periphery. We

assume that banks are homogeneous within each group. Specifically, let C denote the set of

core banks, and P the set of peripheral banks. We assume there are MC core banks and MP

peripheral banks, and that θi = θ̄G, σi = σ̄G, ηi = η̄G, µi = µ̄G, bi = b̄G, qi = q̄G, and δi = δ̄G for

all banks i in group G where G ∈ {C,P}. Moreover, the lending preference πij depends only

on the group of bank i and that of bank j. Let π̄C , π̄P and π̄CP denote the lending preferences

between core banks, between peripheral banks, and between a core bank and a peripheral bank,

respectively. These parameters and the network exposure ζ are regime-dependent. Under the
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group homogeneity assumption the dynamic (8) of a core bank i can be rewritten as

dXi(t) = αi(t)dt+ ζ(Y (t))(MC − 1)π̄C(Y (t))
{
X̄C−i(t)−Xi(t)

}
dt

+ ζ(Y (t))MP π̄CP (Y (t))
{

[X̄P (t)− θ̄P (Y (t))]− [Xi(t)− θ̄C(Y (t))]
}
dt

+ σ̄C(Y (t))
√
Xi(t)dWi(t) +

K∑
z=1

η̄C(Y (t−), z)Xi(t
−)dNz(t)

+ µ̄C(Y (t))[Xi(t)− θ̄C(Y (t))]dt, (71)

and that of a peripheral bank i can be rewritten as

dXi(t) = αi(t)dt+ ζ(Y (t))(MP − 1)π̄P (Y (t))
{
X̄P−i(t)−Xi(t)

}
dt

+ ζ(Y (t))MC π̄CP (Y (t))
{

[X̄C(t)− θ̄C(Y (t))]− [Xi(t)− θ̄P (Y (t))]
}
dt

+ σ̄P (Y (t))
√
Xi(t)dWi(t) +

K∑
z=1

η̄P (Y (t−), z)Xi(t
−)dNz(t)

+ µ̄P (Y (t))[Xi(t)− θ̄P (Y (t))]dt (72)

where C−i denote the set of all core banks except bank i, P−i the set of all peripheral banks

except bank i, and X̄G(t) is the average of the liquidity levels of the banks in set G. As we

can see, the group homogeneity assumption simplifies the effect of the interbank network on the

liquidity dynamic. More specifically, the interbank network effect can be summarized by the

current liquidity of the bank and the two averages: the average of the peer banks within the

same group, and the average of the banks in the other group. Under this model, we obtain the

following HJB equations: for each i ∈ C and y = 1, . . . ,K

min
αi

{∑
j∈C

∂Vi(x, y)

∂xj

(
αi1j=i + α̂j(x, y)1j 6=i + µ̄C(y)[xj − θ̄C(y)]

+ ζ(y)
[
(MC − 1)π̄C(y)(x̄C−j − xj) +MP π̄CP (y)

(
[x̄P − θ̄P (y)]− [xj − θ̄C(y)]

)])
+
∑
j∈P

∂Vi(x, y)

∂xj

(
α̂j(x, y) + µ̄P (y)[xj − θ̄P (y)]

+ ζ(y)
[
(MP − 1)π̄P (y)(x̄P−j − xj) +MC π̄CP (y)

(
[x̄C − θ̄C(y)]− [xj − θ̄P (y)]

)])
+

1

2

∑
j∈C

∂2Vi(x, y)

∂x2
j

σ̄2
C(y)xj +

1

2

∑
j∈P

∂2Vi(x, y)

∂x2
j

σ̄2
P (y)xj +

K∑
z=1

λ(y, z) [Vi(x+ η̄(y, z)x, z)− Vi(x, y)]

+
1

2
α2
i − b̄C(y)αi(θ̄C(y)− xi) +

1

2
q̄C(y)(xi − θ̄C(y))2 − δ̄C(y)Vi(x, y)

}
= 0 (73)
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and for each i ∈ P and y = 1, . . . ,K

min
αi

{∑
j∈C

∂Vi(x, y)

∂xj

(
α̂j(x, y) + µ̄C(y)[xj − θ̄C(y)]

+ ζ(y)
[
(MC − 1)π̄C(y)(x̄C−j − xj) +MP π̄CP (y)

(
[x̄P − θ̄P (y)]− [xj − θ̄C(y)]

)])
+
∑
j∈P

∂Vi(x, y)

∂xj

(
αi1j=i + α̂j(x, y)1j 6=i + µ̄P (y)[xj − θ̄P (y)]

+ ζ(y)
[
(MP − 1)π̄P (y)(x̄P−j − xj) +MC π̄CP (y)

(
[x̄C − θ̄C(y)]− [xj − θ̄P (y)]

)])
+

1

2

∑
j∈C

∂2Vi(x, y)

∂x2
j

σ̄2
C(y)xj +

1

2

∑
j∈P

∂2Vi(x, y)

∂x2
j

σ̄2
P (y)xj +

K∑
z=1

λ(y, z) [Vi(x+ η̄(y, z)x, z)− Vi(x, y)]

+
1

2
α2
i − b̄P (y)αi(θ̄P (y)− xi) +

1

2
q̄P (y)(xi − θ̄P (y))2 − δ̄P (y)Vi(x, y)

}
= 0. (74)

It can be shown that the value function of a core bank i when Xi(t) = xi, X̄C−i(t) = x̄C−i ,

X̄P (t) = x̄P and Y (t) = y is given by

V (xi, x̄C−i , x̄P , y) =
1

2
γC1 (y)(xi − θ̂C(y))2 +

1

2
γC2 (y)(x̄C−i − xi)2

+
1

2
γCP2 (y)([x̄P − θ̄P (y)]− [xi − θ̄C(y)])2

+
1

2
γC3 (y)(x̄C−i − θ̃C(y))2 +

1

2
γCP3 (y)(x̄P − θ̃CP (y))2

+
1

2
γC4 (y)([x̄C−i − θ̄C(y)]− [x̄P − θ̄P (y)])2 + γC5 (y) (75)

where γC1 , γ
C
2 , γ

CP
2 , γC3 , γ

CP
3 , γC4 , γ

C
5 , θ̂C , θ̃C and θ̃CP are regime-dependent parameters which can

be obtained from solving a system of equations similar to that of the general case (18) - (20).

Observe that the value function of a core bank i depends on six types of distance. The first two

are the distances between the current liquidity level of bank i and (i) an adjusted liquidity target

θ̂C , and (ii) the liquidity average of the other core banks X̄C−i . The next one is the difference

between the excess liquidity of the bank Xi− θ̄C and the average excess liquidity of the peripheral

banks X̄P − θ̄P . The next two are the distances between each of the averages X̄C−i and X̄P and

its reference level θ̃C and θ̃CP , respectively. The last one is the distance between the two averages

of excess liquidity X̄C−i − θ̄C and X̄P − θ̄P .

