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Abstract

The COVID-19 pandemic is a recent and ongoing extreme event that has impacted all financial markets.

Indeed, it impacts the bond or debt market, which is one of the most important financial markets. The main

role of the bond market in the economy is to enable the government, firms and institutions to lend and borrow

money on acceptable terms and conditions. Since the COVID-19 pandemic began, the bond market has been

affected in many different ways including in bond market comovement. For fund firms, emerging market bonds

are a vital investment instrument as they tend to offer higher yields than developed market bonds. Hence, this

paper analyzes the COVID-19 impact of: 1) nonlinear bivariate comovement between benchmark loan bonds

(LBs) in emerging market bonds, in particular the Thai bond market, which is one of the most important

Asian bond markets; and 2) nonlinear bivariate comovement between emerging Thai benchmark bonds and

developed benchmark bonds in the United States (US), United Kingdom (UK) and Japanese bond markets. An

asymmetric generalised autoregressive conditional heteroskedastic (GARCH) model with a mixture of generalised

Pareto and Gaussian distributions is applied as a marginal model in step one. Sixteen candidates for a bivariate

copula function are fitted and the best fit copula selected in order to obtain numerical nonlinear comovement

measures. This is also known as the Inference for the Margins (IFM) method. Empirical results reveal that

the COVID-19 pandemic impact in the emerging Thai bond market has characteristics such as in the scale of

nonlinear comovement, asymmetric dependence and upper and lower tail dependence. In general, COVID-19 has

impacted the comovement between emerging Thai market bonds by increasing the nonlinear comovement, and

generating more asymmetric and more extreme upper and lower tail dependence. While emerging Thai market

bonds tend to less nonlinear comovement, more symmetric and tail independence are seen with developed market

bonds due to the impact of COVID-19.
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1 Introduction

The bond market is a financial market where there is a mechanism for the transformation of

saving into long term financing for both the government and corporates. In 2019, domestic

debt security outstanding value in Thailand’s primary market (at par) was 13,304 billion baht

with a year-on-year growth rate at 1.70% while debt-to-GDP ratio is about 79%. One of the

most essential debt security classes in the Thai bond market, both the primary and secondary

markets, is government bonds (LB).

At present, the Thai Government bond yield curve is formulated from survey-based approach

by 15 primary bond dealers. Some of them however cannot quote the benchmark bond since

changes in compliance policy. In addition, according to the Thai bond market association

(ThaiBMA) regulations, if the number of quoted primary dealers is less than threshold, the

daily government bond yield curve cannot be generated and the government bond yield curve

at time t will use the previous government bond yield curve at time t-1. Moreover, at the end

of business day, all bond market data will be launched. Given that, the Thai government bond

yields will be utilized as a primary input (a risk-free rate) of calculation to the rest and most

of the bond market data, for example, mark-to-market (MTM) price, corporate bond yield

curve, credit spread curve, state owned enterprise (SOE) spread and so on. This may cause an

operational risk in the bond market.

Consequently, ThaiBMA has been initiating an alternative transaction-based approach for

the Thai Government bond yield curve in order to prevent operational risk. The transaction-

based approach however may face other issues when any benchmark LB has not been traded

during the day or it is an illiquid bond, a so-called liquidity risk or an interpolation issue. Hence,

understanding illiquid LBs based on available information is required, which may come from

traded LBs on that day, so-called bond comovement across tenors or the spillover effect.

Bond common characteristics are spillover and market price volatility effects, the so-called

spillover-volatility effect (Christiansen, 2007). One more important bond comovement is the

comovement between different bond markets, especially the developed bond market. The Thai

bond market is an emerging market and relies significantly on the developed bond markets, for

example, the U.S., U.K. and Japanese market. As a result, the investigation of bond market

comovement between Thailand and developed countries is essential. Precisely, the study of

comovement between Thai Government bonds and others must be explored in order to obtain

more market information related to illiquid LB. Furthermore, regarding the current large global

economic crisis due to the COVID-19 pandemic (World Bank, 2020), it is worth studying how

the COVID-19 crisis affects comovement between the Thai Government bond market and other

markets.
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Indeed, the study of comovement between LB and the others benefits not only the bond

agency but also the market participants, for example, bond dealers, who play a crucial role

as a secondary over-the-counter market facilitator and can utilise comovement information for

the bid/offer price quotation. Further, form a bond issuer/policy maker/central bank viewpoint,

they can use it for their interests, for example, a new bond issue and debt management problem.

In the literature, the copula model has been widely introduced to the study of economic time

series comovement, for example, among others, in surveys of Fan and Patton (2014) and Patton

(2012). Copula statistics is also in the top two research areas in finance and economics according

to Czado (2013). In addition, copula has been broadly extended such as in risk management

and portfolio allocation. Section 2 will discuss further details of copula in the literature and,

section 3 will discuss further details of the copula model.

Prior to the comovement study, the independence of a time series data analysis is

required to extract data residuals. It is clear that the generalised autoregressive conditional

heteroscedasticity (GARCH) model has been one of the most important models since Bollerslev

introduced it in 1986. Since then, the model has evolved because of its statistical property

enrichment. In the literature, an example of a GARCH family is, among others, exponential

GARCH (EGARCH), LogGARCH and threshold GARCH (TGARCH) (Bildirici & Ersin, 2009;

Glosten et al., 1993; Hafner & Kyriakopoulou, 2019; Nelson, 1991; Sahamkhadam et al., 2018;

Salman Khan et al., 2019; Zakoian, 1994).

The copula model could be the fitted to the standardised residuals of the data. In the

literature, bivariate elliptical copula and Archimedean copula are well-known and very flexible

to the comovement study. It can describe (non-)linear relationships among financial data thanks

to Sklar who introduced Sklar’s theorem in 1959. For the concepts of copula statistics, see, for

example, Joe (2015) and McNeil et al. (2015), pp. 220-274.

Finally, a measure of (non-)linear comovement can be formulated through the Pearson

correlation and rank-based method, which is determined by the copula model using Kendall’s τ ,

a probability of concordance minus discordance, and Spearman’s ρs. However, in the literature,

the studies of the copula model in the Thai bond market is still scarce and it indeed requires

advanced mathematics.

In conclusion, the study of comovement between the Thai Government bonds across a)

the tenors and b) developed bond markets is required. Besides, it is worth studying the Thai

bond market comovement regime-switching due to the impact of the COVID-19 crisis. There

are two steps for comovement analysis. Firstly, data residual filtering. Secondly, (non-)linear

comovement/dependence measures. The comovement information may more or less support

ThaiBMA, the Thai bond agency, for government bond yield curve construction, in particular
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for the illiquid government bond yield. Also, it may benefit other bond market participants.

For instance, bond dealers can utilise it for bid/offer quotations, bond market monitoring and

analysis whereas policy markers or central banks may utilise the information for debt policy

implementation. Ultimately, it will promote the money market and economy of Thailand.

2 Literature review

Sklar proposed Sklar’s theorem in 1959 for the application of copula. Sklar’s theorem states that

every multivariate cumulative distribution function (cdf) of a random vector can be expressed in

terms of its marginals and a copula function. Many scholars propose the analysis of a dependence

structure model in various applications such as civil engineering, medicine, hydrology research,

geodesy, climate, weather research and finance, and especially in financial risk management.

Copula becomes popular among quantitative scholars and practitioners because of its time-

varying dependence-structure characteristic fulfilment between two time series.

The bivariate parametric copula model becomes a crucial and well-known model to describe

the dependency among financial data characteristics because it successfully describes (non-

)linear relationships between assets, (see, among others, Chang et al. (2018)’s survey). There

are two main bivariate parametric copulas in the literature as follows:

♠ The elliptical parametric copula family

♠ The Archimedean parametric copula family including one-parameter and two-parameters

The elliptical copula family consists of the Gaussian and the Student’s t copula. There are four

most important one-parameter Archimedean copulas; the Clayton, the Gumbel, the Frank and

the Joe copulas, whilst more the complicated two-parameters Archimedean copula consists of,

for example, the BB1, BB6, BB7 and BB8 copulas.

Among others, elliptical and one-parameter Archimedean copulas were studied by Brey-

mann et al. (2003) in a study of bivariate deseasonalised dependence structures in currency

markets. Berger (2013) studied elliptical copulas, dynamic-conditional-correlation and extreme

value theory model in 2013. Later, Kakouris and Rustem (2014) applied both elliptical and

one-parameter Archimedean copula to the robust portfolio risk optimisation problem and So

and Yeung (2014) studied elliptical copula to the solution of necessary conditions via time-

varying without the limitation of the linear correlation method and applied it to multivariate

cases. Moreover, De Lira Salvatierra and Patton (2015) applied elliptical and one-parameter

Archimedean copula to generalised autoregressive score with the realised measures model

(GRAS) and ARMA-GJR-GARCH model with a skewed-t innovation. Babaei et al. (2015) also

applied elliptical and one-parameter Archimedean copulas to the dynamic stochastic model up

to 200 stocks on the S&P500 index. Creal and Tsay (2015) adapted only elliptical copulas
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to study a class of comovement time-varying in high dimensional models in equity and credit

default swaps (CDS) of the S&P500 index.

In 2016, among others, Oh and Patton explored bivariate copula together with GARCH-

dynamic-conditional-correlation (GARCH-DCC), stochastic volatility and heterogeneous au-

toregressive (HAR) for high-dimensional copula-based distributions with mixed frequency data

on the S&P500 market. Fengler and Okhrin proposed a realised copula family among three

competing models including GJR-GARCH-DCC, Dynamic copula and GAS/GRAS in their

study of portfolio risk management on the NASDAQ and NYSE stock exchange. Al Janabi

et al. (2017) applied the GARCH family and copula as well plus both constant conditional

correlation (CCC) and DCC to cope with the problem of investment portfolio allocation and

multiple constraints.

Research in copula risk management still continually interests scholars. In 2018, Segnon

and Trede proposed a new model of t-copula-Markov switching multifractal approach to the

NASDAQ and the S&P500 for market risk portfolio evaluation. Vine copula with mixture of

bivariate one-parameter Archimedean copula together with ARMA-GJR-GARCH model were

studied again in a portfolio risk optimisation problem in the study of Goel et al. (2019).

Sahamkhadam et al. (2018) studies both elliptical and one-parameter Arhemidean copulas

plus the asymmetric-GARCH-Extreme-Value-Theorem (EVT) to portfolio risk forecasting.

Furthermore, Li and Kang (2018) presented all three main bivariate copulas including elliptical,

one-parameter and two-parameters Archimeden copulas incorporated into the GARCH and

ACDP (Autoregressive Conditional Double Poisson) model so as to better tail distribution

forecasting performance based on five stocks on the NASDAQ stock exchange. Karmakar

and Paul (2018) approached all the three main copula families to model ARMA, CGARCH

(component generalised autoregressive conditional heteroscedasticity) and EVT to solve Value-

at-Risk (VaR) and Expected shortfall (ES) in a high-frequency portfolio risk strategy.

The estimation method is another vital key in order to obtain a robust and superior result

of comovement study. To my best knowledge, the maximum likelihood approach (MLE) is a

popular approach in the literature. An essential part of the MLE mechanism is the joint density

function, called the likelihood function. In the past decade of research, MLE approaches have

been used to estimate model parameters, for example, among others, Berger (2013), Weiß and

Supper (2013), Babaei et al. (2015), Fengler and Okhrin (2016), Sahamkhadam et al. (2018),

Bernardi and Catania (2018) and Goel et al. (2019). It is worth mentioning that bivariate

copulas and MLE algorithms do not perform well, in terms of robustness and accuracy, in case

of high-dimension time series. A pair-copula construction (or vine copula) and other alternative

estimation algorithms, which are Bayesian approaches, might be required for a high-dimension
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dependence model. However, it requires far more advances in mathematics and calculation.

In this proposed study, we will focus on the bivariate copula both elliptical and Archimedean

copula model and the asymmetric-GARCH model as they commonly appear an approach

in the literature. We will also extend these models in order to explore better model fitting

for government bond market data. Further, we will determine the other innovations (any

other mixtures, especially, in EVT distribution) and Archimedean copula (any other classes

of Archimedean copula) that could improve model performance for the Thai bond market

comovement analysis of Thailand.

