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Abstract 

This paper examines how rising temperatures impact the agricultural production 
value of Thai farmers, compares potential adaptation strategies like agricultural 
diversification, and analyzes future projections based on IPCC AR6 scenarios. We 
analyze nationally representative socioeconomic survey data from farm households 
alongside ERA5 weather data, utilizing econometric regression analysis. Our 
analysis reveals that higher temperatures lead to a reduction in agricultural output 
value, with the situation expected to worsen as global warming progresses. 
Furthermore, we find that households with diversified production practices, such as 
a variety of agricultural activities or multicropping, exhibit a greater capacity to 
adapt to rising temperatures. These findings substantiate the importance of the 
country’s policies promoting integrated farming and diversified crop-mix strategies.  
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1. Introduction 

Farm households in developing countries frequently confront production risk and income 

fluctuations due to climatic shocks, worsened by the absence of well-developed farm income 

support systems and limited financial and agricultural markets. This lack of resources forces 

households to deprive means to insure themselves, leading to costly coping mechanisms like 

selling assets or relying on informal borrowing (Dercon and Krishnan, 2000; Gertler and 

Gruber, 2002; Kazianga and Udry, 2006; among several others). Regional climate shocks can 

trigger disruptions affecting households in an area. Climate change is altering probability 

distributions, intensifying coping challenges (McCarl, Villavicencio, and Wu, 2008). 

Global average temperature has been increasing since the 1970s and is projected to continue 

(IPCC, 2021), intensifying climate change implications on farm households worldwide. 

Previous research confirms significant agricultural sector losses due to climate change, with 

projections of future damage, especially for developing countries (Mendelsohn, Nordhaus, and 

Shaw, 1994; Attavanich and McCarl, 2014; Brown et al., 2017). Studies consistently highlight 

lower adaptation capacity of impoverished farmers (Mano and Nhemachena, 2007; Skoufias, 

2012; Hallegatte et al., 2016; Nikoloski, Christiaensen, and Hill, 2018; Sesmero, RickerGilbert, 

and Cook, 2018). However, few existing studies specifically examine household responses to 

climate shocks at the country level. Among these, Seo (2012) finds that integrated crop-

livestock farms in Africa adapt better than specialized crop farms. Bellora et al. (2018) show 

that crop biodiversity enhances agricultural production in South Africa. But none exists on a 

national scale for Thailand. 

This paper quantifies the effects of rising temperature on the agricultural production value 

of Thai farm households and explores agricultural diversification as an adaptation strategy for 

climate change. We assess diversification’s impact by examining diversification across various 

multiple enterprises: crops, livestock, fisheries, and crop diversification strategies within farms. 

Thailand is chosen due to its large agricultural workforce, role as a major food exporter, and 

vulnerability to climate events (Eckstein, Künzel, and Schäfer, 2021).  

To fulfill our objectives, we utilize a mix of survey and climate data. Specifically, we use 

the Agricultural Household Socioeconomic and Labor Survey (2006–2020) by the Office of 

Agricultural Economics, chosen to capture data over a substantial period. This dataset is 
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matched with sub-district level climate re-analysis data derived from satellite and weather 

station data. We assess temperature impacts on production output value, exploring whether 

diversification can mitigate these impacts for Thai farm households. We then project the 

agricultural outcomes under five climate scenarios from the IPCC (2021) Shared 

Socioeconomic Pathways (SSPs). 

Our analyses show that higher temperatures damage Thai agricultural production. However, 

diversification across enterprises, including crops and livestock, is an effective adaptation 

strategy. Moreover, multicropping or planting a variety of crops reduces climate change 

sensitivity. It's important to note that even if we succeed in limiting global warming to 1.5 

degrees Celsius as per the Paris Agreement, the value of agricultural production will continue 

to be impacted by rising temperatures in any IPCC scenarios. 

2. Data 

2.1 Agricultural Household Survey Data 

The Annual Agricultural Farm Household Socio-economic Survey, administered by the 

Office of Agricultural Economics, Ministry of Agriculture and Cooperatives, Thailand,  were 

collected over 2006 to 2020 in 14 annual survey rounds. Each survey year starts from 1 May 

and ends on 30 April of the following year. The data encompass all 76 provinces in Thailand 

and provide detailed information on household characteristics, income, land usage, and 

agricultural activities such as crops, livestock and fisheries. 

Our outcome variable is agricultural output value, which includes monetary value from both 

home consumption and products sold from agricultural activities. The survey does not directly 

report data on the total harvested crop value of each household. Therefore, we estimate the 

output value using reported price and quantity produced. For households that do not report 

selling price, we calculate harvested crop value using regional average prices (Golan et al., 

2001; Jenkins et al., 2011). We remove outliers exceeding the top 0.5% of our outcome 

variables. This trimming process does not significantly affect our constructed revenue 

compared to the reported revenue (see Appendix D for untrimmed results and robustness 

checks). Additionally, we exclude households with no agricultural output value. 
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To ensure comparability across time, all monetary variables are expressed in real terms, 

using 2019 Thai Baht as the base year. Nominal agricultural variables are deflated using the 

agricultural price index compiled by Thailand’s Office of Agricultural Economics. 

Table 1 (Panels A-C) presents descriptive statistics for outcome variables, household 

characteristics, and plot characteristics. Agricultural output value and revenue are skewed, with 

averages of agricultural output value and revenue roughly double the medians. Half of Thai 

farmers produce agricultural products for both for their own consumption and commercial sale. 