Similarly, the value function of a peripheral bank i when Xi(t) = xi, X̄P−i(t) = x̄P−i , X̄C(t) =
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x̄C and Y (t) = y is given by

V (xi, x̄P−i , x̄C , y) = =
1

2
γP1 (y)(xi − θ̂P (y))2 +

1

2
γP2 (y)(x̄P−i − xi)2

+
1

2
γPC2 (y)([x̄C − θ̄C(y)]− [xi − θ̄P (y)])2

+
1

2
γP3 (y)(x̄P−i − θ̃P (y))2 +

1

2
γPC3 (y)(x̄C − θ̃PC(y))2

+
1

2
γP4 (y)([x̄P−i − θ̄P (y)]− [x̄C − θ̄C(y)])2 + γP5 (y). (76)

From (16), we have the optimal control for a core bank i when Xi(t) = xi, X̄C−i(t) = x̄C−i ,

X̄P (t) = x̄P and Y (t) = y is

α̂i(xi, x̄C−i , x̄P , y) = bC(y)(θ̄C(y)− xi) + γC1 (y)(θ̂C(y)− xi)

+ γC2 (y)(x̄C−i(y)− xi) + γCP2 (y)([x̄P (y)− θ̄P (y)]− [xi − θ̄C(y)]) (77)

and the optimal control for a peripheral bank i when Xi(t) = xi, X̄P−i(t) = x̄P−i , X̄C(t) = x̄C

and Y (t) = y is

α̂i(xi, x̄P−i , x̄C , y) = bP (y)(θ̄P (y)− xi) + γP1 (y)(θ̂P (y)− xi)

+ γP2 (y)(x̄P−i(y)− xi) + γPC2 (y)([x̄C(y)− θ̄C(y)]− [xi − θ̄P (y)]). (78)

This implies that banks control their liquidity levels based on their liquidity levels relative to their

original targets and adjusted targets, and the differences between the deviations of their liquidity

levels from the original targets and those of the peer averages in the same group, and in the other

group. As the targets between banks can be different in this core-periphery network structure,

we explicitly call γ2 as the proportional liquidity provision for the interbank relationship.

As mentioned earlier, explicit solutions for this multiple-regime core-peripheral network model

do not exist. In the subsequent sections, we provide numerical examples, and discuss the results.

5.2 Benchmark model parameters

To study the impacts of different sources of risk on optimal control policies and systemic risk,

we consider a core-periphery network with two regimes, which are normal regime (Y = 1) and

crisis regime (Y = 2), and vary different parameter values including the network topology. In

this section we discuss how our baseline parameter values are chosen for our benchmark models.

In our study, we choose the model parameters to represent a banking system in which there

are a small number of core banks and a relatively larger number of peripheral banks, but the

interbank network exposures of the core banks significantly dominate those of the peripheral

banks. Core banks represent large banks and peripheral banks represent small banks. This

network characteristic is found in many countries. For example, Veld and Lelyveld (2014) find
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the core-periphery structure in the interbank markets of the Netherlands. In our network, we

assume that there are 4 core banks and 24 peripheral banks, so that a ratio between core and

peripheral banks is 1 : 6. We assume that the liquidity targets θ̄C and θ̄P are proportional to

the total assets of the banks. Assuming that the total asset from all of the large banks accounts

for around 85% of the banking sector, we choose θ̄C and θ̄P to be 72 and 2, respectively. We

assume further that these liquidity targets are twice as large as the required liquidity reserve, and

that the regulator sets the required liquidity reserve level, which is θ/2, to be three times of the

standard deviation of the idiosyncratic shocks from the daily deposits and withdrawals when the

liquidity is at the required reserve level during the normal times. That is, θ̄(1)
2 = 3σ(1)

√
θ̄(1)

2 .

Consequently, we set σ̄C(1) = 1
3

√
72
2 = 2 and σ̄P (1) = 1

3

√
2
2 = 1

3 . The volatility parameters σ̄ are

assumed to be doubled during crises: σ̄C(2) = 4 and σ̄P (2) = 2
3 .

We set the lending preference between core banks or π̄C to 1. The value of the lending

preference between core and peripheral banks or π̄CP is set to 1/64 so that the average interbank

exposure of a core bank is around 100 times larger than that of a peripheral bank where the

average exposure of a core bank is ζ(MC − 1)π̄C θ̄C + ζMP π̄CP (θ̄C + θ̄P )/2, and the average

exposure of a peripheral bank is ζMC π̄CP (θ̄C + θ̄P )/2. This number is in the neighborhood of

the ratio between the interbank lending of a core and a peripheral bank of Craig and Ma (2021)

(German data), and Lin and Zhang (2021) (Chinese data). As the peripheral banks are not

connected directly to each other, we set π̄P = 0. The overall network exposure or ζ is set to 2.1 so

that when the liquidity level of a core bank is not at its target, it can use the interbank network

with the other core banks to move it towards the target by reducing the distance between the

current liquidity level and the target by 80% within one quarter assuming that the liquidity levels

of all of the other core banks are always at their liquidity targets. That is, we choose ζ so that

e−ζ(MC−1)π̄C× 1
4 =

θ̄C −Xi(t+ 1
4)

θ̄C −Xi(t)
≈ 0.2. (79)

The lending preferences and the overall network exposure under the baseline model are assumed

to be the same in both regimes.

The sizes of systemic liquidity shocks or η̄ that happen when the regime transitions from the

normal regime to the crisis regime are set to −10% for core banks and −30% for peripheral banks.

This could represent a systemic bank run for which the effects on the smaller and hence viewed

as riskier banks are larger. During the crisis regime, it is assumed that within-regime shocks lead

to −1% change of the liquidity of each core bank, and it is −3% for each peripheral bank, or

10 times smaller than their respective regime-transition shocks. We assume that there are no

systemic shocks within the normal regime (η̄(1, 1) = 0) nor the regime-transition shocks when the

regime switches from the crisis regime to the normal regime (η̄(2, 1) = 0). We set the transition

rate from the normal regime to the crisis regime at λ(1, 2) = 0.5 which corresponds to an average

time in a normal regime of two years, while we set λ(2, 1) = 2 which corresponds to an average
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time in a crisis regime of half a year. The arrival rate of systemic shocks within the normal regime

is set to 0, and that within the crisis regime is set to 8 times a year.

It is important to note that the values of the targets θ̄ and the sizes of crisis-triggering shock

η̄(1, 2) and within-crisis shock η̄(2, 2) imply a larger reduction in the liquidity level of the core

banks than the peripheral banks when their liquidity levels are the their original targets at the

time when the shock occurs (|η̄C(1, 2)|θ̄C > |η̄P (1, 2)|θ̄P and |η̄C(2, 2)|θ̄C > |η̄P (2, 2)|θ̄P ). This

leads to positive liquidity demands from the core banks via the interbank markets after the

shocks. This could represent the scenario in which core banks have net positive interbank lending

balances during the normal regime while the peripheral banks hold net negative intebank lending

balances, but once the crisis occurs, the core banks stop lending and require their net borrowers

to return the borrowed liquidity. The effect continues further as within-regime shocks arrive. As

a result, we could expect to see liquidity to flow from the peripheral banks to the core banks via

the interbank market at the start of the crisis regime, as well as during the crisis regime.

The flight-to-quality effect can represent the flows of liquidity due to depositors withdrawing

their money from low-quality banks or depositing their money to high-quality banks. We set the

associated parameter µ̄ to 0 for the normal regime. For the crisis regime, the number is chosen so

that the effect of the flight-to-quality flows is equal to the effect from the within-regime shock but

with 25% smaller shock size. More specifically, consider a peripheral bank. Assume that there is

a regime change from the normal regime to the crisis regime at time t with Xi(t
−) = θ̄P . Then

the liquidity level of bank i right after the regime transition is Xi(t) = (1 + η̄(1, 2))θ̄P . The effect

from the shocks within the crisis regime over the next one month, assuming that the regime does

not change over that time period and ignoring all of the other factors in the dynamic of Xi(t),

would bring the liquidity level to Xi(t+ 1
12) = (1 + η̄(2, 2))N2(t+ 1

12
)−N2(t) × (1 + η̄(1, 2))θ̄P where

N2(t+ 1
12)−N2(t) is the number of within-regime shocks over the one-month period. With 25%

smaller shock size, we choose µ̄ so that

eµ̄P (2)× 1
12 ≈

θ̄P − E
[
(1 + 0.75η̄P (2, 2))N2(t+ 1

12
)−N2(t) × (1 + η̄P (1, 2))θ̄P

]
θ̄P − (1 + η̄P (1, 2))θ̄P

(80)

=
1− e−

1
12
λ(2,2)(−0.75η̄P (2,2))(1 + η̄P (1, 2))

−η̄P (1, 2)
. (81)

We set the value of µ̄ for the core banks equal to that for the peripheral banks in the crisis regime.