3 Methodology

3.1 Finite mixture distribution

This subsection explains statistical properties of finite and countable mixture distribution as

an innovation of our proposed conditional volatility model. In statistics, mixture distribution

can be represented by either a finite set of cdf Pi (zt) or density function (pdf) pi (zt) . Hence,

mixture distribution and density function are as a sum, respectively, such that

Fi (zt) =

n∑
i=1

wiPi (zt), (1)

fi (zt) =

n∑
i=1

wipi (zt). (2)

where weight wi > 0,
∑

wi = 1 and i = 1, . . . , n. In financial time series, mixtures are applied

and are very popular because they can capture the asymmetrical-fat-tail behaviour of financial

data also known as EVT and the method is known as peak over threshold (POT). The POT

method can simply be integrated with the GARCH family including, for example, the EGARCH,

LogGARCH and GJR-GARCH process. This study proposes a mixture of the density based on

two (or more) density functions such that the Gaussian distribution for middle part and the

generalised Pareto (GPD) distribution, which is one of the main distributional models in POT

in EVT, for the lower and upper tail or two-sided. Hence, the proposed mixture distribution is

pi (zt) =


1
βL

(
1 + ξL

(zt−µL)
βL

)− 1

ξL
−1

, zt ≤ Φ−1 (a)

φ (zt) , Φ−1 (a) < zt < Φ−1 (b)

1
βU

(
1 + ξU

(zt−µU)
βU

)− 1

ξU
−1

, zt ≥ Φ−1 (b)

(3)
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where a and b are a probability or quantile. −∞ < µ <∞ is a location parameter, 0 < β <∞ is

a scale parameter, −∞ < ξ <∞ is a shape parameter. The support of zt of GPD is zt ≥ 0 when

ξ ≥ 0 and µ ≤ zt ≤ µ− β when ξ < 0,. 0 ≤ ξ < 0.5 represents a fat tail. zt exists at least up

to the second moment. The GPD consists of, in the sense of generalisation, an ordinary Pareto

distribution when ξ > 0, an exponential distribution when ξ = 0 and a short-tailed, Pareto type

II distribution when ξ < 0. Denote that X ∼ GPD (µ, β, ξ) , therefore, E (X) = µ+ β
1−ξ , ξ < 1

and var (X) = β2

(1−ξ)2(1−2ξ)
when ξ < 0.5. While φ (·) and Φ−1 (·) are the pdf and inverse cdf

of the Gaussian function, respectively. Note that mixture in equation 3 will be applied to our

proposed conditional volatility model in the next subsection 3.2.

3.2 Conditional volatility model: GARCH family

Two step approaches are implemented in this study. This is referred to as the Inference for the

Margins method (IFM) (Al Janabi et al., 2017, for example). Firstly, univariate (asymmetric-

)GARCH models with mixture innovation will be formulated to search for the best model

fitting of government bond datasets in order to obtain the standardised residuals. Note that this

GARCH family also fulfils volatility clustering, non-normality and fat-tails properties, which are

crucial characteristics of financial time series. See Engle (2004) for a survey. Example of research

papers, among others, are Cai (1994), Hamilton and Susmel (1994), Gray (1996), Bauwens et al.

(2010), Francq et al. (2013), So and Yeung (2014), Neumeyer et al. (2019), Billio et al. (2016),

Ardia et al. (2018), Francq et al. (2018) and Hafner and Kyriakopoulou (2019). Secondly, a

comovement measure between the Thai Government bond yields across tenors and comovement

measure between Thai government bond and developed bond markets such those the U.S., U.K.,

and Japanese bond market will be calculated. There are three GARCH-type processes in this

study including the classical GARCH process and other two asymmetric-GARCH processes,

which are Exponential-GARCH (EGARCH) process and LogGARCH process.

3.2.1 GARCH process

A crucial model in financial time series analysis is the conditional volatility model. Clearly that

generalised autoregressive conditional heteroscedasticity model, the GARCH family, is one of the

most crucial in conditional volatility models since Bollerslev (1986) evolved the GARCH model.

Let a financial yield series denoted by {yt}, yt = εt =
√
htzt, t ∈ Z. GARCH(p,q) process is

ht = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

νjht−j (4)
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where {zt} is a vector of independent, identically distributed (iid) random variables with zero

mean and unit variance, ht is conditional volatility and Ft−1 −measurable, where Ft−1 is the

σ − algebra generated by the past information up to time t-1, and the innovation term εt is

a zero mean and conditional volatility ht. p ≥ 0, q > 0, ω > 0, αi ≥ 0, νj ≥ 0, 0 ≤ αi + νj ≤
1, 1 ≤ i ≤ p, 1 ≤ j ≤ q and p, q ∈ Z to ensure that the conditional volatility ht is almost

surely strictly positive or a strictly stationary process; for details, see, among others, Oh and

Patton (2016). Given the parameter space Θ, the estimated parameter of the GARCH(p,q)

is Θ̂ := {ω̂, α̂i, ν̂j , 1 6 i 6 p, 1 6 j 6 q}. For simplicity, we study the GARCH family’s lags

including the innovation term and the volatility term when p = 1 and q = 1 since more lags of

them is much less popular in the literature.

3.2.2 Exponential-GARCH process

Popularity of the asymmetric-GARCH family in the research area of the volatility model reflects

how importance of the GARCH family because it responds to the crucial financial return

characteristic such as volatility clustering and non-normality. The exponential-type GARCH

models are one of the leading extensions of the asymmetric GARCH family. The well-known

exponential-type GARCH process is the exponential-GARCH(p,q,r) or EGARCH(p,q,r) of

Nelson (1991) given by

log ht = ω +

p∑
i=1

γizt−i +

q∑
j=1

δj |z|t−j +

r∑
k=1

νk log ht−k (5)

where the conditional volatility is log volatility rather than volatility. Given the parameter space

Θ, the estimated parameter of the EGARCH(p,q,r) is Θ̂ := {−∞ 6 ω̂, γ̂i, δ̂j 6∞, |ν̂k| < 1, 1 6

i 6 p, 1 6 j 6 q, 1 6 k 6 r}. The ”news impact” function g(zt−1) of the EGARCH model is

ω +
∑p

i=1 γizt−i +
∑q

j=1 δj |z|t−j term while νk is the volatility persistence parameter. γ and

δ are implied the shock asymmetry and the size effect, respectively. If γ > 0, positive shocks

increase volatility more than negative shocks of the same size and vice versa.

3.2.3 LogGARCH process

Another popular exponential-type GARCH process is LogGARCH(p,q) (For model details, see,

for example, in Francq et al. in 2019) given by

log ht = ω +

p∑
i=1

(
α+
i I{εt−i>0} + α−i I{εt−i<0}

)
log ε2

t−i +

q∑
j=1

νj log ht−j , t ∈ Z (6)
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where I is an indicator function, α+ + α− + ν < 1 and ν + 1
2 [|α+|+ |α−|] < 1. Given the

parameter space Θ, the estimated parameter of the LogGARCH (p,q) is Θ̂ := {ω, α+
i , α

−
i , νj , 1 6

i 6 p, 1 6 j 6 q}. The ”news impact” function of the LogGARCH is the term of ω +∑p
i=1

(
α+
i I{εt−i>0} + α−i I{εt−i<0}

)
log ε2

t−i. When α−i = α+
i represents symmetric Log-GARCH

process. The LogGARCH has a well-known problem which is if the εt−i term equal to zero. It

therefore will mean that the conditional volatility cannot be generated.

For a discussion of the LogGARCH process, see, among others, in Weiß and Supper (2013),

Salman Khan et al. (2019), and Sucarrat et al. (2016). For the reviews of the exponential-type

GARCH, please see, among ohers, Joe (2015), Hentschel (1995) and Jose Rodriguez and Ruiz

(2012) and a recent study of the exponential-type GARCH process, see, among others, in Weiß

and Supper (2013), Chang et al. (2018), Li and Kang (2018) and Bildirici and Ersin (2009).

3.3 Nonlinear comovement measure: Bivariate copula model

This section presents as follows: list of sixteen bivariate parametric copula function including

Elliptical copula family, Archimedean copula family, BB copula family and nonlinear copula-

based dependence measures including Kendall’s τ and Spearman’s ρs.

3.3.1 Elliptical copula model

The elliptical copulas are the Gaussian copula and the Student’s t copula. In general case, the

multivariate distribution copulas of the Gaussian and the Student’s t, respectively, are

CGaΣ (u) = ΦΣ (Φ−1 (u1 ), . . . ,Φ−1 (ud ))

Ctv,Σ (u) = tv,Σ
(
t−1
v (u1) , . . . , t−1

v (ud)
) (7)

where Φ−1 is an inverse cumulative Gaussian distribution or inverse cdf. Σ is a d× d correlation

matrix and Σ is equal to ρ when it is bivariate elliptical copula, d = 2. ui ∼ Unif (0, 1) is a

continuous standard uniform random variable for all i = 1, . . . , d. t−1 is an inverse cumulative

student’s t distribution or inverse cdf. tv,Σ is the cdf of multivariate tv,Σ distribution where

v > 2 degree of freedom.

3.3.2 One and two-parameter Archimedean copula models

All one-parameter and two-parameter copula families for our study are as follows. One-

parameter Archimedean copulas are Clayton, Frank, Gumbel, Galambos and Joe/B5 whereas

two-parameter Archimedean copulas are BB1, BB3, BB4, BB5, BB6, BB7, BB8, BB9 and

BB10 which come from the relevant copula in the literature. For all cdf copulas and their

properties, see Joe (2015), Chapter 4 and the Archimedean cdf copula shows in Table 1. Note
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Table 1: Archimedean parametric copula family

Name of Copula Bivariate Copula C(u, v), 0 6 u, v 6 1 Parameter θ, δ

One-parameter

Gumbel exp[−((− log (u))θ + (− log (v))θ)
1/θ

] θ > 1
Clayton [max(u−θ + v−θ − 1, 0)]−1/θ θ > −1, θ 6= 0

Frank −1
θ ln
(

1 +
(e−θu−1)(e−θv−1)

e−θ−1

)
−∞ < θ <∞, θ 6= 0

Joe/B5 1− [(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ]1/θ θ > 1
Galambos uv exp{[(− log u)−θ + (− log v)−θ]−1/θ} 0 6 θ <∞
Two-parameters
BB1 (1 + [(u−θ − 1)δ + (v−θ − 1)δ]1/δ)−1/θ θ > 0, δ > 1

BB3 exp{−[δ−1log(eδũ
θ

+ eδṽ
θ − 1)]1/θ}, ũ = −log(u), ṽ = −log(v) θ > 1, δ > 0

BB4 (u−θ + v−θ − 1− [(u−θ − 1)−δ + (v−θ − 1)−δ]−1/δ)−1/θ θ > 0, δ > 0
BB5 exp{−[xθ + yθ − (x−θδ + y−θδ)−1/δ]1/θ}, x = −log(u), y = −log(v) θ > 1, δ > 0
BB6 1− (1− exp{−[(−log(1− ūθ))δ + (−log(1− v̄θ))δ)δ]1/δ})1/θ, ū = 1− u, v̄ = 1− v θ > 1, δ > 1
BB7 1− (1− [(1− ūθ)−δ + (1− v̄θ)−δ − 1]−1/δ)1/θ, ū = 1− u, v̄ = 1− v θ > 1, δ > 0
BB8 δ−1(1− {1− η−1[1− (1− δu)θ][1− (1− δv)θ]}1/θ), η = 1− (1− δ)θ θ > 1, 0 < δ 6 1
BB9 exp{−[(δ−1 − log(u))θ + (δ−1 − log(v))θ − δ−θ]1/θ + δ−1} θ > 1, δ > 0
BB10 uv[1− δ(1− uθ)(1− vθ)]−1/θ θ > 0, 0 6 δ 6 1

that the Archimedean cdf copula is C (u, v) = ϕ
(
ϕ−1 (u) + ϕ−1 (v)

)
. It is worth mentioning

that C(u, v; θ, δ) = G(x, y; θ, δ) where G(x, y; θ, δ) is a bivariate survival function and x, y are

monotone decreasing transforms. Therefore, the conditional cdf and copula pdf are:

C2|1(v|u; θ, δ) =
∂G

∂x
.
∂x

∂u

c(u, v; θ, δ) =
∂2G

∂x∂y
.
∂x

∂u
.
∂y

∂v

(8)

3.3.3 Copula-based dependence measure

This section shows a rank-based measurement of dependence from which we will formulate

Kendall’s τ and Spearman’s ρs. Table 2 shows the closed form of dependence measure of the

copula family for this study. In case the closed form solution of dependence measure of the

copula family does not exist, we can estimate them using numerical approximation via a Monte-

Carlo simulation through two-variable integrals as in equation 9 for Kendall’s τ and equation

10 for Spearman’s ρs, respectively. Note that an example of Gaussian dependence measure is

demonstrated in Figure 1.