These products are valued below 89,000 baht annually, and their revenue from sales is typically 

under 76,000 Baht. This aligns with the small average and median farm size (23.9 Rai or 9.4 

acres, and 16 Rai or 6.3 acres, respectively). Notably, 90% of households less than 30 rai (11.9 

acres), and most land is dedicated to cropping. Additionally, less than half of the farmers have 

access to irrigation. Table 1 also shows that the average Thai farm household consists of 4 

people with the average age of household head of 56 years old. Several factors, such as aging 

households, limited labor, and the relatively higher costs associated with small landholdings 

compared to larger ones, might discourage farm households from adopting diversification 

strategies. This aligns with the low diversification rates observed in Table 2. 

We explore two types of diversification: (i) across agricultural enterprises, i.e., cropping, 

livestock, and fisheries (Seo, 2010; Chonabayashi, Jithitikulchai, and Qu, 2020; Chonabayashi, 

2021; Jithitikulchai, 2023); and (ii) across crop mix (Attavanich et al., 2019). Table 2 indicates 

that only 39% of Thai farm households are engaged in more than one type of agricultural 

activity, and more than half of those who engage in cropping do not diversify their farm 

activities into livestock or fisheries. Within crops, the majority of Thai farm households grow 

around 2 different crops per year. Focusing on farm households engaged only in cropping, we 

find that 30% of them practice monoculture.  

2.2 Climate Data 

2.2.1 Re-analysis Satellite Remote Sensing Data 

The ERA5 Database. We utilize historical reanalysis data from the European Center for 

Medium-Range Weather Forecasts (ECMWF). This reanalysis incorporates past observations 
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and information from many sources to generate consistent, complete time series of climate 

variables (Hersbach et al., 2020). 

The data contains hourly average weather data at a spatial resolution of 0.10 degrees 

(approximately 9 kilometers). For each grid cell, we obtained hourly precipitation data in 

millimeters (mm) and average daily temperature in degrees Kelvin measured at 2 meters above 

the earth’s surface. We then calculated total daily precipitation (mm) and average daily 

temperatures (°�) within each grid. 

We generated daily precipitation and temperature for each sub-district (tambon) in Thailand 

by combining data from all 0.10-degree pixels within each sub-district’s boundary. This 

process yielded daily average temperature and total precipitation at the sub-district level. In 

cases of adjacent sub-districts sharing the same pixel, we assigned identical precipitation and 

temperature values. We then used these sub-district-level daily weather data to construct the 

necessary annual weather variables for our analyses, such as average temperature, total 

precipitation, number of hot days, and number of wet days.  

Weather Variables. For each variable, we aggregated the gridded daily data to annual 

measures corresponding to the survey period (May 1st to April 30th of the following year) for 

each survey round. We follow previous studies in choice of weather variables (Attavanich, 

2011; Attavanich and McCarl, 2014; Chen et al., 2001; Chen et al., 2004; Jithitikulchai, 2014; 

Jithitikulchai et al., 2019; McCarl et al., 2008; McCarl et al., 2014; Rhodes and McCarl 2020a, 

2020b; Yu and McCarl, 2018). Their descriptive statistics are presented in Panel D of Table 1. 

Specifically, we constructed the following weather variables: 

• Annual average temperature: Sub-district-level average temperature, calculated across all 

days (365 or 366) within each survey year. 

• Annual total precipitation: Cumulative amount of rainfall measured at the sub-district 

level for the entire survey period due to potential storage of precipitation in soil or tanks. 

• Number of hot days per year: Number of days within a survey round where the maximum 

temperature exceeds 32.22°�. 
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• Number of wet days per year: Number of days within a survey round where total 

precipitation exceeds an inch (25 mm). 

Validity of the ERA5 Data. To validate our climate data, we compared it with the monthly 

ground-station data recorded by Thailand’s Meteorological Department during 1981–2020. We 

find strong positive correlations between ERA5 and the ground-station data, as evidenced by 

high Pearson's correlation coefficients (see Appendix A for details). Appendix A also presents 

additional test results that demonstrate the close correspondence between ERA5 data and 

observed data. 

2.2.2 IPCC Temperature Projections. 

To assess long-term climate change impacts, we rely on projections from the 2021 IPCC 

report. We specifically focus on the projected ensemble mean global surface temperature 

changes under five different Shared Socio-economic Pathway (SSP) / Representative 

Concentration Pathway (RCP) scenarios. These scenarios describe alternative socio-economic 

trends and the approximate level of radiative forcing and greenhouse gas (GHG) emissions 

resulting from each pathway by the year 2100 (Arias et al., 2021; IPCC, 2021). 

3. Methodology 

3.1 Baseline Model Specification 

To estimate climate effects on agricultural output, we use the household survey data for 

the 2006/2007 – 2019/2020 crop years, matched with the sub-district-level weather data. For 

estimation we use the following base specification:  

���
� = �� + �(���)+ ��

� ��
� + ����� ���� + ����� ���� + � ����

�

+ ��� + ���� + ���
�  (1) 

where ���
�  is the value of agricultural output for household i in sub-district s in survey year t. 

�(���) is a flexible functional form depicting the effects of climate on the outcome variable. 

��
�  is a set of household-level characteristics which include household size, whether the 

household head is female, age of the household head, whether the household head completed 

secondary education (9 years), whether the household has membership in cooperatives or 
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agricultural banks (BAAC), the share of irrigated land, the share of rented land, and the size of 

agricultural land farmed.  

To specifically examine diversification within crop production, we focus on a sub-sample 

of households engaged only in cultivation. For these crop-producing households, we use the 

size of land used for cultivation in place of that used for agriculture. Note that we do not include 

the value of household assets and its squared term due to possible endogeneity issues 

(correlation between the variable and the error term). Because over half of the households in 

our sample grow rice and the Thai government often intervenes the rice market, we also include 

the dummy variable for whether the households grow rice to control for the effect of market 

price intervention by the government. 