The value of q̄ determines the cost associated with a deviation of the liquidity from the target.

We choose the value of q̄ so that the total cost of taking no action and leaving the liquidity level

equal to kθ̄ for some k > 0, k 6= 1, for one year is twice as much as the total cost of moving the

liquidity level from kθ̄ back to θ̄ within one year using a constant α, ignoring the reward from the

incentive parameter b̄ and the discount rate δ̄. More precisely, the cost of leaving the liquidity
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level at kθ̄ for one year is

Costno action =

∫ 1

0

q̄

2
(θ̄ − kθ̄)2dt =

q̄

2
(1− k)2θ̄2. (82)

The constant α that takes the liquidity from kθ̄ back to θ̄ within one year is equal to α = (1−k)θ̄.

As a result, the value of Xi(t) for t ∈ [0, 1] is Xi(t) = Xi(0) + αt = kθ̄ + (1 − k)θ̄t. So the total

cost of constantly moving the liquidity back to the target is

Costconstant α =

∫ 1

0

[
1

2
((1− k)θ̄)2 +

q̄

2
(θ̄ − (kθ̄ + (1− k)θ̄t))2

]
dt =

1

2
(1− k)2θ̄2 +

q̄

6
(1− k)2θ̄2.

(83)

Assuming Costno action = 2 × Costconstant α, we obtain q̄ = 6. We use this number for all banks

and all regimes.

As the incentive parameter b̄ can be viewed as the saving in the lending rates that the central

bank provides to commercial banks through its lending facilities, we choose the value of b̄ to reflect

the risk of each bank type. We choose b̄C = 0.7 and b̄P = 0.2 which is equivalent to providing the

incentive to core banks to reduce their liquidity gap by around 50% over one year, and reduce

it by around 20% for peripheral banks: e−b̄C×1 ≈ 0.5 and e−b̄P×1 ≈ 0.8. Finally, we choose the

discount rate δ̄ = 1% for all banks and regimes. Table 1 summarizes all of the parameter values.

The above benchmark model assumes that the core-periphery structure of the interbank net-

work is preserved in the crisis regime. We refer to this as core-periphery benchmark model. Since

the interbank relationships and activities may slowdown or collapse when a systemic liquidity

crisis occurs, we introduce a no-network benchmark model to study the effects of the collapse of

the interbank network during crises by letting πij(2) = 0 for all i, j.

5.3 Optimal control under benchmark models

Table 2 reports the optimal control parameters under the core-periphery (Panel A) and no-

network (Panel B) benchmark models. Observe first that γ1 and γ2 from both models have

the same sign as those in the large homogeneous complete network with one regime discussed

in Section 4 (γ1 ≥ 0, γ2 ≤ 0). We also report the proportional precautionary liquidity ∆θ̄
θ̄

to

account for differences in the original targets of core and peripheral banks instead of ∆θ̄. Under

the core-periphery model (Panel A), core banks adjust their liquidity levels toward their optimal

targets slower than peripheral banks for both regimes mainly because the total interconnectedness

level (ζ
∑

j πi,j) of a core bank is much larger than that of a peripheral bank (7.088 for a core

bank, and 0.131 for a peripheral bank), and as a consequence, the benefit of adjusting their

liquidity levels toward their targets can be less if it goes against a peer average in a strong

interbank relationship. This is consistent with the result of the one-regime model in Section 4.

Comparing the adjustment speed γ1 between the normal and crisis regimes, we find that both
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Parameter Core banks Peripheral banks

Normal regime Crisis regime Normal regime Crisis regime

(y = 1) (y = 2) (y = 1) (y = 2)

General characteristics

M 4 4 24 24

θ̄(y) 72 72 2 2

σ̄(y) 2 4 1/3 2/3

Interbank network

π̄C(y) 1 1

π̄CP (y) 1/64 1/64 1/64 1/64

π̄P (y) 0 0

ζ(y) 2.1 2.1 2.1 2.1

Systemic shocks

η̄(1, y) 0 −0.10 0 −0.30

η̄(2, y) 0 −0.01 0 −0.03

λ(1, y) 0 0.5 1 0.5

λ(2, y) 2 8 2 8

Flight-to-quality

µ̄(y) 0 0.4 0 0.4

Objective function

q̄(y) 6 6 6 6

b̄(y) 0.7 0.7 0.2 0.2

δ̄(y) 0.01 0.01 0.01 0.01

Table 1

Parameter values of the core-periphery benchmark model
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core and peripheral banks increase their adjustment speeds upward during the crisis regime. This

is possibly to account for the effect of flight-to-quality flows in the crisis regime.

Core banks (G = C,G′ = P ) Peripheral banks (G = P,G′ = C)

Normal regime Crisis regime Normal regime Crisis regime

(y = 1) (y = 2) (y = 1) (y = 2)

Panel A: Core-periphery benchmark

γG1 (y) 0.761 0.825 2.095 2.277

bG(y) + γG1 (y) 1.461 1.525 2.295 2.477

γG2 (y) −0.274 −0.306 −0.008 −0.009

γGG
′

2 (y) −0.075 −0.084 −0.057 −0.064

∆θ̄G(y)/θ̄G(y) 0.004 0.004 0.045 0.059

Panel B: No-network benchmark

γG1 (y) 0.789 1.613 2.095 2.311

bG(y) + γG1 (y) 1.489 2.313 2.295 2.511

γG2 (y) −0.277 −0.094 −0.007 −0.002

γGG
′

2 (y) −0.074 −0.023 −0.054 −0.017

∆θ̄G(y)/θ̄G(y) 0.006 −0.002 0.034 0.045

Table 2

Optimal control policy under the core-periphery and no-network benchmark models

For the proportional liquidity provision for interbank relationship (γ2), core banks hold more

provision (proportional to the gaps of excess liquidity) for other core banks than for peripheral

banks (γC2 > γCP2 ), while it is opposite for peripheral banks (γP2 < γPC2 ) for both regimes. This

is simply because the total level of interconnectedness between core banks is higher than that

between core and peripheral banks, and there is no direct connectivity between peripheral banks.

However, peripheral banks still maintain small liquidity provision for other peripheral banks

(γP2 < 0) due to an indirect effect from other peripheral banks who lend liquidity to or borrow

liquidity from core banks and pass it through the other peripheral banks. Comparing between

the two regimes, we find that banks hold more liquidity provision during the crisis regime. Again,

this could come from the effect of flight-to-quality flows in the crisis regime.

For the proportional precautionary liquidity (∆θ̄/θ̄), we find that both types of banks hold

positive precautionary liquidity in both regimes, implying that the effect from the liquidity shock

(positive precautionary) seems to outweigh the effect from the volatility (negative precautionary).

As we can see, the proportional precautionary of the core banks is less than that of peripheral

banks because core banks have smaller relative size of liquidity shock (η̄) than peripheral banks,

but both core and peripheral banks have the same ratio of the variance to the target (σ̄2/θ̄).
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In the crisis regime, the effect of the liquidity shocks increases due to the higher arrival rate of

shocks, but at the same time the volatility is doubled. There is also an additional effect from the

flight-to-quality flows in the crisis regime. So the overall effect on the precautionary liquidity is

unclear. As it turns out, core banks hold approximately the same level of precautionary liquidity

in the normal and crisis regimes (in fact a little smaller level in the crisis regime), while peripheral

banks hold more precautionary liquidity in the crisis regime than in the normal regime.

Panel B of Table 2 reports the optimal control parameters for the no-network benchmark

model. When the interbank network collapses during the crisis regime, banks adjust their liquidity

toward their optimal targets at approximately the same speed in the normal regime, but the speed

is much faster in the crisis regime, particularly for core banks, compared to the case in which the

network structure is preserved. More specifically, the total adjustment speed b̄+γ1 for core banks

significantly increases from 1.525 in the core-periphery structure to 2.313 when the interbank

network collapses, while it increases from 2.477 to 2.511 for the peripheral banks. This result

could be explained by noting that the benefit of controlling their liquidity is more when there

is a reduction in the interconnectedness level in the crisis regime, and because the total level

of interconnectedness of the core banks is much larger than that of the peripheral banks when

the network structure is preserved, when the network collapses, the impact on the core banks is

larger.