τ̂(C) = 1− 4

∫ 1

0

∫ 1

0

C1|2(u|v)C2|1(v|u)dudv (9)

ρ̂s(C) = 3− 12

∫ 1

0

∫ 1

0

uC2|1(v|u)dudv (10)
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Table 2: Closed form solution of Kendall’s τ and Spearman’s ρs against linear correlation coefficient ρ of copula
family

Name of Copula Kendall’s τ Spearman’s ρs

Gaussian 2π−1 arcsin (ρ) 6π−1 arcsin (ρ/2)
t 2π−1 arcsin (ρ) 6π−1 arcsin (ρ̂/2), ρ̂ = 2B((ρ+ 1)/2, a(ν), a(ν))− 1
Gumbel (θ − 1)/θ Matlab function or Equation 10
Clayton θ/(θ + 2) Matlab function or Equation 10
Frank 1 + 4θ−1[D1(θ)− 1] 1 + 12θ−1[D2(θ)−D1(θ)], Dk(x) = kx−k

∫ x
0
tk(et − 1)−1dt

Joe/B5 1− 2(2− θ)−1[ψ(2)− ψ(2/θ + 1)] Equation 10
BB1 1 + 2/(δ(θ + 2)) Equation 10

Note. B is incomplete beta function and a(ν) is Spearman’s ρs approximation for a t copula with ν degrees of freedom. ψ is digamma function.

Figure 1: Kendall’s τ and Spearman’s ρs against linear correlation coefficient ρ of bivariate Gaussian copula

3.4 QMLE estimation method

The estimation method is crucial in order to obtain a robust parameter estimator. In this study

we consider the quasi-maximum likelihood method (QMLE) which is well-known and commonly

appears in the literature, see, among others, Hafner and Kyriakopoulou (2019), Sahamkhadam

et al. (2018) and Francq et al. (2013).

3.4.1 Likelihood function

In statistics, the likelihood function measures the goodness of fit of a mathematical model

among data observations for the set of unknown parameter(s), Θ. It is a joint probability. Thus,

likelihood function is

L(Θ) =

T∏
t=1

f(yt|Θ). (11)
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In practice, we take the log of the likelihood function as it is computationally simpler and easier

to optimise. It is worth mentioning that to maximise the log likelihood function we use the

fmincon function in the optimisation toolbox of MATLAB®. The log likelihood function Λ(Θ)

is

Λ(Θ) =

T∑
t=1

log(f(yt|Θ)). (12)

Following our proposed GARCH processes, let zt = yt/
√
ht. To standardise the mixture

innovation in equation 3, we set β = (1− ξ) / (1− 2ξ)1/2 . Therefore, the log likelihood function

of this GARCH family with the mixture is

Λ (Θ) =

T∑
t=1

log[apGPDL (zt) + (1− 2a)pG (zt) + apGPDU (zt)]

pGPDL (zt) =
1

√
ht (1− ξL) (1− 2ξL)

1/2

(
1 +

ξLyt
√
ht (1− ξL) (1− 2ξL)

1/2

)− 1

ξL
−1

,

pG (zt) =
1

(2πht)
1/2

exp

[
−y2

t

2ht

]
,

pGPDU (zt) =
1

√
ht (1− ξU ) (1− 2ξU )

1/2

(
1 +

ξUyt
√
ht (1− ξU ) (1− 2ξU )

1/2

)− 1

ξU
−1

(13)

where weight a is a proportion of pdf or quantile, ht is conditional volatility. ht can be our

three proposed GARCH processes with mixture innovation. Hence, parameter estimators of,

for example, GARCH(1,1)-mixture are Θ̂ = {ω̂, α̂, ν̂, ξ̂U , ξ̂L}. Note that the quantile a can be

defined as the left and right boundary of distribution or a pre-specified quantile where we set a

equal to 0.10. Again, it is worth mentioning that our proposed models can fulfill two important

financial data stylised facts: volatility clustering and non-normal distribution (fat-tails and

asymmetric distribution).

3.4.2 Our estimation step

There are two steps of method in order to obtain Kendall’s τ and Spearman’s ρs dependence

values. The steps and their explanation using QMLE estimation method are

Step 1 We estimate the model parameters for univariate (asymmetric-)GARCH-mixture

models in equation 4, equation 5 and equation 6 with the mixture innovation, equation

13. Then, we choose the best fitting model. The example of model parameter Θ̂ of

EGARCH(1,1,1)-mixture model is Θ̂ = {ω̂, γ̂, δ̂, ν̂, ξ̂L, ξ̂U}. Note that blocking of estimation

may be required if a convergence issue occurs. After that, we perform data standardisation.
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Step 2 Given standardised data zt, we estimate the copula parameter in Table 1 and also

select the best fitting copula model. Finally, we calculate the copula-based dependence

measure given by the best fitting copula model.

All proposed models in Step 1 will be developed in MATLAB® while, for Step 2 models,

we will use the MATLAB® function for the Gaussian, Student’s t, Clayton, Gumbel and Frank

copula and copula-based dependence measures, Kendall’s τ and Spearman’s ρs. Otherwise, the

BB1, BB2, BB3, BB4, BB5, BB6 ,BB7, BB8, BB9 and BB10, we will develop in MATLAB®.

4 Model comparison

To compare across models, we calculate the mean absolute deviation (MAD), root mean squared

error (RMSE), mean absolute percentage error (MAPE), Akaike information criterion (AIC)

and Bayesian information criterion (BIC) to assess the model performance and a two-sample

Kolmogorov-Smirnov (KS) test for the out-of-sample forecasts (Bildirici & Ersin, 2009; So &

Yeung, 2014). Note that the KS test is used to assess whether the forecast distribution is close

to the empirical one. The higher the p-value, the closer the forecast distribution is. The model

performance is calculated as follows:

Mean Absolute Deviation (MAD):

MAD =
1

T

T∑
t=1

|ŷt − yt|

Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

T

T∑
t=1

(ŷt − yt)2

Mean Absolute Percentage Error (MAPE):

MAPE =
1

T

T∑
t=1

| yt − ŷt
yt

|

Akaike information criterion (AIC) and Bayesian information criterion (BIC), respectively:

AIC = −2loglik(θ̂obs) + 2(n)

BIC = −2loglik(θ̂obs) + nlog(n)
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where loglik is log likelihood function given by estimated paremeters and n is number of

parameters. The smaller AIC or BIC values are considered as the better model. Two-sample

Kolmogorov-Smirnov (KS) test is a nonparametric hypothesis test that evaluates the difference

between the two sample data, the test statistic is

D∗ = sup
t

(|F̂ (t)− F (t)|)

where ŷt is a forecast data. yt is actual data. Fi(t) is a cdf function. For more details, see Massey

(1951).

5 Data collection and preliminary data analysis

We illustrate our proposed models along with the benchmark Thai Government bond yields

(Thai LB yields) and developed bond markets including the US, UK and Japanese bond market

including the 1 month (1M), 3 months (3M), 6 months (6M), 1 year (1Y), 5 years (5Y), 10 years

(10Y), 20 years (20Y) and 30 years (30Y). The full daily dataset period is between January

2010 and April 2021 and the dataset are retrieved from the Thai Bond Market Association

(ThaiBMA) and Investing website. For the COVID-19 impact bond market comovement analysis

purpose, we split the data into pre-COVID-19 pandemic period and during-COVID-19 pandemic

period such that

1. Pre-COVID-19 pandemic period is from January 2010, to avoid the effect of the 2008

financial crisis, to 17 November 2019. Yet, the data between 2 July 2010 and 26 October

2010 of 30-year LB is not available; therefore, we decided to use the starting date of the

training dataset as 27 October 2010.

2. During-COVID-19 pandemic period is from 18 November 2019 to end of April 2021.

For the beginning of the crisis, we follow the study of Khanthavit (2020). We perform this

period with the aim of assessing comovement impact. Figure 2 shows that, as an example,

one-month LB yields in all bond markets continual low yield pre-COVID-19 period, while

Figure 3 shows that during-COVID-19 pandemic is comparative higher volatility than pre-

COVID-19 pandemic in all bond markets. However, LB yields that have the higher tenor,

the most likely less impact from the COVID-19 pandemic and, further, the yields almost

recover to pre-COVID-19 period. Note that the last date of COVID-19 pandemic period

is not the end of the pandemic. We cut off the dataset at the date of our writing.

Note also that bond yields are the daily change of the bond yield in basis point, rt =

(yieldt − yieldt−1) ∗ 100. The abbreviations of basis point are normally expressed as ”bps” or

”bips”.
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Once all datasets were collected they were cleaned and split into pre-COVID-19 period

(2411 daily observations) and during-COVID-19 period (348 daily observation) with the aim of

data descriptive statistics analysis, see the descriptive statistics in Table 3 for pre-COVID-19

period and Table 4 for during-COVID-19 period.

The average range of the benchmark government bond yields are [-22,15] for Thailand,

[-23,20] for the US, [-24,20] for the UK and [-31,28] for Japan. Interestingly, during the COVID-

19 period, the only tenor that is less than 10 years, LB average yields have a negative value.

otherwise, it seems to have no impact from the COVID-19 pandemic. This may imply that

COVID-19 pandemic only impacts Thai bond market in short-term bond. However, we have to

investigate further and can see in Section 7.

Figure 2: One-month government bond yields (%)

It is clear that, during the COVID-19 pandemic, funds flowed into the money market as

low-risk securities, i.e., benchmark LB bonds in all bond markets. This is also confirmed by

the negatively skewed distribution in all markets except Japan (positively skewed distribution).

However, the COVID-19 crisis seems to affect short-term LB yields rather than long-term LB

yields (LB that has the tenor greater or equal to 10 years). All LB bond markets during the

COVID-19 pandemic, tend to have a lower yield, especially the lower tenor. Also, there are

higher market fluctuations in all bond markets, again, except Japan. For kurtosis analysis, all

bond markets have a leptokutic distribution. This implied that all bond markets have heavy

tails, especially the Thai bond market. Finally, we performed a JB test on both periods. In all

bond market, JB test rejected the null hypothesis. Therefore, this implied that all benchmark

LB yields are not normally distributed at the 99% confidence interval. Therefore, this justified

the use of our proposed models in all bond markets and we will investigate them on bivariate
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Figure 3: Example of one-month government bond yields (bps)

comovement analysis section.
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Table 3: Descriptive statistics of pre-COVID-19 period dataset of benchmark government bond