To capture country-wide effects of the 2011 major flood and 2015 severe drought, we 

include dummy variables for cropping years 2011/2012 and 2014/2015, ��� ���� and ��� ����. 

We also include the region dummies (��) which control for region-specific time-invariant 

effects on outcomes. Thailand’s Meteorological Department divides the country into six 

regions deemed to have similar climates. A quadratic time trend is included as a proxy of 

agricultural technology progress (McCarl, Villavicencio, and Wu, 2008; Attavanich and 

McCarl, 2014; Ding and McCarl, 2014; Jithitikulchai, Mccarl, and Wu, 2019 among many 

others). The error term (���
� ) captures unobservable factors, measurement errors, and random 

fluctuations. Finally, we report robust standard errors that account for heteroskedasticity 

(unequal variance of errors across observations). 

Our primary focus is on the effects of temperature on the real value of agricultural output. 

However, since variations in temperature are likely correlated with precipitation, precipitation 

is included in the model (Burgess et al., 2017). We define the dependent variable, real value of 

agricultural output, in three different specifications �(���) described as follow: 

Model 1: Linear Weather. Mean annual temperature (in °�) and annual total rainfall (in mm) 

enter the baseline specification linearly and separately: 

��(���)= β����������������� + β������������������� (2) 
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Model 2: Quadratic Weather. Since the effects of weather, especially temperature, can 

exhibit non-linear relationships (Dell, Jones, and Olken, 2014; Deschénes and Greenstone, 

2011), quadratic terms of both temperature and rainfall are included: 

��(���)= ψ����������������� + ψ������������������
� + ψ�������������������

+ ψ��������������������
�  

(3) 

Model 3: Including Extreme Weather Variables. We further add indicators which capture 

extreme weather conditions: 

��(���) = θ����������������� + θ������������������
� + θ�������������������

+ θ��������������������
� + θ���ℎ�������� + θ������������ 

(4) 

We focus on the real value of total output, including both on-farm consumption and sales, to 

comprehensively analyze household impacts. Almost a third of household output is consumed 

on-farm, highlighting the importance of considering this aspect. We then transform the 

outcome variables using the inverse hyperbolic sine function as described below.  

Inverse Hyperbolic Sine Transformation and Temperature Elasticity of Output Value  

We apply the inverse hyperbolic sine (IHS) transformation, a well-established approach in 

the literature (Pence, 2006), to the outcome variable. This allows interpretation of the 

regression coefficients as an approximation of the logarithm transformation while retaining 

non-positive valued observations (Bellemare and Wichman, 2020). In our case, the 

‘temperature elasticity of output’ derived from the estimated coefficients of the temperature 

and its squared terms is useful in that it measures the sensitivity of output (percentage change) 

with respect to a one-percentage change in temperature. Thus, we can compare impacts of 

temperature across different household cohorts. 
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Following Bellemare and Wichman (2020), we derive the elasticity for Models 2-3 with 

quadratic terms [equations (3)-(4)] as follows, and using subscript �� to represent sub-district 

� in year �: 

���
� = ���ℎ������

� � = β� + β�������
� + β��������

� �
�

+ β���
� + ϵ��

�  

In turn taking the hyperbolic sine transformation: 

⟺ ���
� = ���ℎ �β� + β�������

� + β��������
� �

�
+ β���

� + ϵ��
� � 

Then taking partial derivative with respect to temperature and rearrange: 

⟺
∂���

�

∂����
= (β� + 2β�����)���ℎ ����ℎ������

� �� 

⟺
∂���

�

∂����
= (β� + 2β�����)�1 + ����

� �
�
 

⟺
∂���

�

∂����

����

���
�

= (β� + 2β�����)�1 + ����
� �

� ����

���
�

 

By the definition of elasticity, we have: 

⟺ ξ���
� ���� = (β����� + 2β������)

�1 + ����
� �

�

���
�

 
(5) 

where ����
� ���� is the temperature point elasticity of output at a given temperature calculated 

from the nonlinear transformation of the estimated parameters.  

Both temperature and temperature-squared coefficients affect the elasticity magnitude [as 

shown in equation (5)]. For calculating of point elasticity, we use the fitted values from the 

regressions as a corresponding value ���
�  for each value of temperature; and for summary 

measure we do the calculation holding the value of all other control variables constant.  
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3.2 Assessing the Impact of Agricultural Diversification 

We investigate the role of agricultural diversification by determining whether it can help 

attenuate the global warming impacts. To do this we estimate models for separate cohorts of 

two levels of diversification: (i) types of enterprises, i.e., cropping, livestock, and fisheries; and 

(ii) the mix of crops grown. 

Firstly, we run models 1–3 using the sub-sample of farm households that state they pursue 

multiple agricultural enterprises diversification strategies and those that do not. Then we 

compare the estimated coefficients on temperature and the resulting temperature elasticities as 

similar to Lien et al. (2006), Birthal et al. (2013), Chonabayashi, Jithitikulchai, and Qu (2020), 

Chonabayashi (2021), and Jithitikulchai (2023).  

One approach to address the above problem is by running a pooled regression with an 

additional interaction term between a diversification dummy variable and weather variables. 