The concerns about liquidity provision for interbank relationship in the crisis regime are also

reduced as we can see from the reduction in the magnitude of γ2. As mentioned earlier, the

liquidity needs are expected to be high given there is the flight-to-quality effect in the crisis

regime, but the interbank market cannot function in the crisis which means that there is no needs

for supplying liquidity via the interbank market. Hence, banks tend to lower their proportional

liquidity provision (γ2).

As discussed earlier, the values of the targets θ̄ and the crisis-triggering shock η̄(1, 2) im-

ply a likely larger reduction in the liquidity level of the core banks than the peripheral banks

(|η̄C(1, 2)|θ̄C > |η̄P (1, 2)|θ̄P ). This causes the liquidity in the interbank market to flow from the

peripheral banks to the core banks. When the interbank market collapses during the crisis regime,

this channel of liquidity supply of the core banks disappears, making the core banks to hold a

slightly more precautionary liquidity during the normal regime (from 0.004 to 0.006). The effect

on the peripheral banks is opposite, so they hold less precautionary liquidity in the normal regime

(reduces from 0.045 to 0.034). Finally, the proportional precautionary liquidity of both core and

peripheral banks in the crisis regime reduce when the interbank market collapses than when it

still functions, as the volatility effect becomes more important (γ2 is closer to zero).

In this section, we observe general characteristics of optimal liquidity control policies under

the benchmark models, and the effect of the change in the network topology during the crisis

for the baseline model parameters. The analysis does not yet provide some other features of
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the control policies with respect to changing risk parameters. In the next section we discuss the

sensitivities of the control policies to the changes in risk parameters associated with the models,

including the interconnectedness level ζ, the size of systemic liquidity shocks η̄ and the effect

of the flight-to-quality flows µ̄ in the crisis regime. The effects of the reward (b̄) and penalty

parameters (q̄) on the optimal control policies are also discussed.

5.4 Effects of interconnectedness level

In this section we vary the value of the overall interbank network exposure in the crisis regime

or ζ(2) from 0 to 3 times of the value in the baseline. A high level of interconnectedness could

reflect a low-friction interbank market and/or high interbank activities and commitments, while

a low level could represent liquidity hoarding during the crisis regime.

(a) Core bank (b) Peripheral bank

Figure 1. Values of proprotional liquidity provision for the interbank relationship in the crisis regime of core banks

(γC2 , γ
CP
2 ) (left) and of peripheral banks (γP2 , γ

PC
2 ) (right) associated with the core-periphery (CP) benchmark (solid

line) and the no-network (NN) benchmark (dashed line) models as a function of the overall network exposure in the

crisis regime (ζ(2)).

Figure 1 shows the proportional liquidity provision in the crisis regime for the interbank

relationship (γ2) for core banks (left) and peripheral banks (right) for both core-periphery (CP)

benchmark model (solid lines) and no-network (NN) benchmark model (dashed lines). In the NN

model, the lending preferences in the crisis regime πij(2) = 0 for all i, j and therefore the liquidity

provision does not vary as ζ(2) changes. From the left panel, we can see that core banks hold more

proportional liquidity provision for the other core banks (lines with circles) in absolute terms than

that for the peripheral banks (lines without circles) due to the higher total interconnectedness

between core banks as observed from earlier analysis. The value of γC2 (2) keeps decreasing as ζ(2)

getting larger at low levels of ζ(2), and it becomes increasing when the level of ζ(2) is sufficiently
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large. This response pattern of the core banks against their peers within the core group is

similar to the response pattern in the single-regime homogeneous banks environment in Section

4: when the interconnectedness level is large enough, the benefits of reducing its effect using the

liquidity provision is less. The right panel of Figure 1 shows the proportional liquidity provision

for peripheral banks. Interestingly, the peripheral banks hold more proportional provision as ζ(2)

increases for both of the provisions for the core banks and for the other peripheral banks even

though there is no direct linkage between the peripheral banks. As ζ(2) increases, the interbank

channels between core and peripheral banks provide larger indirect effects between the peripheral

banks.

(a) Core bank (b) Peripheral bank

(c) Core bank (d) Peripheral bank

Figure 2. Values of proportional precautionary liquidity (∆θ̄/θ̄) (upper) and values of adjustment speed γ1 (lower)

for core (left) and peripheral (right) banks associated with the core-periphery (CP) benchmark (solid line) and the

no-network (NN) benchmark (dashed line) models as a function of the overall network exposure in the crisis regime

(ζ(2)). The values are for normal (lines with crosses) and crisis (lines without crosses) regimes.

Figure 2 shows the effects of ζ(2) on the proportional precautionary liquidity ∆θ̄/θ̄ (upper)
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and the non-incentive component of the adjustment speed γ1 (lower) for core banks (left) and pe-

ripheral banks (right). As we can see from the core-periphery benchmark model (solid lines), the

proportional precautionary liquidity of core banks in the normal regime is positive (the shock’s

effect is larger than the volatility’s effect) and declines when ζ(2) increases, while their adjustment

speed slightly decreases. The decrease in both policy parameters show that as the interconnect-

edness level during the crisis regime is higher, the benefit for liquidity reservation in the normal

regime is less since their excess liquidity would eventually be shared to the peers’ average more

quickly, especially among the core group itself. However, for the crisis regime, when ζ(2) is small,

core banks hold negative precautionary liquidity as the volatility’s effect is larger than the shock’s

effect, and as ζ(2) increases, the importance of the liquidity shocks dominates, and hence banks

decide to hold positive precautionary. But as ζ(2) is sufficiently large, the benefit of holding

precautionary is less. This response pattern of the core banks in the crisis regime is consistent

with our analysis discussed in Section 4. As expected, core banks reduce their adjustment speeds

in the crisis regime as ζ(2) increases due to the lower benefit. Interestingly, peripheral banks

hold positive precautionary liquidity and raise it in response to larger ζ(2) in both regimes. As

mentioned earlier, liquidity shocks tend to be followed by liquidity outflows from the peripheral

banks to the core banks via the interbank network, and hence it is optimal for the peripheral

banks to hold extra precautionary liquidity as the interbank’s interconnectedness level is higher.

However, the peripheral banks keep the adjustment speed approximately the same in the normal

regime and only slightly decrease it in the crisis regime. In summary, the increase in the inter-

connectedness level in the crisis regime makes the direct benefit of liquidity provision lower (and

hence lower γ1), but its indirect effect through systemic liquidity shocks makes peripheral banks

hold more precautionary liquidity.

5.5 Effects of systemic liquidity shocks

Figure 3 shows the plots of the proportional liquidity provision γ2 in the normal regime as

the size of the normal-to-crisis regime-transition shock (η̄(1, 2)) increases. In this analysis we

assume that the relative shock sizes are the same for both core and peripheral banks (η̄C(1, 2) =

η̄P (1, 2) = η̄(1, 2)) so that we can vary the value of the negative shock from 0 to −1. As we can

see, both types of banks reduce the proportional liquidity provision in absolute terms in both

regimes when the shock size increases. This is consistent with the result in Section 4 where banks

accept the consequent of systemic shocks, and respond less aggressively as the shock’s effect is

larger.