Government Bond (tenor)
Month Year

1 3 6 1 5 10 20 30
Pre-COVID-19 period dataset: 01/01/2010-17/11/2019
Thailand
Min. -23.49 -24.82 -25.96 -22.84 -19.76 -22.49 -15.08 -21.96
Max. 12.09 14.27 9.46 12.63 21.52 23.26 19.87 15.96
Mean 0.01 0.01 0.00 -0.01 -0.09 -0.11 -0.12 -0.08
Std. 1.32 1.35 1.35 1.35 2.75 3.21 2.36 2.01
Skewness -4.50 -4.83 -6.22 -4.66 0.31 0.29 0.33 -1.18
Kurtosis 93.09 110.64 114.64 84.23 13.50 11.99 13.20 26.42
JB Test 823570*** 1173279*** 1267695*** 671584*** 11107*** 8159*** 10490*** 51104***
Obs. 2411 2411 2411 2411 2411 2411 2411 2214
United States of America
Min. -19.00 -31.50 -8.80 -12.00 -21.60 -24.70 NA -24.80
Max. 22.20 31.50 8.50 12.40 19.33 23.80 NA 26.20
Mean 0.06 0.06 0.06 0.05 -0.04 -0.08 NA -0.08
Std. 2.32 1.81 1.37 1.66 4.72 5.08 NA 4.92
Skewness 0.76 0.13 -0.35 0.09 0.01 0.12 NA 0.17
Kurtosis 15.57 80.77 9.70 13.67 4.55 4.64 NA 5.40
JB Test 16109*** 607530*** 4553*** 11438*** 241*** 275*** NA 542***
Obs. 2411 2411 2411 2411 2411 2411 NA 2214
Unite Kingdom
Min. -14.10 -17.80 -11.10 -26.00 -32.30 -28.80 -26.20 -24.40
Max. 25.40 21.00 8.70 28.90 34.20 21.20 15.80 15.80
Mean 0.01 0.01 0.01 0.00 -0.09 -0.13 -0.14 -0.13
Std. 2.03 1.36 1.22 3.64 4.45 4.91 4.28 4.12
Skewness 1.33 1.19 -0.37 -0.09 0.23 -0.01 -0.13 -0.10
Kurtosis 20.84 57.59 18.78 11.33 6.98 4.75 4.59 4.40
JB Test 32676*** 299929*** 25073*** 6969*** 1609*** 306*** 261*** 185***
Obs. 2411 2411 2411 2411 2406 2411 2411 2214
Japan
Min. -12.80 -39.80 -35.50 -7.80 -19.60 -70.10 -16.50 -30.50
Max. 13.10 30.50 35.00 7.20 19.70 66.90 16.50 21.50
Mean -0.01 -0.01 -0.01 -0.01 -0.03 -0.06 -0.07 -0.07
Std. 1.73 2.44 2.73 0.68 1.75 5.10 2.09 2.41
Skewness -0.50 -3.10 0.04 0.49 0.32 -0.09 0.19 -0.71
Kurtosis 18.15 82.49 65.98 27.10 52.29 115.92 11.36 22.47
JB Test 16927*** 545905*** 398505*** 58382*** 243905*** 1279982*** 7034*** 35127***
Obs. 1763 2062 2411 2214 2214 2214 2214 2214

Note: The minimum, maximum, mean and Std (standard deviation) are in bps unit. JB Test
is the test statistic from Jarque-Bera’s normality test. *** indicate the statistical significance
at 1%. Obs. stands for number of observations. NA stands for no data available.
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Table 4: Descriptive statistics of during-COVID-19 period dataset of benchmark government bond

Government Bond (tenor)

Month Year
1 3 6 1 5 10 20 30

during-COVID-19 period dataset: 18/11/2019-30/04/2021

Thailand

Min. -16.23 -15.43 -15.11 -14.74 -18.35 -20.00 -12.06 -14.42
Max. 3.27 6.64 5.44 5.33 20.23 26.48 25.83 27.21
Mean -0.28 -0.28 -0.26 -0.25 -0.11 0.04 0.16 0.24
Std. 1.20 1.28 1.24 1.22 3.31 4.21 3.84 2.90
Skewness -7.20 -4.77 -5.05 -4.81 1.06 1.22 2.19 3.26
Kurtosis 92.46 61.66 64.28 63.27 13.60 12.80 15.79 33.52
JB Test 119063*** 51213*** 55922*** 54019*** 1696*** 1479*** 2650*** 14125***
Obs. 348 348 348 348 348 348 348 348

United States of America

Min. -30.00 -24.70 -18.90 -18.90 -22.89 -27.30 -13.55 -31.00
Max. 6.40 7.90 6.10 11.00 23.10 32.90 15.50 39.10
Mean -0.46 -0.44 -0.45 -0.43 -0.22 -0.06 0.47 0.00
Std. 3.01 2.90 2.57 2.44 4.48 5.55 4.40 6.21
Skewness -4.91 -4.78 -4.41 -3.24 -0.23 0.04 0.10 -0.16
Kurtosis 38.84 33.88 28.85 23.76 10.91 10.23 4.13 11.74
JB Test 20025*** 15153*** 10822*** 6860*** 911*** 757*** 12*** 1109***
Obs. 348 348 348 348 348 348 222 348

Unite Kingdom

Min. -26.10 -19.90 -21.90 -21.10 -14.20 -16.00 -26.80 -33.20
Max. 17.20 19.90 11.40 9.40 14.80 23.50 28.70 36.20
Mean -0.19 -0.19 -0.20 -0.18 -0.05 0.01 0.03 0.01
Std. 3.65 3.54 3.36 2.94 3.29 4.03 4.90 5.25
Skewness -0.87 -0.20 -1.30 -0.74 -0.03 0.63 0.08 0.16
Kurtosis 12.99 11.08 11.69 10.63 6.71 7.10 9.45 14.23
JB Test 1490*** 949*** 1194*** 876*** 199*** 266*** 603*** 1829***
Obs. 348 348 348 348 348 348 348 348

Japan

Min. -11.20 -14.00 -16.40 -3.60 -5.00 -4.80 -5.70 -6.00
Max. 13.00 13.50 13.70 5.20 10.40 10.90 7.80 5.80
Mean -0.02 0.06 0.02 0.02 0.02 0.04 0.04 0.05
Std. 5.47 3.21 2.83 0.84 1.31 1.36 1.49 1.63
Skewness 0.01 0.32 -0.43 0.64 1.48 1.45 0.12 -0.23
Kurtosis 2.32 9.26 9.36 10.78 16.03 15.61 5.93 4.52
JB Test 6*** 573*** 597*** 901*** 2591*** 2428*** 125*** 36***
Obs. 348 348 348 348 348 348 348 348

Note: The minimum, maximum, mean and Std (standard deviation) are in bps unit. JB Test
is the test statistic from Jarque-Bera’s normality test. *** indicate the statistical significance
at 1%. Obs. stands for number of observations.
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6 Simulation result

This section shows the results of (a) the model parameter estimation of our proposed model

such as in equations 4, 5 and 6 using the (Blocked-)QMLE estimation method. We developed the

coding in MATLAB®. We then performed an example of parameter estimation of the bivariate

dependence model using the copula functions from Table 1 and Table 2. The experiments

were performed on a desktop computer with an Intel Core i7-9700 CPU, 3.00 GHz, and 32

GB RAM. The (blocked-)QMLE estimation method was performed by maximising the log-

likelihood function and this optimisation method can be computed using fmincon function in

MATLAB®.

6.1 Step 1: Univariate (Asymmetric-)GARCH model

We calculated MAD to assess the model performance. 100 simulations were generated with 1000

observations. The EGARCH(1,1,1)-Mixture model and LogGARCH(1,1)-Mixture model used

the one-step-QMLE estimation method while GARCH(1,1)-Mixture model used the blocked-

QMLE estimation method. We performed two-blocking for the GARCH(1,1)-Mixture model

such that for the first blocking, {ξL, ξU} were estimated and for the second blocking the rest

of parameters, {ω, α, ν}, were estimated. Note that the simulation results in Table 5 are an

average of 100 simulations. Overall, the means are close to the true parameters. The standard

deviations (Std) are acceptable. The MADs are significant low. This implies that the variability

of the QMLE estimation method is acceptable and it does not have a convergence issue of

estimation. Unsurprisingly, the highest computing time is from the GARCH(1,1)-Mixture model

because of the blocked-QMLE method. However, the computing time is low at approximately

2.98 seconds. Note that the standard deviation of the GARCH model is noticeably high and it

should be taken into account when the empirical experiment is performed.

6.2 Step 2: Copula-based dependence measure

After the previous step, we then simply performed data standardisation, zt = yt/
√
ht and

estimated the copula parameter(s) of all copula candidates in Equation 7 and in Table 1.

Finally, we selected the best fitting model using the model comparison as per the discussion in

section 4 and calculated the copula-based dependence value as per the discussion in subsection

3.3.3. Examples of copula parameters and copula-based dependence values are the Gaussian

copula using MATLAB® function and the BB4 copula which was developed by the researcher

in Table 6.

Again, simulation results in Table 6 are from an average of 100 data simulations. All means

of copula parameter(s) and copula-based dependence measures were closed to the true value.

The standard deviations and MADs were both low and acceptable.
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Table 5: Estimation and model comparison results from simulation experiment. Note that GARCH(1,1)-Mixture
model use Blocked-QMLE method otherwise it is QMLE method.

Parameter True Value
(Blocked-)QMLE

Mean Std MAD

GARCH(1,1)-Mixture

ξL 0.0654 0.2427 0.4907 0.1773

ξU 0.3141 0.3818 0.2282 0.0677

ω 0.0100 0.0681 94.8590 0.0581

α 0.0180 0.0120 20.1381 0.0060

ν 0.9700 0.9198 105.0157 0.0502

Computing time (seconds) 2.98

EGARCH(1,1,1)-Mixture

ξL 0.1500 0.1163 1.0534 0.0337

ξU 0.3500 0.3346 1.6846 0.0154

ω -0.1000 -0.0962 0.4147 0.0038

γ -0.1200 -0.1220 5.9237 0.0020

δ 0.1300 0.1251 1.7435 0.0049

ν 0.9800 0.9776 0.5419 0.0024

Computing time (seconds) 2.22

LogGARCH(1,1)-Mixture

ξL 0.1500 0.1302 2.6361 0.0198

ξU 0.2800 0.2575 4.4875 0.0225

ω 0.0320 0.0297 0.4340 0.0023

α+ 0.0030 0.0033 0.1266 0.0003

α− 0.0530 0.0525 0.5661 0.0005

ν 0.9600 0.9574 0.4878 0.0026

Computing time (seconds) 0.50
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Table 6: Example of QMLE estimation method of copula parameter and copula-based dependence measure, τ
and ρs

Copula Parameter True Value
QMLE Method

Mean Std MAD

Gaussian* ρ 0.24 0.238 0.031 0.002

Copula-based Dependence Measure τ 0.15 0.155 0.019 0.005

ρs 0.23 0.230 0.028 0.000

Computing time (seconds) 0.022

BB4** θ 0.10 0.097 0.373 0.003

δ 0.44 0.431 1.079 0.009

Copula-based Dependence Measure τ 0.18 0.184 0.016 0.004

ρs 0.27 0.271 0.023 0.001

Computing time (seconds) 0.161

Note: * indicates calculation is based on MATLAB® function. ** indicates calculation is

based on the researcher’s calculation using MATLAB implementation.
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7 Bivariate nonlinear comovement analysis on benchmark Thai government bond

and developed bond market

This section presents the analysis of Thai bond market nonlinear comovement on benchmark

LBs (1 month, 3 months, 6 months, 1 year, 5 years, 10 years, 20 years, 30 years) and developed

bond markets including the US, UK and Japan. Note that no data is available for 20 years

US government bond. The nonlinear comovement analysis, via a proposed Bivariate-Copula-

EGARCH-Mixture model and the QMLE estimation method, consists of two periods, namely

the pre-COVID-19 pandemic period, between January 2010 and 17 November 2019, and the

period during the COVID-19 pandemic, between 18 November 2019 and April 2021 (referred

to hereafter as the ’during-COVID-19 pandemic period’). Note that we follow the study of

Khanthavit (2020) for the beginning of the COVID-19 pandemic. The aim of splitting the

data is to compare nonlinear comovement before and during the pandemic. The results of the

nonlinear copula-based comovement measure include Spearman’s ρ̂s and Kendall’s τ̂ . The IFM

method is applied and the methodology has been explained in the earlier section, see Section

3.2. In the empirical experiment, there are two steps in the IFM method, the details being as

follows.

1 Data standardization using univariate marginal model: In this part we propose

two candidates for the marginal model, namely the univariate GARCH-Mixture model and

the univariate EGARCH-Mixture model in a conditional heteroskedasticity model. Given

the proposed models, the best-fitting model will be selected on the basis of statistical

information. Given best-fitting marginal model, data standardization would be computed

for the next step of the nonlinear copula-based comovement measure. It is worth mentioning

that the LogGARCH process cannot be generated because many of the residuals are equal

to zero.

2 Nonlinear copula-based comovement measurement: Here we use 16 candidates for

the bivariate copula function as shown in Section 3.3. QMLE parameter estimators are

estimated for all candidates. Then, we select the best-fitting copula candidate using the

statistical evidence. Finally, given the individual best-fitting copula function, nonlinear

comovement can be computed. Note that we use one-day lag daily data for the US bond

market, two-day lag daily data for the UK bond market and zero-day lag daily data for

the Japanese bond market in this analysis as it shows higher historical correlation than

the other lags and makes more sense in practice.