Specifically, we use the specification: 

 

���
� = α� + �(���)+ ϕ���

� + β{���
� ∗ �(������)} + α�

� ��
� + α�δ�� ���� + α�δ�� ����

+ � α���

�

+ α�� + α��� + ϵ��
�  

(6) 

where ���
�  is the dummy variable indicating agricultural diversification in some forms, and 

�(������) is the function of temperature variables. The ���
�  diversification dummy is included 

to account for the mean difference in the output value between households that do and do not 

diversify. The estimated coefficient �  of the interaction term(s) indicates whether 

diversification helps reduce the impact of temperature changes on output value. Note, however, 

that the point estimate of � could be subject to potential selection bias in that the decision 

whether household adopt a diversification strategy is not random. With both approaches 

potentially having their own threats to identification, we present the results for both for 

robustness checks. 

3.3 Threats to Identification and the Use of Pseudo-panel Settings 
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One main concern with cross-sectional regression analysis is that the estimates may be 

biased due to unobserved heterogeneity that are not included in the model but can influence the 

results (Arellano and Honoré, 2001; Arellano, 2003; Glenn, 2005; Warunsiri and McNown, 

2010 among others). To address this concern and leverage the additional time dimension in our 

data, we use a pseudo-panel approach (Deaton, 1985). This approach leverages the repeated 

observations across time for groups of individuals with similar characteristics, allowing us to 

control unobserved heterogeneity to some extent. We defined the cohorts based on the province 

of residence of farm households as farm location is a time-invariant characteristic that likely 

influences agricultural practices and outcomes (Attavanich et al., 2019). Our pseudo-panel data 

consists of 77 province cohorts and covers a span of 14 years of survey data. Following 

recommendations by Deaton (1985) and Verbeek and Nijman (1992) to mitigate potential bias 

from sampling errors of small cohort sizes, we exclude groups with less than 10 cohort-year 

observations from the analysis.  

We apply Moffitt (1993)’s estimator which is equivalent to a within cohort estimator. 

Specifically, we start by averaging equation (1) with individual fixed effects over cohort � at 

time �: 

���� = α� + �(����)+ α�
� ���� + α���� ���� + α���� ���� + � ����

�

+  α�� + α���

+ �̅�� + ��̅� 

(7) 

Then, we apply within transformation and estimate the following specification: 

���� = α� + �(����)+ α�
� ���� + α�δ��� ���� + α�δ��� ���� + α��̃ + α��̃� + ν�� (8) 

We also apply a similar within transformation to equation (6) as the pooled regression 

with the diversification dummy variable to examine the role of agricultural 

diversification. 

 

3.4 Predicting Value of Agricultural Output under Different Temperature Projections 

Given the estimated coefficients obtained from the regression analysis, we can simulate the 

impact of climate change using the IPCC scenarios. To do this, we use five SSP scenarios 
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(Attavanich et al., 2019; Arias et al., 2021; IPCC, 2021) that capture a range of low and high 

climate impacts: 

• SSP1-1.9: a very low GHG emissions scenario 

• SSP1-2.6: a low GHG emissions scenario 

• SSP2-4.5: an intermediate GHG emissions scenario 

• SSP3-7.0: a high GHG emissions scenario 

• SSP5-8.5: a very high GHG emissions scenario  

In reporting the scenarios are denoted as ‘SSPx-y’, and this stands for the socio-economic 

trend for SSP scenario ‘x’, with a ‘y’ radiative forcing level. (IPCC, 2021). We use historical 

sub-district-level temperature from the re-analysis data to combine with the predicted changes 

in temperature under different IPCC’s scenarios for global surface temperature change to 

generate subregional temperature projections for Thailand from 2021 to 2050. 

With the realizations and projections of the mean temperature during 1981–2020, we can 

then predict the value of total output in each year and under different scenarios from 2021 

onward ceteris paribus. That is, we are holding household and plot characteristics (control 

variables) at their levels in 2020 and then vary temperature to reflect the climate scenarios. 

Since our fitted value of the outcome variable is expressed in an inverse hyperbolic sine 

function format, we transform it back by taking the hyperbolic sine function thereby acquiring 

the predicted output value. We did not consider alterations in other climate variables such as 

precipitation and extreme weather, because we only had projection data on temperature at the 

time of analysis. 

4. Estimation Results 

In this section, we report and discuss the estimated impacts of climate change, particularly 

focusing on temperature, on real farm output value. We begin by presenting the coefficients 

that quantify the overall impact of temperature changes. Next, we explore the role of 

agricultural diversification as a potential strategy to alleviate these negative impacts. Finally, 
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we leverage the estimated coefficients to project the future value of output under various 

climate scenarios. 

4.1. The Effects of Temperature on Agricultural Output 

Columns (1) - (3) of Table 3 report the point estimates of the coefficients from cross-

sectional analysis for the three model specifications with varying climate variables. The results 

show that a higher temperature leads to a reduction in the value of agricultural output. We can 

interpret the coefficient as an elasticity, since the IHS transformation approximates a log 

transformation in linear models [Bellemare and Wichman (2020)]. In other words, a one-degree 

Celsius rise in temperature leads to a roughly 3.4% decrease in average real output value. 

The significant coefficients on both the linear and squared terms of the temperature and 

precipitation variables in Model 2 indicate non-linear effects of climate on output value, 

consistent with findings in the literature [Dell, Jones, and Olken (2014)]. This supports the use 

of the quadratic specification for a more accurate estimation of the climate impacts.  

Our findings remain robust when including controls for extreme weather events (floods and 

droughts) in Model 3. While the coefficients on temperature terms become less significant 

(reflected in the wider confidence interval in Figure 1b). This aligns with the conclusion that 

the temperature elasticity of output weakens as temperature increases. Notably, the coefficients 

for extreme weather controls are negative and highly significant, indicating a negative impact 

of such events on output. However, their correlation with temperature reduces the explanatory 

power for our main temperature terms. Therefore, we adopt Model 2 as the baseline and move 

the full regression results for Models 1 and 3 to Appendix B.  