Figure 4 shows the effects of the size of the within-crisis-regime liquidity shock (η̄(2, 2)) on

the proportional liquidity provision in the crisis regime, assuming the same relative shock size for

both core and peripheral banks (η̄C(2, 2) = η̄P (2, 2) = η̄(2, 2)). Similar to the case of increasing

the regime-transition shock’s size, all banks for both benchmark models reduce their proportional
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(a) Core bank (b) Peripheral bank

Figure 3. Values of proprotional liquidity provision for the interbank relationship in the normal regime of core

banks (γC2 , γ
CP
2 ) (left) and of peripheral banks (γP2 , γ

PC
2 ) (right) associated with the core-periphery (CP) benchmark

(solid line) and the no-network (NN) benchmark (dashed line) models as a function of the size of the normal-to-crisis

regime-transion liquidity shock (η̄(1, 2)) assuming the same relative shock size for both core and peripheral banks

(η̄C(1, 2) = η̄P (1, 2) = η̄(1, 2)).

(a) Core bank (b) Peripheral bank

Figure 4. Values of proprotional liquidity provision for the interbank relationship in the crisis regime of core banks

(γC2 , γ
CP
2 ) (left) and of peripheral banks (γP2 , γ

PC
2 ) (right) associated with the core-periphery (CP) benchmark (solid line)

and the no-network (NN) benchmark (dashed line) models as a function of the size of the within-crisis-regime liquidity

shock (η̄(2, 2)) assuming the same relative shock size for both core and peripheral banks (η̄C(2, 2) = η̄P (2, 2) = η̄(2, 2)).

liquidity provision for the interbank relationship, but the responses are more sensitive to the shock

size, as the arrival rate of this type of shock is larger (λ(2, 2) > λ(1, 2)).

The effects of the size of the normal-to-crisis regime-transition shock η̄(1, 2) on proportional

precautionary liquidity (upper panel) and non-incentive component of the adjustment speeds

(lower panel) are shown in Figure 5. The banks’ response pattern for both precautionary liquidity
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(a) Core bank (b) Peripheral bank

(c) Core bank (d) Peripheral bank

Figure 5. Values of proportional precautionary liquidity (∆θ̄/θ̄) upper) and values of adjustment speed γ1 (lower)

for core (left) and peripheral (right) banks associated with the core-periphery (CP) benchmark (solid line) and the no-

network (NN) benchmarkk (dashed line) models as a function of the size of the normal-to-crisis regime-transition liquidity

shock (η̄(1, 2)) assuming the same relative shock size for both core and peripheral banks (η̄C(1, 2) = η̄P (1, 2) = η̄(1, 2)).

The values are for normal (lines with crosses) and crisis (lines without crosses) regimes.

and adjustment speeds are consistent with the analysis in Section 4. That is, as the shock size is

larger, banks partly accept the consequence and lower the adjustment speed, but at the same time

hold more precautionary liquidity for relatively less negative shock size to reduce its effect (from

0 to around −50% in this case). As the shock size becomes more negative, extra precautionary

liquidity would not help as it will be mostly gone when a shock comes. Consistent with earlier

observations, core banks hold more precautionary liquidity during the normal regime when the

interbank network collapses in the crisis regime (NN benchmark) than when it does not (CP

benchmark) because the size of the shock is larger for the core banks than for the peripheral banks,

and the interbank channel for liquidity inflows for the core banks breakdowns. The opposite is
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true for the peripheral banks. The precautionary liquidity in the crisis regime are less sensitive

to the shock size η̄(1, 2), but still quite significant. In the crisis regime, both types of banks hold

less precautionary liquidity in the no-network model than in the core-peripheral model because

the volatility effect becomes more important as discussed in the benchmark models.

(a) Core bank (b) Peripheral bank

(c) Core bank (d) Peripheral bank

Figure 6. Values of proportional precautionary liquidity (∆θ̄/θ̄) (upper) and values of adjustment speed γ1 (lower)

for core (left) and peripheral (right) banks associated with the core-periphery (CP) benchmark (solid line) and the

no-network (NN) benchmark (dashed line) models as a function of the size of the within-crisis-regime liquidity shock

(η̄(2, 2)) assuming the same relative shock size for both core and peripheral banks (η̄C(2, 2) = η̄P (2, 2) = η̄(2, 2)). The

values are for normal (lines with crosses) and crisis (lines without crosses) regimes.

The effects of the size of the systemic liquidity shock within the crisis regime η̄(2, 2) are similar

to the effects of the normal-to-crisis regime-transition shock η̄(1, 2) in terms of direction. Figure

6 shows the effects of η̄(2, 2) on the proportional precautionary liquidity (upper panel) and non-

incentive component of the adjustment speeds (lower panel), assuming the same relative shock size

for both core and peripheral banks (η̄C(2, 2) = η̄P (2, 2) = η̄(2, 2)). As we can see from the upper
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panel, banks hold more precautionary liquidity as the shock size becomes more negative from 0

to around −30% and as the shock size is getting more negative, banks hold less precautionary

liquidity. This −30% threshold is less than the threshold in the case of η̄(1, 2) at −50% in absolute

term as the arrival associated with η̄(2, 2) is more. As shocks happen in the crisis regime, the

precautionary liquidity levels for the crisis regime seem to be larger and more sensitive to the

shock size. In this analysis, we find that core banks hold more precautionary liquidity in both

regimes when the interbank market collapses during the crisis (NN benchmark) than when it

does not (CP benchmark), while peripheral banks do the opposite. This again comes from the

fact that the absolute impact of the shock on the core banks is larger, and they tend to receive

liquidity inflows through the interbank network from peripheral banks. The missing channel in

the no-network benchmark model makes the core banks hold more precautionary liquidity. As

expected, banks reduce the adjustment speeds as the shock size becomes more negative. The

effects are more in the crisis regime, and there are almost no effects on the speeds in the normal

regime. Overall, banks have higher adjustment speeds in the no-network model than in the core-

periphery model, and the effects for the core banks are larger than those for the peripheral banks

as the total level of the interconnectedness of the core banks is more in the normal regime.

5.6 Effects of flight-to-quality flows

(a) Core bank (b) Peripheral bank

Figure 7. Values of proprotional liquidity provision for the interbank relationship in the crisis regime of core banks

(γC2 , γ
CP
2 ) (left) and of peripheral banks (γP2 , γ

PC
2 ) (right) associated with the core-periphery (CP) benchmark (solid

line) and the no-network (NN) benchmark (dashed line) models as a function of the effect of flight-to-quality flows (µ̄(2))

assuming the same effect for both core and peripheral banks (µ̄C(2) = µ̄P (2) = µ̄(2)).

We study the flight-to-quality effects during crisis, assuming the same flight-to-quality param-

eter value for both types of banks: µ̄C(2) = µ̄P (2) = µ̄(2). We vary its value from 0 to twice
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the baseline value. Figure 7 shows the effects of µ̄(2) on the proportional liquidity provision for

the interbank relationship (γ2). As we can see, banks hold more proportional liquidity provision

as the effect of the flight-to-quality flows gets stronger, consistent with the results in Section 4.

However, the effects under the no-network benchmark model are quite small as the needs for

liquidity provision is less when the interbank network collapses in the crisis regime.

(a) Core bank (b) Peripheral bank

(c) Core bank (d) Peripheral bank

Figure 8. Values of proportional precautionary liquidity (∆θ̄/θ̄) (upper) and values of adjustment speed γ1 (lower)

for core (left) and peripheral (right) banks associated with the core-periphery (CP) benchmark (solid line) and the

no-network (NN) benchmark (dashed line) models as a function of the effect of flight-to-quality flows (µ̄(2)) assuming

the same effect for both core and peripheral banks (µ̄C(2) = µ̄P (2) = µ̄(2)). The values are for normal (lines with

crosses) and crisis (lines without crosses) regimes.