To simplify the Thai bond market analysis, the finding are presented in the following three

subsections: the first subsection is a discussion of pre-COVID-19 pandemic comovement; the
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second subsection is a discussion of during-COVID-19 pandemic comovement; and the last

subsection is a discussion of the COVID-19 impact on Thai bond market comovement.

7.1 Pre-COVID-19 pandemic nonlinear comovement analysis

This subsection presents the numerical results and analysis of Thai bond market comovement

before the COVID-19 pandemic.

Table 7 shows model parameter estimators of the proposed marginal models from Section

3.2.

Overall, the univariate EGARCH-Mixture model is statistically preferable to traditional

GARCH-Mixture model as indicated by the AIC/BIC values and the log-likelihood value.

Further, the KS statistical test confirms that EGARCH-mixture model is the preferable model.

It confirms that all bonds are fat-tailed and non-normally distributed (as indicated by the ξ

of the GPD distribution function). There are nine bonds that statistically fit the EGARCH-

Mixture model: the 1Y, 5Y, 10Y, 20Y and 30Y UK bonds, the 5Y, 10Y and 30Y US bonds

and the 5Y TH bond. The volatility persistence coefficient ν could imply that the most stable

bond market is Japan, followed in order of decreasing stability by Thailand, the UK and the

US. In general, the majority of bonds have very high volatility persistence in both marginal

models (coefficient is greater than 0.7), except for the 3M and 6M TH bonds, the 6M and 1Y

US bonds, the 6M UK bond and the 10Y and 20Y JP bonds. However, the EGARCH-Mixture

model has comparatively lower volatility persistence than the GARCH-Mixture model, except

for the 1M, 6M and 1Y JP bonds, the 3M UK bond and the 30Y US bond. Fifteen bonds have

negative shock asymmetry and seventeen bonds have positive shock asymmetry. The shock size

δ persistence is low (the average coefficient is 0.16) except for the 6M and 1Y UK bonds, the

1Y US bond, the 5Y, 10Y and 20Y TH bonds and the 10Y and 20Y JP bonds (where the shock

size coefficient is greater than 0.4). For further numerical results, see Table 7.

Following step one of the IFM, we select the best marginal model fitting which is

the EGARCH-Mixture process. Hence, we transform the yields into uniform distributions.

Figure 4 and Figure 5 depict pairwise historical correlation yields and transformed yields

via the EGARCH-Mixture model, respectively. Note that we test the transformed residual

autocorrelation using the Ljung-Box test and the results see Table 8.

Further, Figure 5 shows the results of nonlinear comovement measure including estimated

Spearman’s ρ̂s and estimated Kendall’s τ̂ in matrix representation given by best fitting of 16

bivariate copula functions. Note that the US, UK and JP bond’s tenor in column of the matrix

representation is the same bond tenor as the LBs’ tenor. The best copula candidate seen in

Table 8 is given by minimising AIC (Table 9) and BIC (Table 10).
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Given the nonlinear comovement measure in Figure 5 and the best copula fitting function

in Table 8 according to the AIC value and BIC value, the following conclusions can be drawn.

Given Table 8 for the sake of the LB comparison, the best fitting copula function is in the

BB copula family (23 bonds pairwise), i.e, the BB10 and BB9 copula function. The second

best fitting function is the Frank copula in which there are five bonds pairwise that are the

best fit to the Frank copula. This BB copula family presents asymmetric and different upper

and lower tail dependence while the Frank copula presents symmetric and tail independence.

This implies that there is asymmetric information in the Thai bond market. For comovement

between LBs and developed market bonds, the Elliptical copula family is the most common

best fit to the bond pairwise data (8 bonds pairwise). The Gaussian copula presents symmetric

and no tail dependence while the Student’s t copula presents symmetric and upper and lower

tail dependence. There are two bonds pairwise that are best fit to the Clayton copula, where

the Clayton copula presents asymmetric but only lower tail dependence.

For the sake of the comparison of the LB comovement measure, there is positive nonlinear

comovement in all LBs. In the column vector (the comovement between the bond and its lower

tenor bond), it is clear that the closer the bond tenor, the higher the nonlinear comovement.

This is the so-called spillover effect. For example, the Spearman’s ρ̂s of LB5Y with {LB1Y,

LB6M, LB3M, LB1M} is {0.5997, 0.4724, 0.4180, 0.2966}, respectively. In the row vector (the

comovement between the bond and its higher tenor bond), interestingly, the spillover effect is

not clear but it is clearer in the long-term bonds (10Y 20Y 30Y LB). Otherwise, it is not clear

there is a spillover effect. More precisely, there are differences in the order. For example, for

LB1M, the order from highest comovement to lowest is LB3M, LB1Y, LB6M, LB20Y, LB10Y,

LB5Y and LB30Y. For LB3M, the order from highest comovement to lowest is LB6M, LB1M,

LB1Y, LB30Y, LB20Y, LB5Y and LB10Y. However, it is more likely that the closer the tenor,

the higher the nonlinear comovement. See all numerical comovements in the Figure 5.

Lastly, we compare the nonlinear comovement measure between the Thai bond market

and the developed bond market. We find that, overall, there is positive nonlinear comovement

except in the 1M, 3M and 6M JP bond tenors and the 1M UK bond tenor which is a

negative comovement (19 out of 23 bonds pairwise). The Thai bond market tends to have

the highest positive comovement with the UK bond market, especially the bond tenor that is

five years or more (five out of eight bonds pairwise). For the bond tenor that is lower than

five years, the LB1Y that has the highest positive comovement is in the US bond market

(ρ̂s = 0.4539, τ̂ = 0.3094). The LB6M that has highest positive comovement is in the UK bond

market (ρ̂s = 0.4472, τ̂ = 0.3052), while the LB1M (ρ̂s = −0.2321, τ̂ = −0.1557) and LB3M

(ρ̂s = −0.1977, τ̂ = −0.1324) that have the highest comovements, though these are negative,
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Table 7: Univariate marginal models in all bond markets: Pre-COVID-19 pandemic period.

ξL ξU ω α γ δ ν Time (second.) Log-Likelihood AIC BIC KSTEST (P value)

Government Bond 1m

Univariate GARCH-Mixture TH 0.5000 0.4537 0.1000 0.1213 NA NA 0.7786 1.00 -1505 3020 3049 1.65E-11
US 0.5000 0.1871 0.0000 0.0252 NA NA 0.9747 0.61 958 -1906 -1877 1.23E-155
UK 0.4440 0.5000 0.0001 0.0061 NA NA 0.9937 0.83 298 -585 -556 1.84E-26
JP 0.5000 0.4162 0.0000 0.0096 NA NA 0.9903 0.96 8719 -17428 -17401 9.54E-42

Univariate EGARCH-Mixture TH 0.4724 0.5000 -0.1199 NA 0.0193 0.1039 0.9015 0.89 5067 -10123 -10088 1.08E-07
US 0.2180 0.5000 -0.1200 NA 0.0013 0.2131 0.9829 1.35 7613 -15213 -15179 8.50E-12
UK 0.5000 0.1011 -0.0759 NA -0.0030 0.1098 0.9963 1.29 9630 -19248 -19214 1.81E-21
JP 0.5000 0.0878 -0.0995 NA 0.1193 0.2381 0.8877 0.24 14202 -28392 -28359 9.72E-38

Government Bond 3m

Univariate GARCH-Mixture TH 0.5000 0.4589 0.1000 0.0766 NA NA 0.8233 0.4739 -1396 2802 2831 1.29E-12
US 0.4411 0.5000 0.0096 0.0391 NA NA 0.9512 0.7987 -151 311 340 2.96E-11
UK 0.4670 0.5000 0.0150 0.0358 NA NA 0.9491 0.6076 4184 -8358 -8329 1.80E-16
JP 0.0534 0.5000 0.0446 0.0590 NA NA 0.8964 0.4588 3106 -6201 -6173 3.35E-13

Univariate EGARCH-Mixture TH 0.5000 0.4383 -0.1195 NA 0.0379 0.0933 0.6161 0.1388 4582 -9152 -9117 3.06E-14
US 0.5000 0.3220 0.0104 NA -0.4166 0.2778 0.7173 0.1048 5661 -11311 -11276 8.55E-09
UK 0.5000 0.0620 -0.1200 NA 0.0505 0.1608 0.9901 2.2679 12185 -24358 -24324 1.09E-16
JP 0.5000 0.3231 -0.0169 NA 0.0183 0.2282 0.7770 0.0896 6655 -13299 -13265 1.47E-14

Government Bond 6m

Univariate GARCH-Mixture TH 0.4718 0.5000 0.0889 0.0835 NA NA 0.8275 0.5640 -1583 3176 3205 1.99E-11
US 0.5000 0.2455 0.0081 0.0248 NA NA 0.9670 0.9616 2545 -5080 -5051 6.73E-10
UK 0.5000 0.0579 0.0192 0.0299 NA NA 0.9508 0.6927 3058 -6107 -6078 9.23E-18
JP 0.4327 0.5000 0.0172 0.0592 NA NA 0.9235 0.5023 8259 -16508 -16479 2.17E-30

Univariate EGARCH-Mixture TH 0.4126 0.5000 -0.1158 NA 0.1748 0.2776 0.5395 0.6687 4635 -9257 -9223 6.76E-21
US 0.5000 0.3341 -0.0067 NA -0.3840 0.2820 0.6713 0.1146 6535 -13058 -13023 3.61E-10
UK 0.5000 0.2433 -0.1170 NA -0.5078 0.6383 0.5288 0.2106 9505 -18999 -18964 1.01E-26
JP 0.5000 0.4247 -0.1103 NA 0.1186 0.1349 0.9992 0.2282 15262 -30512 -30478 2.63E-31

Government Bond 1y

Univariate GARCH-Mixture TH 0.4921 0.5000 0.0945 0.0604 NA NA 0.8450 0.9174 -1399 2807 2836 8.50E-14
US 0.5000 0.2169 0.0048 0.0244 NA NA 0.9707 0.5544 1916 -3822 -3793 3.06E-08
UK 0.4350 0.4145 0.0000 0.0056 NA NA 0.9943 3.4017 -4639 9288 9317 1.45E-179
JP 0.5000 0.4571 0.0461 0.0808 NA NA 0.8731 0.4331 5571 -11132 -11103 5.74E-27

Univariate EGARCH-Mixture TH 0.4896 0.5000 -0.1200 NA 0.1197 0.4316 0.5263 0.7349 4572 -9131 -9097 2.13E-20
US 0.5000 0.3285 0.0091 NA -0.5209 0.6851 0.7142 0.1169 5152 -10292 -10257 5.29E-19
UK 0.3997 0.3858 -0.0985 NA -0.0031 0.1615 0.9912 1.6442 873 -1733 -1698 1.12E-01***
JP 0.5000 0.4010 -0.1196 NA -0.2389 0.0436 0.8990 0.2680 11690 -23367 -23333 3.83E-19

Government Bond 5y

Univariate GARCH-Mixture TH 0.4329 0.4660 0.0000 0.0073 NA NA 0.9926 2.9516 -4324 8658 8687 2.00E-109
US 0.4217 0.4316 0.0000 0.0015 NA NA 0.9993 240.4007 -4934 9877 9906 7.04E-175
UK 0.3570 0.3063 0.0000 0.0135 NA NA 0.9864 10.2764 -5143 10295 10324 4.26E-146
JP 0.5000 0.0803 0.0036 0.0210 NA NA 0.9754 4.2590 -335 680 709 2.88E-12

Univariate EGARCH-Mixture TH 0.3876 0.4375 -0.1078 NA 0.0205 0.4338 0.8820 1.1109 1591 -3171 -3136 1.37E-02*
US 0.2372 0.2698 -0.0591 NA -0.0057 0.1390 0.9841 1.1247 -108 228 263 2.03E-01***
UK 0.3134 0.2874 0.1200 NA 0.0031 0.1380 0.9220 1.1908 2 8 43 1.26E-01***
JP 0.5000 0.0000 -0.1200 NA 0.0010 0.1557 0.9735 0.4272 6009 -12005 -11970 4.56E-13