Given the nonlinear model, the effects of temperature on real output value are best 

interpreted as elasticity. We calculated elasticity using the estimated coefficients of Model 2 

(Table 3). Our results suggest that a one-percent rise in surface temperature would lead to a fall 

in the value of output of approximately 1.5-2%.  

We use estimates from Model 2 to calculate the point elasticity for each annual average 

temperature and its corresponding fitted output value. Figure 1a illustrates these elasticities 

with their 95% confidence intervals. We observe that the elasticity becomes negative around 

the average temperature of 24-27°� and declines at an increasing rate thereafter. Farms with 



14 

diversified activities, such as those combining cultivation and livestock (24°C) or practicing 

multicropping (27°C), show greater resilience to rising temperatures compared to non-

diversified farms. Non-diversified farms, especially those focused solely on monoculture 

production (25°C) or cultivation alone (26°C), experience negative impacts on production 

value at lower temperature thresholds. This highlights the potential benefits of farm 

diversification as a strategy to adapt to climate change and maintain production value in a 

warming environment. Despite wider confidence intervals, the point elasticity reaches an 

estimated maximum of -10 at the highest observed annual average temperature (33°�). This 

suggests that a one percentage point increase in temperature could lead to a 10% decrease in 

the value of output. 

Columns (4) to (6) of Table 3 present the estimates obtained from the pseudo-panel 

approach. These estimates are largely consistent with those from the pooled cross-sectional 

data analysis, despite potentially lower significance of some coefficients due to fewer 

observations in the pseudo-panel data. This reinforces the robustness of our findings and 

suggests that bias arising from unobserved heterogeneity should not be a major concern. 

Therefore, we primarily rely on pooled cross-sectional data for our main results.  

Across all models (Table 3, columns 1-3), the coefficients of the share of irrigated land are 

positive and significant, indicating that households with irrigation systems have a higher 

average output value. This finding, along with the relatively small effect of precipitation, 

suggests that irrigation is a crucial water source for Thai agriculture. Other noteworthy controls 

are the survey round dummy variables. The significant negative coefficients for the 2015 

dummy variable reflect the severe drought that year. Interestingly, the 2011 dummy has a 

positive coefficient. While floods can damage crops, 2011's floods might have been short-lived, 

and the year likely experienced higher overall rainfall which could benefit many agricultural 

activities. Additionally, positive pass-through effects of flood-induced higher prices for 

agricultural products might also play a role. 

4.2. The Role of Agricultural Diversification amid Climate Change 

We now investigate whether agricultural diversification can mitigate the negative impacts 

of climate change. To capture diversification behavior across two levels - by types of 
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agricultural activities and crop mix - we consider diversification strategies in three forms: (i) 

the number of agricultural enterprises, (ii) by types of enterprise (cropping, livestock, and 

fisheries), and (iii) within cropping activities.  

Diversification by the Number of Agricultural Activities. Table 4 (columns 1-2) reports 

the coefficients from a cross-sectional analysis using the model 2 specification. Column1 shows 

results for households with only one agricultural activity (cropping, livestock, or fisheries), and 

column 2 reports presents results for those with at least two activities (full results in Appendix 

B, Table B1). We use these parameter estimates to calculate point elasticities (output response 

to temperature change) displayed in Figure 1c. Crucially, households with diversified activities 

(two or more enterprises) exhibit significantly lower sensitivity to temperature changes (in 

absolute terms) compared to those with just one enterprise.  

In fact, the elasticity value of diversified households is close to zero, implying minimal 

impact of temperature fluctuations on their total output at any given average annual 

temperature. The temperature elasticity for one-enterprise households evaluated at the mean 

temperature (26.4°�)is -2.04, while for diversified households it is less than half at -0.94. This 

suggests that, at the long-run average temperature, a one-percent temperature increase would 

lead to a nearly 2% decrease for non-diversified households. In other words, Thai farm 

households with higher diversification experience lower output losses due to rising 

temperatures.  

Table 5 presents the estimates from our pseudo-panel regression (full results in Appendix 

C). Consistent with the cross-sectional analysis, Table 5 (columns 1-2) confirms that 

households with more than one agricultural enterprise exhibit lower sensitive to temperature 

changes, compared to those with only one enterprise. 

Table B2 (columns 7-8) in Appendix B show that the negative impact of extreme rainfall is 

smaller for households engaged in more than one enterprise. This is consistent with findings in 

Chonabayashi, Jithitikulchai, and Qu (2020) or Jithitikulchai (2023) that diversified households 

can better mitigate the adverse impact of droughts, floods, or a rise in temperature.  

Diversification by Type of Agricultural Activities. We now analyze a popular 

diversification strategy: households engaged in both cropping and livestock, compared to those 
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solely engaged in cropping (Table 4, columns 3-4) with full results in Appendix B, Table B2. 

The temperature terms have significantly lower magnitudes for households with both 

enterprises. Figure 1d confirmed this, illustrating that the absolute values of the temperature 

point elasticity are generally smaller for households practicing crop-livestock diversification. 

This implies reduced sensitivity to temperature changes for diversified households. Table 5 

(columns 3-4) also confirmed this from pseudo-panel regression analysis.  

While the focus of our study is not on extreme weather variables, it is noteworthy noting 

that their coefficients in Table B3 (columns 7-8) are also smaller for households engaged in 

both cropping and livestock activities compare to solely cropping households. This finding 

further supports agricultural diversification as a strategy to mitigate the adverse effects of 

extreme weather on household agricultural production. 