Figure 8 presents the effects of flight-to-quality flows during the crisis regime, µ̄(2), on the

proportional precautionary liquidity (upper panel) and the non-incentive component of the ad-

justment speeds (lower panel). The effects on the precautionary liquidity are consistent with the

observations made in Section 4. That is, when the liquidity shock has a sufficiently larger effect
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than the volatility, banks hold positive precautionary and tend to increase it as the degree of the

flight-to-quality effect increases. On the other hand, if the volatility’s effect is sufficiently larger

than the shock’s effect, banks hold more negative precautionary liquidity as the flight-to-quality

effect is stronger. Banks also increase the non-incentive component of the adjustment speed γ1

as the the flight-to-quality effect is larger, but the effects in the normal regime are small.

5.7 Effects of reward and penalty parameters

(a) Core bank (b) Peripheral bank

Figure 9. Values of proprotional liquidity provision for the interbank relationship in the crisis regime of core banks

(γC2 , γ
CP
2 ) (left) and of peripheral banks (γP2 , γ

PC
2 ) (right) associated with the core-periphery (CP) benchmark (solid

line) and the no-network (NN) benchmark (dashed line) models as a function of the reward parameter of core banks in

the crisis regime b̄(2), assuming the ratio between the parameter values for core and peripheral banks remains the same

as in the the baseline value (b̄C(2) = b̄(2) and b̄P (2) = b̄(2)× 2/7).

The incentive or reward parameter during the crisis regime as measured by b̄(2) could rep-

resents the facilities rate provided by regulators for lending and borrowing liquidity outside the

interbank market. In this analysis, we assume that the ratio between the parameter values for core

and peripheral banks remains the same as in the the baseline value. That is, we set b̄C(2) = b̄(2)

and b̄P (2) = b̄(2) × 2/7 and vary the value of b̄(2) from 0 to 2 so that the assumption that

b̄G(2) <
√
q̄G(2), G ∈ {C,P}, is still satisfied. Under this setting, lending and borrowing liquid-

ity of core banks are relatively better facilitated from the outside interbank market as they have

lower risk profiles and higher capacity. Figure 9 shows the effects of b̄(2) on the proportional liq-

uidity provision. As we can see, the results are consistent with the analysis in Section 4. A better

facilities rate during the crisis leads to the reduction in the magnitude of the liquidity provision

for interbank lending (γ2). In other words, it implies that banks can quickly offset any liquidity

need or surplus due to the interbank relationship through the lending and borrowing facilities at
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a low price, so high provision for the interbank relationship is not necessary. As expected, the

banks’ responses are less sensitive to the changes in the reward parameter when the interbank

network collapses during the crisis regime.

(a) Core bank (b) Peripheral bank

(c) Core bank (d) Peripheral bank

Figure 10. Values of proportional precautionary liquidity (∆θ̄/θ̄) (upper) and values of adjustment speed γ1 (lower)

for core (left) and peripheral (right) banks associated with the core-periphery (CP) benchmark (solid line) and the

no-network (NN) benchmark (dashed line) models as a function of the reward parameter of core banks in the crisis

regime b̄(2), assuming the ratio between the parameter values for core and peripheral banks remains the same as in the

the baseline value (b̄C(2) = b̄(2) and b̄P (2) = b̄(2)× 2/7). The values are for normal (lines with crosses) and crisis (lines

without crosses) regimes.

Figure 10 shows the effects of the reward parameter in the crisis regime on the proportional

precautionary (upper panel) and the non-incentive component of the adjustment speeds (lower

panel). As we can see, the proportional precautionary liquidity and the adjustment speeds are

reduced in the normal regime when the reward parameter in the crisis regime increases as banks

foresee more liquidity facilities during the crisis. This is a moral hazard problem in which banks
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prepare less for the future shocks if regulators are going to facilitate liquidity needs during crises.

For the crisis regime, banks’ behavior is the same as in the case of the complete network discussed

in Section 4. That is, when the reward parameter increases, banks reduce the non-incentive

component of the adjustment speeds and precautionary liquidity in absolute terms, but they

increase the total adjustment speeds b̄G(2) + γG1 (2), G ∈ {C,P}. In other words, banks tend to

move their liquidity levels closer to their original targets with higher adjustment speeds to enjoy

the high rewards.

(a) Core bank (b) Peripheral bank

Figure 11. Values of proprotional liquidity provision for the interbank relationship in the crisis regime of core banks

(γC2 , γ
CP
2 ) (left) and of peripheral banks (γP2 , γ

PC
2 ) (right) associated with the core-periphery (CP) benchmark (solid

line) and the no-network (NN) benchmark (dashed line) models as a function of the penalty parameter in the crisis

regime (q̄(2)) assuming the same parameter for both core and peripheral banks (q̄C(2) = q̄P (2) = q̄(2)).

Now we consider the penalty parameter in the crisis regime as measured by q̄(2). With the

high value of q̄(2), the deviation of liquidity from the target becomes more important, which

implies that a higher degree of banks’ prudence is required. For instance, a bank with too low

liquidity level would suffer a large funding cost from default risk whereas a bank with too high

liquidity level would lose opportunities to generate more profit from providing loans. During the

crisis, the liquidity level tends to stay below the target due to the systemic liquidity shocks, so

q̄(2) could implicitly represent the regulatory costs which penalize banks that likely encountered

liquidity problems. We set q̄C(2) = q̄P (2) = q̄(2) and vary the value of q̄(2) from 2 to 12 to keep

the condition q̄G(2) > b̄G(2)2 satisfied for both types of banks G ∈ {C,P}. Figure 11 shows the

effects of the penalty parameter in the crisis regime q̄(2) on the proportional liquidity provision

for the interbank relationship (γ2). For peripheral banks, the value of γ2 is quite insensitive

to changes in q̄(2) as the degree of interconnectedness is relatively small. However, under the

core-periphery benchmark model, core banks implement more prudential control policy; they try

to prepare liquidity for interbank lending in order to moderate the peers’ influence, especially
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between core banks themselves so that they can control their liquidity more effectively to reduce

the penalty cost. That preparation is reduced if there is no network within the crisis regime. In

fact, under the no-network model, core banks reduce their liquidity provision for the other banks

in the crisis regime as the penalty parameter increases. Because there is no interbank activities

in the crisis regime under the no-network model, the liquidity provision in this regime is just

to ensure that when the regime switches back to the normal regime, the liquidity gaps between

banks will not be too large. But as the penalty parameter in the crisis regime is larger, banks

need to focus more on their current liquidity levels, and hence choose to reduce the interbank

liquidity provision to gain more control.

(a) Core bank (b) Peripheral bank

(c) Core bank (d) Peripheral bank

Figure 12. Values of proportional precautionary liquidity (∆θ̄/θ̄) (upper) and values of adjustment speed γ1 (lower)

for core (left) and peripheral (right) banks associated with the core-periphery (CP) benchmark (solid line) and the

no-network (NN) benchmark (dashed line) models as a function of the penalty parameter in the crisis regime (q̄(2))

assuming the same parameter for both core and peripheral banks (q̄C(2) = q̄P (2) = q̄(2)). The values are for normal

(lines with crosses) and crisis (lines without crosses) regimes.
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Figure 12 shows the effects of q̄(2) on the precautionary liquidity (upper panel) and the non-

incentive component of the adjustment speeds (lower panel). As we can see, the effects of the

penalty parameter q̄(2) are opposite to the incentive parameter b̄(2) due to their different roles

on the cost function. Intuitively, a high penalty cost during the crisis regime results in banks’

prudential liquidity management, and this leads to a higher target for the precautionary liquidity

in the normal period as a buffer of shocks. In the crisis regime, core banks hold approximately

the same proportional precautionary liquidity for all values of q̄(2), but increase the adjustment

speeds to ensure that their liquidity levels stay close to the targets. Peripheral banks deal with

the adjustment speed similarly, but with reduced proportional precautionary liquidity as they

know that the liquidity risk arising from their peers (core banks) via the interbank market is

mitigated by the highly prudential control policy of the core banks.

6 Systemic liquidity risk

In this section, we study the effects of risk parameters, including the overall interbank network

exposure, systemic liquidity shocks, and flight-to-quality flows, and the effects of the reward and

penalty parameters on the systemic liquidity risk in the banking system using simulation.