Government Bond 10y

Univariate GARCH-Mixture TH 0.4385 0.4646 0.0000 0.0068 NA NA 0.9931 3.0542 -4487 8985 9014 4.44E-113
US 0.3977 0.3795 0.0000 0.0016 NA NA 0.9983 4.3036 -5317 10643 10672 1.57E-246
UK 0.3442 0.3697 0.0000 0.0052 NA NA 0.9947 3.2619 -5294 10598 10627 3.76E-227
JP 0.5000 0.2851 0.0000 0.0102 NA NA 0.9897 0.9333 -2199 4408 4437 1.14E-174

Univariate EGARCH-Mixture TH 0.4177 0.4469 -0.1106 NA 0.0102 0.4051 0.9172 2.4983 1240 -2467 -2433 3.17E-04
US 0.1807 0.0869 -0.0519 NA -0.0189 0.1219 0.9849 1.7165 -260 531 566 1.39E-01***
UK 0.3237 0.2424 0.0774 NA 0.0090 0.1209 0.9461 1.5084 -283 577 612 7.65E-02**
JP 0.5000 0.1990 -0.0646 NA 0.0147 0.6881 0.5183 0.2046 3326 -6640 -6605 1.08E-10

Government Bond 20y

Univariate GARCH-Mixture TH 0.4549 0.4918 0.0000 0.0198 NA NA 0.9801 5.1893 -4015 8040 8069 4.87E-162
US NA NA NA NA NA NA NA NA NA NA NA NA
UK 0.2558 0.4117 0.0000 0.0050 NA NA 0.9949 12.1364 -5133 10275 10304 1.55E-191
JP 0.0168 0.5000 0.0000 0.0131 NA NA 0.9868 1.1154 -2090 4189 4218 3.28E-124

Univariate EGARCH-Mixture TH 0.4516 0.4907 -0.0298 NA 0.0748 0.5343 0.7931 4.5897 2051 -4090 -4055 4.17E-06
US NA NA NA NA NA NA NA NA NA NA NA NA
UK 0.2398 0.3585 -0.0137 NA -0.0121 0.1075 0.9765 7.2104 41 -71 -36 2.32E-01***
JP 0.0597 0.5000 -0.1193 NA -0.0179 0.7740 0.5856 1.4897 3446 -6880 -6845 1.52E-04

Government Bond 30y

Univariate GARCH-Mixture TH 0.4654 0.4953 0.0000 0.0081 NA NA 0.9918 2.0922 -3787 7583 7612 1.21E-153
US 0.3560 0.3446 0.0000 0.0194 NA NA 0.9805 3.0220 -5261 10531 10560 3.88E-176
UK 0.2692 0.3169 0.0000 0.0215 NA NA 0.9784 2.3791 -5096 10202 10231 1.05E-21
JP 0.0394 0.5000 0.0000 0.0191 NA NA 0.9808 0.5949 -2359 4728 4757 2.55E-123

Univariate EGARCH-Mixture TH 0.4111 0.5000 0.1200 NA 0.0406 0.0535 0.8053 0.6902 2488 -4964 -4929 2.28E-06
US 0.3618 0.4027 -0.0531 NA -0.0408 0.1379 0.9842 1.0162 -345 701 736 4.73E-02*
UK 0.2452 0.3753 -0.0358 NA -0.0166 0.1143 0.9819 0.8902 118 -223 -189 1.67E-01***
JP 0.1852 0.5000 0.0004 NA -0.0302 0.2677 0.8715 0.2004 3056 -6099 -6065 1.43E-04

Note: ***,**,* indicate the statistical significance at 10%, 5%, 1% respectively. Bold font indicates abetter result. NA indicates data is not

available.

are in Japanese bond market.
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Figure 4: Pre-COVID-19 period: Pairwise correlation of historical yields. US, UK, JP in the row representations
are the 1-month, 3-month, 6-month, 1-year, 5-years, 10-year, 20-year and 30-year bonds, respectively. Note: NA
indicates no data available.

Figure 5: Pre-COVID-19 period: Transformed yields via EGARCH(1,1,1)-Mixture model prior to fitting a
bivariate copula and its Spearman’s ρ̂s and Kendall’s τ̂ , respectively. US, UK, JP in the row representations
are the 1-month, 3-month, 6-month, 1-year, 5-years, 10-year, 20-year and 30-year bonds, respectively. Note: NA
indicates no data available.

7.2 During-COVID-19 pandemic nonlinear comovement analysis

This subsection presents the numerical results and analysis of the Thai bond market

comovement during the COVID-19 pandemic.

Table 11 shows model parameter estimators of proposed marginal models from Section 3.2.

Overall, the univariate EGARCH-Mixture model is statistically preferable to the traditional
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Table 8: Pre-COVID-19 period: Best bivariate copula candidate given by AIC/BIC values. Note: NA indicates
no data available. ***,**,* indicate the statistical Ljung–Box test significance at 10%, 5%, 1% respectively.
Ljung–Box test is statistical testing residual autocorrelation; Statistical significance of the Ljung–Box test
showing in row representation of the US, UK and JP bond markets indicates that no autocorrelation. For
example, ’Clayton*’ indicates the Ljung–Box test result with 1% significance level using the standard residual
data of the 3M US bond.

LB1M LB3M LB6M LB1Y LB5Y LB10Y LB20Y LB30Y

LB3M Frank
LB6M BB1 BB8
LB1Y BB10 BB10 BB10
LB5Y BB9 Frank BB9 BB10
LB10Y Frank BB10 BB10 BB10 Frank
LB20Y BB10 BB10 BB10 BB10 BB8 BB8
LB30Y BB1 BB10 BB10 BB10 Frank BB8 BB8
US BB1 Clayton* BB10 BB10 Clayton*** t** NA BB9*
UK t t BB8 Gaussian t*** BB9* BB9 BB9
JP Frank Gaussian Gaussian*** t B5*** B5*** Frank** BB1*

Table 9: Pre-COVID-19 period: AIC value of the best bivariate copula candidate. Note: NA indicates no data
available.

LB1M LB3M LB6M LB1Y LB5Y LB10Y LB20Y LB30Y

LB3M -3203.7
LB6M -2206.1 -3233.3
LB1Y -1389.9 -2105.8 -3422.8
LB5Y -130.5 -189.0 -312.7 -472.3
LB10Y -97.3 -133.0 -241.9 -379.9 -3096.7
LB20Y -96.6 -148.9 -244.7 -366.9 -1805.5 -2464.1
LB30Y -326.7 -244.7 -406.3 -468.8 -1290.3 -1675.0 -2463.7
US -263.7 0.2 -5.1 -34.2 0.2 -3.2 NA -15.3
UK -0.7 -44.2 -61.8 2.0 -80.4 -88.8 -62.8 -65.4
JP -3.6 -0.3 1.4 -33.4 -49.2 -102.2 -66.1 -251.9

Table 10: Pre-COVID-19 period: BIC value of the best bivariate copula candidate. Note: NA indicates no data
available.

LB1M LB3M LB6M LB1Y LB5Y LB10Y LB20Y LB30Y

LB3M -3205.7
LB6M -2208.7 -3235.9
LB1Y -1392.5 -2108.5 -3425.4
LB5Y -133.1 -191.0 -315.3 -474.9
LB10Y -99.3 -135.6 -244.5 -382.5 -3098.7
LB20Y -99.2 -151.6 -247.3 -369.5 -1808.2 -2466.7
LB30Y -329.3 -247.2 -408.4 -471.6 -1292.3 -1677.6 -2466.4
US -266.4 -1.8 -7.7 -36.8 -1.8 -5.9 NA -17.9
UK -3.3 -46.8 -64.4 0.0 -83.0 -91.4 -65.4 -68.0
JP -5.6 -2.3 -0.6 -36.0 -51.2 -104.2 -68.1 -254.5

GARCH-Mixture model as indicated by the AIC/BIC values and the log-likelihood value.

Further, the KS statistical test confirms that the EGARCH-Mixture model is the preferable

model. Again, it confirms that all bonds are fat-tailed and non-normally distributed. There are
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24 bonds that statistically fit to the proposed marginal models; in the GARCH-Mixture model

these are the 1M US bond, the 2M, 1Y, 5Y and 10Y JP bonds and the 30Y TH bond; and in

the EGARCH-Mixture model the 1M, 5Y, 10Y, 20Y and 30Y US bonds, the 6M, 1Y, 5Y, 10Y

and 20Y JP bonds, the 1Y, 5Y, 10Y, 20Y and 30Y UK bonds and the 5Y, 10Y and 20Y TH

bonds. The volatility persistence coefficient ν could imply that the most stable bond market is

Japan, followed in order of decreasing stability by the US, the UK and Thailand. In general, all

bonds have very high volatility persistence in both marginal models, except for the 1M, 6M and

1Y US bonds, the 1Y and 10Y JP bonds in the EGARCH-Mixture model. However, overall,

the EGARCH-Mixture model has lower volatility persistence than the GARCH-Mixture model

except in the Thai bond market. Eighteen bonds have negative shock asymmetry and 15 bonds

have positive shock asymmetry. For further numerical results, see Table 11.

Given the nonlinear comovement measure in Figure 7 and the best copula fitting function

in Table 12 according to the lowest AIC value in Table 13 and the lowest BIC value in Table

14, the following conclusions can be drawn.

Given Table 12 for the sake of the LB comparison, the best fit for bond pairwise data is

the Gumbel copula function (12 out of 28 bonds pairwise). The second best is the BB10 (seven

bonds pairwise), followed by the BB9 (six bonds pairwise) and the BB3 (two bonds pairwise).

Almost all the best copula fit to the bond pairwise data during the COVID-19 pandemic belong

to asymmetric and upper and lower tail dependence (27 out of 28 bonds pairwise). There is

only one symmetric and tail independence copula best fit to the bond pairwise data, which is

the Gaussian copula. This implies that there is asymmetric information in Thai bond market

during the COVID-19 pandemic. For comovement between LBs and developed market bonds,

the Elliptical copula family is the most common best fit to the bond pairwise data (symmetric

and no tail dependence for the Gaussian copula (six out of 24 bonds pairwise) and upper and

lower tail dependence for the Student’s t copula (six out of twenty-four bonds pairwise)). There

are two bonds pairwise that are symmetric and tail independent property which, are in the

Frank copula. The rest of the bonds pairwise best copula fits are to the Gumbel, BB9, BB10,

BB1 and Galambos copulas which all show asymmetric and different two-tail dependence.

For the sake of the comparison of the LB bond comovement measure, all LB bonds pairwise

belong to positive nonlinear comovement. In the row vector (the comovement between the

bond and its higher tenor bond), LBs bond pairwise with the tenor that is 6 months or more

have a clearer spillover effect: the closer the tenor bonds pairwise, the higher the nonlinear

comovement. For example, the Spearman’s ρ̂s of LB1Y with {LB5Y, LB10Y, LB20Y, LB30Y}
is {0.5480, 0.4862, 0.4510, 0.4206}, respectively, while, the Spearman’s ρ̂s of LB1M with {LB3M,

LB6M, LB1Y, LB5Y, LB10Y, LB20Y, LB30Y} is {0.9254, 0.8846, 0.8025, 0.6449, 0.4507, 0.4414,
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0.5699}, respectively. The Spearman’s ρ̂s of LB3M with {LB6M, LB1Y, LB5Y, LB10Y, LB20Y,

LB30Y} is {0.9024, 0.8399, 0.5078, 0.5648, 0.5438, 0.5490}, respectively. In the column vector

(the comovement between the bond and its lower tenor bond), the spillover effect is only clear

in the LB tenor that one year or less. For the rest of the bonds pairwise, the spillover effect is

not very clear. However, the closer bond tenor pairwise seems to have the higher comovement.

Table 11: Univariate marginal models in all bond markets: During-COVID-19 pandemic period.