Diversification within Cropping Activities. Since most households engage in cropping, 

we now focus on diversification strategies by crop choices and the number of crop(s) grown. 

Table 4 (columns 5-6) presents the estimated temperature impact, comparing monoculture with 

diversified crop mixes. We find suggestive evidence that growing more than one crop might 

help alleviate the negative effects of temperature changes. The coefficients for temperature 

terms in column 6 (diversified crops) are smaller in magnitude and statistically insignificant 

compared to column 5 (monoculture). This suggests that households practicing crop 

diversification experience, on average, a lesser impact from rising temperature. The findings 

from the pseudo-panel regression (Table 5, columns 5-6) align with these results. Figure 1e 

further this, as the absolute value of the temperature elasticity for diversified households is 

lower than for those growing just one crop type. 

 

4.3. Predicted Value of Agricultural Output under Different Temperature Projections 

Using the coefficients and fitted value obtained from our base case Model 2, we can predict 

the value of agricultural output under the ensemble SSP scenarios as discussed in Section 3.4. 

Figure 2a depicts the nation-wide annual average temperature projection in Thailand for 2020-

2050. Under the intermediate GHG emission scenario (SSP2-4.5), the annual average 
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temperature in Thailand will rise from 26.68°� in 2020 to 27.39°� by 2050. By contrast, under 

the worst-case scenario (SSP5-8.5), the surface temperature in Thailand will be 27.7°� in 2050.  

Figure 2b illustrates the projected total farm household output value by year. Consistent 

with Figure 1a, which shows a negative temperature elasticity above a certain temperature 

range (around 24-27°C), the real output value exhibits a gradual decline (driven by rising 

temperatures) from around 44,000 Baht in the early 2000s to just below 40,000 Baht by 2020 

(all else being equal). 

It is important to recognize that this projection assumes average characteristics for all 

households. While holding everything else constant allows us to isolate the temperature effect, 

it's a strong assumption. Several factors, such as advancements in agricultural technology, 

infrastructure improvements, market changes, or better policies, could potentially raise output 

value despite rising temperatures. However, this exercise helps visualize the potential adverse 

impact of climate change on agricultural production value due to variations in annual average 

temperature under different emission scenarios. We see a drastic drop in the average annual 

output value to below 30,000 Baht in the worst-case scenario (SSP5-8.5) with very high 

greenhouse gas emissions. This projected decline could have significant negative consequences 

for the Thai economy and household well-being. 

 Figure 3 illustrates the projected average output value for households with different 

diversification levels, estimated using Model 2 in Table 5 (columns 4-5). Households engaging 

in 2 or 3 enterprises (diversified) show significantly higher projected average output value 

compared to those with only one enterprise (non-diversified). The difference in projected 

output between the best and worst-case scenarios is most pronounced in 2050, with the gap for 

non-diversified households being roughly twice as large. Furthermore, even in the worst-case 

scenario, the projected output for diversified households remains considerably higher than the 

best-case scenario for the non-diversified ones. These findings highlight the potential of 

agricultural diversification strategies in mitigating the negative impacts of climate change on 

farm output, particularly for poor farmers. 

Figure 4 compares the projected output between households solely engaged in cropping and 

those practicing crop-livestock. The results reveal a consistent pattern, suggesting that 

diversification might play a vital role in buffering households against potential climate changes, 

particularly rising temperature.  
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5. Discussion 

In developing countries like Thailand, impoverished farm households face challenges due 

to unpredictable agricultural production and income resulting from climatic and economic 

shocks. These losses are further compounded by the lack of insurance, social securities, and 

institutional support. With climate change amplifying these issues, weather-related shocks are 

expected to increase in frequency and intensity, placing smallholder farm households at even 

greater vulnerability. While prior studies demonstrate agricultural diversification as a viable 

strategy for Thai agricultural households to adapt to climate change (Attavanich et al., 2019; 

Saengavut et al., 2019; Bellora et al., 2018; Forsyth and Evans, 2013; Kasem and Thapa, 2011; 

Rungruxsirivorn, 2007; Chainuvati and Athipanan, 2001; among others), there is a research 

gap in country-level analysis. 

This paper investigates the impact of temperature changes on agricultural production in 

Thailand and the effectiveness of agricultural diversification as an adaptation strategy. We 

achieve this by integrating a nationally representative socioeconomic survey of Thai farm 

households with reanalyzed temperature and precipitation data.  

Our analyses reveal that average annual temperatures exceeding a range of 24°C to 27°C 

negatively affect Thai farmers' agricultural production. Our results suggest a potential decrease 

in agricultural production of up to 10% for every one percentage point rise in average annual 

temperature. Diversification, defined as (a) engaging in two or more activities like cropping, 

livestock, or fisheries, or (b) mixed crops are more climate resilient. Importantly, our research 

highlights the critical role of effective irrigation systems. Regardless of farm size, households 

with a larger portion of irrigated land achieve higher output value. This underscores the reliable 

irrigation systems for farm households. The land holding characteristics in this study are 

predominantly small farms. This is an important consideration when interpreting the findings 

on the relationship between farm size and diversification strategies of Thai farm households. 

This paper contributes to the literature on climate change adaptation. We explore how 

agricultural enterprise diversification and crop diversification impact farm output and climate 

vulnerability, using sub-district-level weather variations to identify climate impacts. Despite 

being nationally representative, our use of pooled cross-sectional data means some unobserved 
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factors, like entrepreneurial ability or risk preferences might correlate with both weather and 

production decisions but remain unaccounted for in our model. However, our pseudo-panel 

regression results align with regression using pooled cross-sectional data, suggesting minimal 

bias from unobserved heterogeneity.  