6.1 Systemic liquidity risk indicator

To measure the systemic risk, Borovykh et al. (2018) propose an indicator of systemic risk

defined by

R(T ) =
1

M

M∑
i=1

1{min0≤t≤T Xi(t)<Di} (84)

where Di is the minimum threshold of the liquidity requirement of bank i. If the liquidity of

bank i falls below this threshold at any point before or at time T , the bank is considered as a

defaulted bank. That is, this indicator measures the default rate in the banking system over a

given horizon T . The concept of default rate for systemic risk measurement is also applied in

Capponi et al. (2020). However, each of defaulted banks, in fact, contributes its losses to the

financial and economic systems differently. In our study, we also use the weighted default rate

given by

Rθ(T ) =

M∑
i=1

θi(Y (t))1{min0≤t≤T Xi(t)<Di}∑M
j=1 θj(Y (t))

. (85)

For this indicator, bank i with liquidity target θi contributes its losses to the indicator by the

proportion θi/
∑M

j=1 θj if it is defaulted. Hence, a default of a large bank with large liquidity

target θi has a high impact on the banking system. In our study, these large banks refer to our
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core banks in the core-periphery network structure, which play a significant role in the interbank

network.

We use the parameters given in Table 1 as our baseline, and consider both of the benchmark

models. The first benchmark is the core-peripheral model in which the network structure in both

normal and crisis regimes is core-periphery. The second benchmark is the no-network model in

which the network structure in the normal regime is core-periphery, but the interbank network

collapses during the crisis regime. We assume that banks control their liquidity according to the

optimal control policy. We set the initial state of economy as the normal regime (Y (0) = 1).

The initial liquidity levels of all core banks are assumed to be at their targets θ̄C . For peripheral

banks, we assume that half of them have initial liquidity levels at θ̄P + θ̄P /6, and the initial

liquidity levels of the other half are at θ̄P − θ̄P /6. That is, core banks act like intermediary bank

in the banking system, while half of the peripheral banks are interbank lenders, and the other half

are interbank borrowers. We assume that the minimum threshold of the liquidity requirement is

half of the target. Specifically, the threshold of core banks is Di = θ̄C/2 for i ∈ C, and that of

peripheral banks is Di = θ̄P /2 for i ∈ P . We report the average values of the default rate R(T )

and weighted default rate Rθ(T ) for T = 2, 5 and 10 years to study the impacts on the short,

medium and long terms.

6.2 Effects of interconnectedness level

Figure 13 reports the level of systemic risk based on the default rate R(T ) (left) and weighted

default rate Rθ(T ) (right) as a function of the overall interbank network exposure in the crisis

regime, ζ(2), which contributes to the interconnectedness level of the interbank network, for 2

years (solid line), 5 years (dashed line) and 10 years (dotted line). We vary the value of ζ(2) from

0 to 3 times of the level in the normal regime. As we can see from the left panel, increases in the

exposure always lead to a higher number of defaulted banks for all horizons. This result could

come from the fact that shocks are systemic, so the benefit of the interbank network on absorbing

shocks for each other is less, but the role of the interbank network as channels for transmitting

shocks still exists. In fact, further analysis shows that as the overall network exposure increases,

the number of defaulted peripheral banks increases while the number of defaulted core banks

decreases. As mentioned earlier, shocks reduce the liquidity of core banks more in absolute

terms, and hence peripheral banks are likely to be required to provide liquidity to core banks via

the interbank relationship after shocks occur, even though the peripheral banks lost their liquidity

by a larger percentage with respect to their liquidity levels. In other words, the losses from core

banks are transmitted to peripheral banks that face much worse liquidity shortage. The results

for the weighted default rate from the right panel of Figure 13 confirm this. When the overall

interbank exposure is low, the weighted default rate is decreasing in the exposure due to the less

number of defaulted core banks, and at the cost of defaulted peripheral banks. Interestingly, as
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the level of the overall network exposure increases further, the weighted default rate starts to

increase. This is possibly because the benefit that core banks receive has reached its limit; the

exposure level is already large enough to help save all (or most) of the core banks. However, as

long as the core banks still remain in the system, a larger rate of shock transmission continues

to push the number of defaulted peripheral banks up. As we can see, the level of the overall

interbank exposure that yields the lowest weighted default rate depends on the horizon. As the

horizon is longer, the optimal exposure level seems to be higher.

(a) Default rate (b) Weighted default rate

Figure 13. Expected values of default rate R(T ) (left) and weighted default rate Rθ(T ) (right) associated with the

core-periphery benchmark model as a function of ζ(2). The indicator is shown for T = 2, 5 and 10 years.

6.3 Effects of systemic liquidity shocks

The value of η(1, 2) measures the size of the systemic liquidity shock initiating a crisis event.

We vary the shock size of core banks, η̄C(1, 2), up to −20% and assume that the peripheral

banks have 3 times larger shock size to keep the ratio of the shock sizes the same as that in

the benchmark models. That is, η̄P (1, 2) = 3 × η̄C(1, 2). Figure 14 shows the results for the

core-periphery (left) and no-network (right) models. A larger shock triggers more systemic risk,

but the relationship is not linear. The systemic risk indicator seems to be less sensitive for small

shock sizes. The weighted default rate accelerates when the shock size of the core banks is around

8% - 15%, and it is slowing down when the shock size is larger than 15% in magnitude. In this

situation, the default rate is mainly contributed from peripheral banks, since they not only suffer

from their individual shocks but also from core banks’ liquidity needs as mentioned above. The

shock size of 15% in core banks means 45% in peripheral banks, so it causes a high default rate in

the peripheral banks. When many of the peripheral banks have already defaulted, the number of

the non-defaulted banks reduces. As a consequence, the rate at which new defaults occur is low.
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Comparing the two benchmark models, we find that the systemic risk on the no-network model

is larger as the benefit for the core banks disappears during the crisis regime.

(a) Core-peripheral benchmark model (b) No-network benchmark model

Figure 14. Expected values of weighted default rate Rθ(T ) associated with the core-peripheral benchmark (left) and

the no-network benchmark (right) models as a function of η̄(1, 2) where η̄C(1, 2) = η̄P (1, 2)/3 = η̄(1, 2). The indicator

is shown for T = 2, 5 and 10 years.

(a) Core-peripheral benchmark model (b) No-network benchmark model

Figure 15. Expected values of weighted default rate Rθ(T ) associated with the core-peripheral benchmark (left) and

the no-network benchmark (right) models as a function of η̄(2, 2) where η̄C(2, 2) = η̄P (2, 2)/3 = η̄(2, 2). The indicator

is shown for T = 2, 5 and 10 years.

We now consider the effects of the size of the within-crisis shocks η̄(2, 2). Similarly to the

case of η̄(1, 2), we assume that the shock size for the peripheral banks is 3 times as large as the

size of the shock for the core banks. Figure 15 shows the results for both benchmark models.

As expected, the systemic risk increases as the shock size becomes more negative. Since the
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within-crisis regime shock has a higher arrival rate compared to the regime-transition shock, the

within-crisis regime shock causes a higher weighted default rate given the same shock size. In

this study, we find that the within-crisis regime shocks trigger more defaulted core banks than

the other type of shocks.

6.4 Effects of flight-to-quality flows

(a) Core-peripheral benchmark model (b) No-network benchmark model

(c) Core-peripheral benchmark model (d) No-network benchmark model

Figure 16. Expected values of defaulte rate R(T ) (upper) and weighted default rate Rθ(T ) (lower) associated with

the core-peripheral benchmark (left) and the no-network benchmark (right) models as a function of µ̄(2) where µ̄C(2) =

µ̄P (2) = µ̄(2). The indicator is shown for T = 2, 5 and 10 years.