ξL ξU ω α γ δ ν Time (second.) Log-Likelihood AIC BIC KSTEST (P value)

Government Bond 1m

Univariate GARCH-Mixture TH 0.4543 0.4952 0.1000 0.0742 NA NA 0.8258 1.9144 -355 720 740 1.68E-04
US 0.3802 0.5000 0.0207 0.0186 NA NA 0.9607 0.7107 129 -248 -228 3.70E-02*
UK 0.3719 0.5000 0.0000 0.0672 NA NA 0.9327 0.4031 -294 598 617 6.94E-30
JP 0.5000 0.3161 0.0000 0.0014 NA NA 0.9985 0.9421 198 -386 -367 6.55E-15

Univariate EGARCH-Mixture TH 0.4333 0.4926 -0.1200 NA -0.0058 0.1618 0.9833 0.5340 696 -1380 -1357 1.24E-03
US 0.5000 0.3727 0.0175 NA -0.4815 0.3229 0.6693 0.0896 645 -1277 -1254 5.04E-02**
UK 0.5000 0.0619 0.0487 NA 0.1258 0.4302 0.8483 0.1132 464 -916 -893 5.63E-04
JP 0.5000 0.4986 0.0991 NA -0.2388 0.2070 0.9234 0.1485 809 -1606 -1583 4.82E-04

Government Bond 3m

Univariate GARCH-Mixture TH 0.4096 0.4891 0.1000 0.0830 NA NA 0.8169 1.9665 -388 786 805 1.50E-04
US 0.2132 0.5000 0.0505 0.0565 NA NA 0.8929 0.5057 402 -793 -774 2.97E-03
UK 0.1342 0.5000 0.0000 0.0245 NA NA 0.9754 0.4078 -298 606 625 3.40E-13
JP 0.3669 0.5000 0.1000 0.1315 NA NA 0.7684 0.2898 45 -80 -61 2.45E-02*

Univariate EGARCH-Mixture TH 0.3037 0.4688 -0.1200 NA 0.0013 0.1455 0.9848 0.5008 674 -1335 -1312 8.65E-04
US 0.5000 0.3445 -0.0788 NA -0.1342 0.3033 0.8435 0.0963 1313 -2614 -2590 1.03E-03
UK 0.5000 0.0915 0.0414 NA -0.2184 0.5398 0.7941 0.1557 459 -906 -883 8.92E-03
JP 0.5000 0.4264 0.0398 NA -0.2040 0.3118 0.8804 0.3238 842 -1673 -1650 1.04E-03

Government Bond 6m

Univariate GARCH-Mixture TH 0.4617 0.4883 0.1000 0.0618 NA NA 0.8381 1.6458 -367 744 763 2.43E-05
US 0.5000 0.2679 0.0561 0.0833 NA NA 0.8605 0.6201 398 -786 -767 2.36E-03
UK 0.3419 0.5000 0.0000 0.0541 NA NA 0.9458 0.3942 -351 711 730 1.35E-24
JP 0.5000 0.3814 0.0000 0.1201 NA NA 0.8798 0.3592 -32 74 93 5.40E-31

Univariate EGARCH-Mixture TH 0.4034 0.4542 -0.1200 NA -0.0165 0.1470 0.9900 0.6209 711 -1410 -1387 1.08E-03
US 0.5000 0.3658 -0.0883 NA -0.2285 0.1919 0.6794 0.0989 1106 -2200 -2177 1.46E-03
UK 0.5000 0.1317 0.0442 NA 0.0865 0.4729 0.8463 0.1519 369 -726 -703 1.18E-03
JP 0.1068 0.5000 0.0492 NA 0.0648 0.6052 0.7363 0.2173 843 -1673 -1650 3.66E-02*

Government Bond 1y

Univariate GARCH-Mixture TH 0.4659 0.4852 0.1000 0.0473 NA NA 0.8526 2.5232 -371 752 771 5.01E-06
US 0.5000 0.3674 0.0488 0.0865 NA NA 0.8646 0.3487 145 -280 -261 3.03E-03
UK 0.4766 0.4798 0.0001 0.0033 NA NA 0.9964 4.6948 -630 1270 1290 4.70E-21
JP 0.5000 0.2238 0.1000 0.0687 NA NA 0.8312 0.3378 -136 281 300 2.17E-02*

Univariate EGARCH-Mixture TH 0.4155 0.4684 -0.1200 NA -0.0310 0.1527 0.9871 0.5272 704 -1396 -1373 1.70E-03
US 0.5000 0.3556 -0.1197 NA -0.6205 0.7938 0.6273 0.1404 1053 -2094 -2071 1.97E-05
UK 0.2938 0.0000 0.1039 NA -0.0904 0.4737 0.7173 0.7674 191 -370 -346 2.88E-01***
JP 0.5000 0.1922 -0.1196 NA -0.0760 -0.0401 0.5344 0.1497 804 -1596 -1573 4.19E-02*

Government Bond 5y

Univariate GARCH-Mixture TH 0.2220 0.4161 0.0000 0.0957 NA NA 0.9042 1.5260 -660 1331 1350 6.28E-24
US 0.4365 0.4454 0.0000 0.0173 NA NA 0.9826 1.8870 -711 1432 1451 3.41E-33
UK 0.4435 0.4313 0.0000 0.0055 NA NA 0.9944 2.0110 -689 1387 1406 9.52E-21
JP 0.5000 0.1482 0.0700 0.0679 NA NA 0.8620 0.3439 -267 544 563 3.32E-02*

Univariate EGARCH-Mixture TH 0.4053 0.4548 -0.1200 NA 0.0406 0.3252 0.9440 0.4799 201 -391 -368 2.61E-01***
US 0.4064 0.3145 -0.1200 NA -0.0853 0.4002 0.9264 0.4595 90 -168 -145 3.54E-01***
UK 0.2235 0.0000 -0.0687 NA 0.0608 0.3739 0.8871 0.8525 135 -257 -234 3.75E-01***
JP 0.5000 0.2695 -0.1173 NA 0.1044 0.1936 0.7801 0.1387 635 -1258 -1235 8.83E-02**

Government Bond 10y

Univariate GARCH-Mixture TH 0.1955 0.3100 0.0000 0.0875 NA NA 0.9124 1.5397 -697 1404 1423 3.45E-11
US 0.4181 0.3954 0.0000 0.0134 NA NA 0.9865 1.7188 -773 1557 1576 3.68E-34
UK 0.5000 0.4531 0.0000 0.0077 NA NA 0.9922 0.8412 -638 1286 1305 5.48E-35
JP 0.5000 0.1423 0.1000 0.0784 NA NA 0.8215 0.4526 -103 217 236 1.01E-01***

Univariate EGARCH-Mixture TH 0.3716 0.4347 -0.1200 NA 0.0764 0.4202 0.9297 0.6459 137 -263 -240 1.69E-01***
US 0.0000 0.0000 -0.1081 NA -0.0466 0.3932 0.9221 1.4679 0 12 35 4.54E-01***
UK 0.5000 0.0130 0.0953 NA 0.0260 0.8167 0.7403 0.1799 20 -28 -5 4.56E-02**
JP 0.5000 0.3679 -0.0844 NA 0.1108 0.3887 0.5885 0.1199 812 -1613 -1590 1.81E-01***

Government Bond 20y

Univariate GARCH-Mixture TH 0.4299 0.4534 0.0000 0.0289 NA NA 0.9710 15.3703 -678 1365 1384 3.55E-29
US 0.4815 0.4742 0.0015 0.0031 NA NA 0.9953 6.3125 -460 930 947 5.13e-14
UK 0.4453 0.4012 0.0000 0.0187 NA NA 0.9812 1.9946 -757 1525 1544 2.63E-26
JP 0.5000 0.1018 0.0000 0.0434 NA NA 0.9565 0.5490 -295 599 618 3.76E-14

Univariate EGARCH-Mixture TH 0.0463 0.3812 -0.1200 NA 0.0330 0.3201 0.9356 2.3264 179 -346 -323 2.54E-01*
US 0.4716 0.1040 0.1199 NA 0.2213 0.1454 0.9099 0.7797 -15 43 63 3.79E-01***
UK 0.3819 0.0000 0.1200 NA 0.0687 0.3884 0.8454 1.5506 7 -1 22 5.03E-01***
JP 0.0956 0.5000 -0.0575 NA -0.0089 0.3945 0.7008 0.2954 567 -1122 -1099 3.27E-02*

Government Bond 30y

Univariate GARCH-Mixture TH 0.4413 0.4599 0.0666 0.0849 NA NA 0.8484 1.4293 -519 1049 1068 1.13E-01***
US 0.3612 0.3919 0.0000 0.0388 NA NA 0.9611 2.0074 -793 1596 1615 2.85E-25
UK 0.4469 0.4162 0.0000 0.0116 NA NA 0.9883 2.3651 -764 1537 1556 1.79E-36
JP 0.5000 0.0634 0.0000 0.0424 NA NA 0.9575 0.3319 -414 838 858 1.56E-25

Univariate EGARCH-Mixture TH 0.4590 0.4701 -0.1200 NA -0.0497 0.2309 0.9700 0.3517 475 -939 -915 6.69E-03
US 0.0001 0.4145 0.0723 NA 0.0008 0.4006 0.8843 0.9877 -69 149 173 3.71E-01***
UK 0.3972 0.0000 0.1200 NA 0.0525 0.4024 0.8443 0.8250 -1 13 36 4.86E-01***
JP 0.0829 0.5000 -0.1195 NA -0.0049 0.2604 0.8987 0.1379 416 -821 -798 5.16E-03

Note: ***, **, * indicate the statistical significance at 10%, 5%, 1% respectively. Bold fonts indicate better results. NA indicates data is

not available.

Lastly, we compare the nonlinear comovement between the Thai bond market and the

developed bond market. We find that, overall, all bond comovements have positive values.

Thai bond market comovement during the COVID-19 pandemic seems to have the highest

comovement with the UK bond market. The second highest comovement is the Japanese bond
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market, followed by the US bond market. Surprisingly, the longer bond tenor pairwise seems to

have the higher comovement with the developed bond market. On the other hand, the short-term

bond tenor is more independent. See all numerical comovements in Figure 7.

Figure 6: During-COVID-19 period: Pairwise correlation of historical yields. US, UK, JP in the row
representations are the 1-month, 3-month, 6-month, 1-year, 5-year, 10-year, 20-year and 30-year bonds,
respectively.

Figure 7: During-COVID-19 period: Transformed yields via EGARCH(1,1,1)-Mixture model prior to fitting a
bivariate copula and its Spearman’s ρ̂s and Kendall’s τ̂ , respectively. US, UK, JP in the row representations are
the 1-month, 3-month, 6-month, 1-year, 5-year, 10-year, 20-year and 30-year bonds, respectively.
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Table 12: During-COVID-19 period: Best bivariate copula candidate given by AIC/BIC values. ***,**,* indicate
the statistical Ljung–Box test significance at 10%, 5%, 1% respectively. Ljung–Box test is statistical testing
residual autocorrelation; Statistical significance of the Ljung–Box test showing in row representation of the TH,
US, UK and JP bond markets indicates that no autocorrelation. For example, ’BB9*’ indicates the Ljung–Box
test result with 1% significance level using the standard residual data of the 10Y JP bond. ’LB5Y*’ indicates
the Ljung–Box test result with 1% significance level using the standard residual data of the 5Y TH bond.

LB1M LB3M LB6M LB1Y LB5Y* LB10Y*** LB20Y LB30Y

LB3M Gumbel
LB6M BB10 BB10
LB1Y Gumbel Gumbel BB10
LB5Y BB10 BB3 Gaussian BB3
LB10Y Gumbel BB10 Gumbel Gumbel BB9
LB20Y Gumbel BB10 Gumbel Gumbel BB10 BB9
LB30Y BB9 BB9 Gumbel Gumbel BB9 BB9 Gumbel
US Frank** t Frank BB9 Gumbel*** Gumbel*** BB1 Galambos***
UK Gaussian** t** Gaussian* Gaussian*** t*** Gaussian*** t*** Gaussian***
JP t BB9*** Gumbel t BB1* BB9* BB10*** Gumbel***

Table 13: During-COVID-19 period: AIC value of best bivariate copula candidate.

LB1M LB3M LB6M LB1Y LB5Y LB10Y LB20Y LB30Y

LB3M -614.3
LB6M -489.2 -569.8
LB1Y -317.2 -366.9 -613.1
LB5Y -132.0 -119.5 -106.6 -144.7
LB10Y -79.7 -84.2 -58.4 -86.2 -527.6
LB20Y -75.0 -78.1 -57.1 -73.4 -324.3 -444.5
LB30Y -88.5 -80.2 -49.4 -66.8 -199.5 -225.8 -254.5
US 1.2 -0.1 -0.7 3.4 2.0 2.0 2.2 0.2
UK 0.2 7.0 0.5 -2.9 -17.3 -6.7 -23.9 -15.7
JP 16.4 2.5 2.0 5.1 -28.3 -50.7 -39.0 -4.2

Table 14: During-COVID-19 period: BIC value of best bivariate copula candidate.