It is important to acknowledge the limitations of this study when interpreting its policy 

implications, that is the potential for over extrapolating the benefits observed in diversified 

farms to non-diversified ones. For farms within ecoregions or microclimates with unique soil 

compositions or specific climate patterns that support the growth of particular crops, 

specialization might be a more strategic choice (Kray et al., 2019). For example, evidence 

suggests that crop intensification is preferable for rubber farmers in some regions of Thailand 

(Amornratananukroh et al. 2023). However, if we can identify practices where changing from 

non-diversification to diversified activities can increase profitability while also offering greater 

climate resilience in the long run, then pre-emptive adaptation to climate change becomes a 

reasonable strategy.  

For future research, incorporating analyses of soil quality’s role in climate change impacts 

on agriculture holds significant promise. To delve deeper, accessing richer panel-level soil 

quality data is essential. Currently, our household surveys lack this; limited two-year spatial 

soil data per subdistrict hinders its inclusion. Further analysis of the CO2 effect, which may 

have a counterbalancing effect on temperature, is also warranted as the SSPS series provides 

CO2 projections. While initial studies predicted CO2 fertilization mitigating temperature stress 

on rice yield, recent research highlights negative interactions between these factors (Ishigooka 

et al., 2021). This complexity suggests that CO2 enrichment can only partially offset yield 

decline from rising temperatures (Maniruzzaman et al., 2018; Yamaguchi et al., 2023), and 

rising night temperatures could diminish the potential gains from CO2 fertilization in rice 

production (Cheng et al., 2009). Analyzing the effects on rice yields (and other crops, if 

applicable) from interactions of temperature and rainfall effects, direct physiological effects of 

increased CO2, and the effectiveness and availability of adaptations is complex, but crucial. 

Therefore, further research on the intricate interactions between CO2 and temperature on crop 

yields is crucial for informing adaptation strategies in a changing climate. Another avenue is 

climate-smart agriculture, but our survey data lacks details. Focusing on smart farming and 
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advanced technology could help farmers mitigate climate impact. Despite limitations, our study 

contributes nationally representative insights into agricultural diversification’s interplay with 

economic resilience of farm households, using historical and projected climate change impacts. 

6. Conclusions and Policy Implications 

Our analysis shows that climate change negatively affects Thai farm households’ 

agricultural production. Agricultural diversification, including multiple enterprises and crops, 

offers potential as an ex-ante adaptation strategy.  

From a policy perspective, our main results support Thailand’s current national climate 

change strategic plan for agriculture, promoting integrated farming and crop diversification 

(Attavanich, 2018). In 2020, about 70% of Thai farmers practiced only one agricultural activity, 

with about 40% focusing on one crop. Our insight highlights diversification’s benefits, urging 

support for farmers to diversify. To encourage the adoption of integrated farming for 

sustainable agriculture, incentives, financial support, and specific guidance on integrating 

livestock and crops or selecting profitable and drought-resistant crops are essential.  

In practice, implementing a major diversification strategy, like an integrated crop-livestock 

system (ICLS), could be challenging, particularly in the short run, due to the small size of Thai 

farmers and the high implementation cost. Nevertheless, it is essential to consider a policy 

approach that prioritizes immediate actions (high-level policy approach) in the agricultural 

sector to adapt to observed climate conditions. Meanwhile, the national sectoral policy should 

encourage long-term, adaptable strategies through well-designed incentives (Kurukulasuriya 

and Rosenthal, 2013; Makate et al., 2023). When devising incentives and support mechanisms 

for agricultural diversification, it is important to consider factors like poverty reduction, 

sustainable development, and climate resilience. These efforts also contribute to broader socio-

economic and environmental objectives. 

In conclusion, this study highlights the urgency of addressing climate change's negative 

impact on Thai agriculture through diversified farming practices. While implementing large-

scale diversification strategies may be challenging in the short-term, a multi-pronged approach 

is crucial. This approach should combine immediate actions focused on adapting to current 

climate conditions with long-term, dynamic adaptation strategies like diversified farming, 
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supported by well-designed incentives and targeted policies. By prioritizing both short-term 

and long-term solutions while considering diverse objectives from the Sustainable 

Development Goals (SDGs), Thailand can ensure the long-term viability of its agricultural 

sector and the well-being of its farming households.
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7. Tables & Figures 

Table 1: Descriptive Statistics of Thai Farm Households 
 N Mean S.D. Min P25 Median P75 Max 

 Panel A: Output value and revenue 

     Agricultural output value (’000 Baht)         

     Full sample 107,777 2,964 90,6867 0.68 38 90 202 297,718,383 

     Trimming top 0.5% 107,215 167 226 0.68 38 89 200 1,991 

  Agricultural revenue (’000 Baht)         

     Full sample 107,777 465 7,1894 0.00 25 78 198 23,478,385 

     Trimming top 0.5% 107,277 165 254 0.00 25 76 196 2,407 

 Panel B: Household characteristics         

  Household head gender (Female = 1)  107,215 0.23 0.42 0.00 0.00 0.00 0.00 1.00 

  Education of household head  

  (Complete lower secondary school = 1) 

107,215 0.25 0.43 0.00 0.00 0.00 1.00 1.00 

  Age of household head 107,215 56.13 11.50 15.00 48.00 56.00 64.00 102.00 

  Household size 107,215 4.36 1.77 1.00 3.00 4.00 5.00 20.00 

  Membership of cooperatives and        

  agricultural banks (being member = 1) 

107,215 0.63 0.48 0.00 0.00 1.00 1.00 1.00 

Panel C: Plot characteristics         

  Land tenured used for agriculture (Rai) 107,215 23.88 24.46 0.01 9.00 17.00 30.00 730.00 