In our model, the flight-to-quality flows represents the effects of panic-triggered flows of liq-

uidity during crises, the degree of which is measured by µ̄(2). In this analysis, we assume that

all banks have identical degree of flight-to-quality effect (µ̄C(2) = µ̄P (2) = µ̄(2)), and report the

simulation results in Figure 16 for both expected default rate R(T ) (upper panel) and expected
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weighted default rate Rθ(T ). As we can see, the expected default rates do not change much as

µ̄(2) increases. In fact, the default rates drop slightly as the effect of the flight-to-quality flows

becomes stronger in the core-periphery benchmark model. From the results in Section 5.6, we

find that banks hold positive precautionary liquidity and the level goes up as µ̄(2) increases under

the core-periphery model (see Figure 8). So banks tend to control their liquidity more aggres-

sively given a high level of the flight-to-quality effect, and consequently, the default rate slightly

decreases. However, the expected weighted default rate slightly increases as µ̄(2) increases. The

effects on the weighted default rate become more pronounced under the no-network benchmark

model. The results in Section 5.6 show that core banks hold negative precautionary liquidity in

the crisis regime under the no-network benchmark model. In addition, they increase the adjust-

ment speed γ1 and reduce the precautionary liquidity further as the degree of the flight-to-quality

effect increases. Hence, when the flight-to-quality effect is large, and the interbank market does

not function, core banks tend to lose more liquidity as they are not allowed to utilize relatively

higher (or less negative) excess liquidity from the peripheral banks. As a result, the weighted

default rate goes up at a faster rate than the default rate under the no-network benchmark model.

6.5 Effects of the reward and penalty parameters

When regulators plan to help banks manage their liquidity during the crisis regime by pro-

viding lending facilities with incentive parameter b̄(2), banks adversely respond to this effect

creating a moral hazard problem. Figure 17 shows the weighted default rates as a function of

the incentive parameter in the crisis regime or b̄(2). As we can see, this policy slightly relieves

the systemic risk under the benchmark model, and the benefits are apparent in long term under

the no-network benchmark model due to the utilization of regulators’ facilities without interbank

noises. However, this regulatory policy could be inefficient since the costs of implementing the

policy might not be worth for the marginal benefits. Namely, the policy does not encourage banks

to prepare for and be conscious of the liquidity risks, and related regulators also need to provide

the liquidity instead when the liquidity problems emerge. It is worth noticing that the effects of

b̄(2) and µ̄(2) seems to be reversal as they are transmitted through the model in similar mechanic

but different directions. In contrast to providing lending facilities, it should be more valuable to

promote banks’ own prudential liquidity control policy. As discussed in Section 5.7, increases in

q̄(2) lead banks to preserve liquidity buffer in the normal period and try to increase the speeds

of adjustment during the crisis regime. It can be seen that the degree of systemic risk is reduced

notably as shown in Figure 18.
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(a) Core-peripheral benchmark model (b) No-network benchmark model

Figure 17. Expected values of Rθ(T ) associated with the core-peripheral benchmark (left) and the no-network bench-

mark (right) models as a function of b̄(2) where b̄C(2) = b̄(2) and b̄P (2) = 2
7 b̄(2). The indicator is shown for T = 2, 5

and 10 years.

(a) Core-peripheral benchmark model (b) No-network benchmark model

Figure 18. Expected values of Rθ(T ) associated with the core-peripheral benchmark (left) and the no-network bench-

mark (right) models as a function of q̄(2) where q̄C(2) = q̄P (2) = q̄(2). The indicator is shown for T = 2, 5 and 10

years.

7 Policy Implications and Conclusions

In this study we propose a new interbank network model the allows us to model different

types of liquidity risk, including (i) the idiosyncratic shocks from daily deposits and withdrawals,

(ii) systemic shocks such as bank runs, (iii) reduction in the interconnectedness in the interbank

market during a crisis, and (iv) panic-triggered liquidity outflows following large shocks. We study

the effects of the last three types of risk on the optimal liquidity control policy. We find that the

optimal control consists of two main components. The first component is the liquidity provision
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for the interbank relationship. Banks hold liquidity provision according to their current role in

the network. Namely, a net lender in the interbank market holds positive provision, while a net

borrower holds negative provision. Holding more provision reduces the impacts from the peers

and hence allows banks to have more control over their liquidity levels. The second component

is the precautionary liquidity. Banks hold positive precautionary liquidity to reserve liquidity for

their future uses, including absorbing unexpected losses. There are two key parameters for this

precautionary liquidity: the liquidity target and the speed at which banks control their liquidity

toward the target.

Different types of risk have different implications on banks’ optimal control policies. Banks

use liquidity provision to reduce the impact from the interbank relationship, but when the cost

of doing so is too high banks decrease the provision. Similarly, banks hold positive precautionary

liquidity when they expect higher risk, but when risk is too high, banks lower their precautionary

holding. In our analysis of large homogeneous complete network with one regime, we find that

banks tend to hold positive precautionary liquidity for systemic shocks, but reduce the liquidity

provision and the adjustment speeds. In fact, when the jump size is sufficiently large, banks start

to reduce their precautionary as most of the liquidity reserve will be lost once a shock occurs.

This creates a challenging problem for regulators. That is, holding positive precautionary liquidity

makes the system more resilient to shocks, but when large shocks are expected, banks choose to

reduce their reserves.

On the other hand, banks tend to respond to panic-triggered flows or flight-to-quality effects

differently. Our analysis shows that banks should increase their liquidity provision and increase

the adjustment speed in response to a larger effect of the flight-to-quality flows. However, our

numerical examples show that banks tend to reinforce their precautionary liquidity position. As

a consequence, when they hold negative precautionary liquidity which is more likely to happen

when the interbank market collapses, they tend to reduce their liquidity targets further more as

the effect of the flight-to-quality becomes stronger. With an increasing adjustment speed, the

banks’ liquidity levels drops quickly, causing a larger risk to the banking system. In the case of

large homogeneous complete network with one regime, it is optimal for banks to hold negative

precautionary liquidity when systemic shocks are very small or very large. So the combination of

large shocks and a strong effect of flight-to-quality during crises can trigger this type of events,

resulting in larger systemic risk.

When the interbank market collapses during a crisis, losses from one bank cannot be transmit-

ted to the other banks via the interbank market. When losses are systemic, our examples show

that the interbank market can transmit losses from unhealthy banks to more unhealthy banks,

resulting in a high default rate. The collapse of the interbank market during the crisis lowers

the number of defaulted banks. However, from our examples, the total loss is larger when the

interbank market does not function during the crisis as larger banks tend to default more. In fact,
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our examples show that there is an optimal level of interconnectedness that yields the lowest loss

in the system, and the optimal level depends on the time horizon. However, the optimal level for

the loss does not correspond to the optimal level for the default rate. Determine a way to control

the interconnectedness level during crises to result in a good balance between the loss rate and

the default rate can be a very challenging task for regulators.

We study two mechanics that can reduce systemic risk. The first mechanic is to provide

incentive for banks to increase their liquidity by lowering the cost of lending and borrowing

through, for example, regulators’ lending facilities. This, however, creates a moral hazard problem

as banks do not implement appropriate risk management policy, but plan to use the facilities to

adjust their liquidity when needed. Although this can reduce the systemic risk of the banking

system, it comes at the cost of the regulators. The second mechanic is through the use of penalty.

Regulators may impose penalty for banks that do not hold sufficient liquidity. Our analysis

shows that with a larger penalty cost, banks implement more prudential liquidity control policy:

they hold positive precautionary liquidity during the normal times and maintain their adjustment

speed, and they hold little precautionary liquidity but at a much higher speed to ensure that their

liquidity levels do not deviate from their targets. This overall reduces the systemic risk, and, of

course, it comes at the cost of the banks. Whether this larger cost for the banks would lead to

another type of problems is an interesting issue to investigate but is beyond our current study.
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