LB1M LB3M LB6M LB1Y LB5Y LB10Y LB20Y LB30Y

LB3M -616.3
LB6M -491.8 -572.4
LB1Y -319.2 -368.9 -615.7
LB5Y -134.6 -122.1 -108.6 -147.3
LB10Y -81.7 -86.8 -60.4 -88.2 -530.3
LB20Y -77.0 -80.7 -59.1 -75.4 -326.9 -447.1
LB30Y -91.1 -82.8 -51.4 -68.8 -202.1 -228.4 -256.5
US -0.8 -2.7 -2.7 0.8 0.0 0.0 -0.4 -1.8
UK -1.8 4.4 -1.5 -4.9 -19.9 -8.7 -26.5 -17.7
JP 13.7 -0.1 0.0 2.5 -30.9 -53.3 -41.6 -6.2

7.3 COVID-19 impact on nonlinear comovement in Thai bond market

This subsection presents the analysis of the nonlinear comovement due to the impact of the

COVID-19 pandemic in the Thai bond market.
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Table 15 shows that Thai bond market characteristics have been changed in showing more

extreme asymmetric and tail dependence during the COVID-19 pandemic. In the pre-COVID-

19 pandemic analysis, BB10 is the majority copula best fit to the Thai bond pairwise data,

while during the pandemic, the majority copula best fit changed to the Gumbel, which is in

an extreme value copula family. Furthermore, number of bonds pairwise showing a best fit to

Frank and Gaussian copula for the Thai bond market decreased from eleven to eight bonds

pairwise (no tail dependence).

Given by Table 8 (pre-COVID-19 pandemic) and Table 12 (during-COVID-19 pandemic)

and for the sake of the COVID-19 impact in nonlinear comovement in Thai market bonds, nine

bonds pairwise have changed their best copula fit from BB10 to Gumbel. Three bonds pairwise

have not changed their best copula fit and remain with BB10. Two bonds pairwise have changed

their best copula fit from Frank to Gumbel. Two bonds pairwise have changed their best copula

fit from BB8 to BB10. Two bonds pairwise have changed their best copula fit from BB8 to

BB9. For the sake of the comparison of the LBs and developed market bonds in terms of the

changing copula family point of view, the comovement between Thai bond market and the

UK bond market is more likely to be symmetric and tail independent because of number of

Gaussian copula best fits increased due to the pandemic. For the Thai bond market and the US

bond market, short-term bond tends to have more symmetry and independence than long-term

bonds, while comovement with the Japanese bond market has changed from no tail dependence

to asymmetric and lower/upper tail dependence.

Table 15: Bivariate copula function best fitting to the Thai bond market. Note that the 20Y US Government
bond data is not available for pre-COVID-19 pandemic period.

Bivariate Copula Function Gaussian Student’s t Frank Clayton Galambos Gumbel B5 BB1 BB3 BB8 BB9 BB10 Total
Pre-COVID-19 3 5 7 2 0 0 2 4 0 6 6 16 51
During-COVID-19 6 6 2 0 1 16 0 2 2 0 9 8 52

Figure 8 depicts Spearman’s ρ̂s and Figure 9 depicts Kendall’s τ̂ in the Thai bond

market (LBs only), both pre-COVID-19 pandemic and during-COVID-19 pandemic. Numerical

nonlinear Spearman’s ρ̂s and Kendall’s τ̂ comovement between LBs confirm that there is

a spillover effect in both pre-COVID-19 pandemic and during-COVID-19 pandemic. More

precisely, on the one hand, comovement between short-term bonds (1-month, 3-month, 6-month

and 1-year LBs) are more likely to have high positive comovement rather than comovement

between short-term and long-term bonds (5-, 10-, 20- and 30-year LBs). On the other hand,

comovement between long-term bonds (5-, 10-, 20-, and 30-year LBs) are more likely to have high

positive comovement. In general, Kendall’s τ̂ has a larger value than Spearman’s ρ̂s. Besides,

overall, both Spearman’s ρ̂s and Kendall’s τ̂ for during-COVID-19 pandemic data seem to have

higher values than for pre-COVID-19 pandemic data, especially in the short-term LBs. However,
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Figure 8: Nonlinear Thai bond comovement: Comparison of Spearman’s ρ̂s for the pre-COVID-19 period (dashed
line) and during-COVID-19 period (solid line) in 1 month, 3 months, 6 months, 1 year, 5 years, 10 years, 20
years and 30 years LB tenors.

during the COVID-19 pandemic, comovement between long-term LBs and short-term LBs tends

to be less than comovement in the pre-COVID-19 pandemic period.

Figure 10 depicts Spearman’s ρ̂s between the Thai bond market and the developed bond

markets, namely the US, UK and Japanese bond markets. Figure 11 depicts Kendall’s τ̂ between

the Thai bond market and the developed bond markets, namely the US, UK and Japanese

bond markets. Note that the 20-year US bond is not shown in either figure because no data

is available. Figure 10 and Figure 11 show that, in general, nonlinear comovement during

the COVID-19 pandemic decreases, especially for short-term bonds. For the pre-COVID-19

pandemic period, the Thai bond market seems to have more positive comovement with the

UK bond market, especially for long-term bonds, while for short-term bonds, the Thai bond

market has a high negative comovement with Japanese bond market. During the COVID-19

pandemic, comovement between the Thai bond market and the UK bond market tends to be

reduced, while comovement with the Japanese bond market becomes positive but there is less

comovement than in the pre-COVID-19 pandemic period. Further, comovement between the

Thai bond market and all developed bond markets in the short-term is close to zeros, and this

is also the case for the long-term US bond market.
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Figure 9: Nonlinear Thai bond comovement: Comparison of Kendall’s τ̂ for the pre-COVID-19 period (dashed
line) and during-COVID-19 period (solid line) in 1 month, 3 months, 6 months, 1 year, 5 years, 10 years, 20
years and 30 years LB tenors.

Figure 10: Nonlinear comovement between the Thai bond market and developed (US, UK Japanese) bond
markets: Comparison of Spearman’s ρ̂s for the pre-COVID-19 period (dashed line) and the during-COVID-19
period (solid line) in 1 month, 3 months, 6 months, 1 year, 5 years, 10 years, 20 years and 30 years bond tenors.
Note that the bond tenor of all developed market bonds is equal to the LB’s tenor.
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Figure 11: Nonlinear comovement between the Thai bond market and developed US UK Japanese bond market:
Comparison of Kendall’s τ̂ for the pre-COVID-19 period (dashed line) and the during-COVID-19 period (solid
line) in 1 month, 3 months, 6 months, 1 year, 5 years, 10 years, 20 years and 30 years bond tenors. Note that
the bond tenor of all developed market bonds is equal to the LBs’ tenor.

8 Policy implementation

Copula dependence function has been accepted widely in many areas, for instance, in insurance,

civil engineer, medicine, climate and weather research and, especially, quantitative finance. In

quantitative finance, copulas are mainly applied to quantitative risk management, portfolio

allocation optimization and financial products pricing, in particular, derivatives pricing. Author

will discuss two applications in policy implementation that related to role and responsibility

of the bank of Thailand (BOT). Namely, it is financial risk measurement and Portfolio risk

management.

1 Risk measurement: Typically, a measure of risk of financial products is an essential

measure for both regulator and financial institute. Basically, the risk measure is Value-at-

Risk (VaR) and Conditional-Value-at-Risk (CVaR). VaR estimates an amount of loss that

investor might expect with a given probability. While CVaR is a risk measure that more

conservative measure than VaR with a certain probability. Copula VaR and CVaR of bond

can be easily measured by Monte Carlo simulation through, at a certain period of time of

risk measure, the first step, expected bond yields can be generated by inverse cumulative

distribution of proposed marginal model in Section 3.2 and Spearman’s ρ̂ (or Kendall’s

τ̂) in Figure 7 and, finally, bond VaR risk is a negative value of (1− α) percentile bond
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yields, where α is a confidence level, and bond CVaR risk is a negative value of an average

of bond yields that below VaR at a certain confidence level.

2 Portfolio risk optimization: The measure of portfolio risk is also essential for both

regulator and financial institute. This is still an active research area in modern finance,

which also known as portfolio optimization problem. Variance-covariance (Ω) matrix is one

of the most mechanism in portfolio theory. Basically, Ω can be calculated by the traditional

linear correlation in the Table ??. With this traditional correlation, it turns out standard

and linear Ω. Given copula bond yields generating by a Monte Carla simulation, copula Ω

can be easily calculated. It turns out a non-linear variance-covariance matrix. Indeed, it

improves the measurement of portfolio risk in optimization problem. For further references

see Mathwork: Optimizing Market Risk using Copula Simulation or Mathworks‡

Further, this study application is not limited to only the bond product. It could be applied to

other financial products. Therefore, it can be contributed to the third roles and responsibilities

of BOT, BOT’s assets management. This study can, more or less, improve BOT’s assets

management for total portfolio return.

9 Conclusions and further research

This study reveals the impact of COVID-19 nonlinear comovement between the Thai bond

market and the developed bond markets of the US, the UK and Japan using bivariate parametric

copula. There are 16 candidates for bivariate parametric copula to fit these bond data and then

measure nonlinear Spearman’s ρs and Kendall’s τ comovement. The IFM method is adopted

including data standardization using proposed EGARCH model with mixture innovation and

then data fitting through bivariate parametric copula and, finally, nonlinear comovement

measures.

It is clear that COVID-19 pandemic has impacted the comovement of Thai market bonds.

The spillover effect of bond yield can be seen in the Thai bond market and it is clear in the

short-term bond tenor. The comovement of LBs has changed to be more asymmetric and to show

more extreme tail dependence. Moreover, comovement within the Thai bond market has tended

to increase due to the impact of COVID-19, especially in the short-term LBs. Due to impact of

COVID-19, Thai market bonds tend to independence, more symmetry and tail independence

with developed market bonds. More precisely, short-term bond comovements have tended to

decrease and are close to zero. However, long-term bond comovements tend to a small increase,

especially in the Japanese bond market.

‡https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/42514/versions/4/previews/2 Analyze/
html/copulaVaR.html

https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/42514/versions/4/previews/2_Analyze/html/copulaVaR.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/42514/versions/4/previews/2_Analyze/html/copulaVaR.html
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For further research, this study could be extended in many different directions, for example,

by conducting a study using other estimation methods, such as the Bayesian Markov chain

Monte Carlo (MCMC) method or the variational Bayesian method, in order to improve

the parameter estimator. For the marginal model, conducting a study using other marginal

models, for example, stochastic volatility model, may benefit data standardization. Using other

complicated copula dependence models, a future study may use a multivariate copula model,

for example, vine copula or factor copula. Finally, bond risk measures may use these copula

models, for example var at risk or conditional value at risk.
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Sahamkhadam, M., Stephan, A., & Östermark, R. (2018). Portfolio optimization based on

garch-evt-copula forecasting models. International Journal of Forecasting, 34 (3), 497–

506.

Salman Khan, M., Khan, K., Mahmood, S., & Sheeraz, M. (2019). Symmetric and asymmetric

volatility clustering via garch family models: An evidence from religion dominant

countries.

Segnon, M., & Trede, M. (2018). Forecasting market risk of portfolios: Copula-markov switching

multifractal approach. The European Journal of Finance, 24 (14), 1123–1143.

Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist.

univ. Paris, 8, 229–231.

So, M. K. P., & Yeung, C. Y. T. (2014). Vine-copula garch model with dynamic conditional

dependence. Computational Statistics Data Analysis, 76, 655–671.

Sucarrat, G., Gronneberg, S., & Escribano, A. (2016). Estimation and inference in univariate

and multivariate log-garch-x models when the conditional density is unknown. 100, 582–

594.

Weiß, G. N. F., & Supper, H. (2013). Forecasting liquidity-adjusted intraday value-at-risk with

vine copulas. Journal of Banking and Finance, 37 (9), 3334–3350.

https://doi.org/10.13140/RG.2.2.11384.88328
https://doi.org/10.13140/RG.2.2.11384.88328


41

World Bank. (2020). “The global economic outlook during the covid-19 pandemic: A changed

world”.

Zakoian, J.-M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and

Control, 18 (5), 931–955.