  Land tenured used for cropping (Rai) 107,215 23.08 23.90 0.00 8.50 16.50 30.00 680.00 

  Share of agricultural irrigated land 107,215 0.23 0.41 0.00 0.00 0.00 0.19 1.00 

  Share of rented land 107,215 0.19 0.34 0.00 0.00 0.00 0.24 1.00 

  Engage in growing rice (0/1) 107,215 0.58 0.49 0.00 0.00 1.00 1.00 1.00 

 Panel D: Annual weather conditions         

  Average temperature (ºC) 107,215 26.40 1.20 19.41 25.77 26.50 27.21 29.16 

  Total precipitation (mm) 107,215 848.10 258.87 388.52 679.31 786.71 940.10 2,668.94 

  Number of hot days 107,215 4.51 7.55 0.00 0.00 1.00 6.00 65.00 

  Number of wet days 107,215 1.21 1.37 0.00 0.00 1.00 2.00 23.00 

Note: Panels A to D show summary statistics of trimmed sample. Unit of observation is household. All monetary variables in Panel A are in thousand baht. BAAC stands for Bank for Agriculture and 
Agricultural Cooperatives. Land tenured includes land that households have full ownership, have partial ownership, rent, and do not have document identified rights (see Attavanich et al. (2019) for further 
details). 
 
 

 



 

Table 2: Descriptive Statistics of Diversification Strategies 

 N Mean S.D. Min P25 Median P75 Max 

Number of agricultural activities 107,215 1.42 0.56 1.00 1.00 1.00 2.00 3.00 

Engage in > 1 agricultural activity (0/1) 107,215 0.39 0.49 0.00 0.00 0.00 1.00 1.00 

Engage in cropping (0/1) 107,215 0.97 0.16 0.00 1.00 1.00 1.00 1.00 

Engage in cropping only (0/1) 104,428 0.59 0.49 0.00 0.00 1.00 1.00 1.00 

Engage in cropping & livestock (0/1) 104,428 0.35 0.48 0.00 0.00 0.00 1.00 1.00 

Number of types of crops grown 104,428 2.03 1.05 1.00 1.00 2.00 2.00 13.00 

Practice monoculture (0/1) 62,057 0.30 0.46 0.00 0.00 0.00 1.00 1.00 

Note: The first three rows of this table present the descriptive statistics of trimmed sample. The other rows except the last row show the descriptive statistics 
of trimmed sample engaging in cropping. The last row presents the statistics for households doing only cropping. Unit of observation is household. 
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Table 3: The Effects of Temperature on Agricultural Output Value 

 (1) (2) (3) (4) (5) (6) 

 Pooled cross-sectional analysis Pseudo-panel analysis 

 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

Temperature -0.034*** 0.703*** 0.230* -0.066** 3.474*** 2.411** 
 (0.004) (0.092) (0.104) (0.023) (0.786) (0.774) 
Temperature Squared  -0.015*** -0.005*  -0.068*** -0.046** 
  (0.002) (0.002)  (0.015) (0.015) 
Precipitation 8.67×10−5*** -4.78×10−4*** -6.21×10−4*** 5.33×10−5 -7.79×10−4* -0.001** 
 (2.23×10−5) (7.45×10−5) (7.53×10−5) (7.45×10−5) (3.37×10−4) (0.003) 
Precipitation Squared  2.36×10−7*** 3.39×10−7***  2.97×10−7* 3.71×10−7** 
  (3.26×10−8) (3.30×10−8)  (1.20×10−7) (1.23×10−7) 
Number of Hot Days in a Year   -0.009***   -0.019*** 
   (0.001)   (0.002) 
Number of Wet Days in a Year   -0.025***   0.014 
   (0.003)   (0.012) 
Engage in growing rice (0/1) 0.429*** 0.439*** 0.432*** 0.882* 0.862* 0.852* 
 (0.009) (0.009) (0.009) (0.340) (0.348) (0.347) 
Share of irrigated land 0.256*** 0.266*** 0.268*** -0.130 -0.116 -0.093 
 (0.010) (0.010) (0.010) (0.144) (0.155) (0.147) 
Cropping Year 2014/2015 -0.193*** -0.209*** -0.262*** -0.248*** -0.283*** -0.336*** 
 (0.011) (0.011) (0.012) (0.029) (0.030) (0.034) 
Cropping Year 2011/2012 0.165*** 0.169*** 0.152*** 0.112*** 0.132*** 0.124*** 
 (0.015) (0.015) (0.015) (0.030) (0.032) (0.030) 
Constant 11.341*** 2.388* 7.932*** 13.705*** -31.655** -19.056 
 (0.148) (1.167) (1.303) (0.821) (10.260) (9.988) 
No. of Observations 107215 107215 107215 1045 1045 1045 
R-squared 0.379 0.380 0.381 0.410 0.432 0.454 
Adjusted R-squared 0.379 0.380 0.381 0.401 0.423 0.444 

Note: Columns (1) to (3) present the coefficients estimated using pooled cross-sectional data, and columns (4) to (6) present the estimates obtained from pseudo-panel regression. The dependent 
variable is agricultural output value trimmed at top 0.5%. All regressions include a quadratic time trend. A set of region dummies are included only in regression using pooled cross-sectional data. 
Other household-level controls included but not shown in the table are household size, whether household head is female, age of household head, whether household head completed secondary 
education, whether household has cooperatives or BAAC membership, share of rented land, and the size of land tenured used for agriculture. For pseudo-panel regression, dependent variable, 
weather variables, and control variables are averaged across cohort. Robust standard errors are reported in the parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001 

 

  



 

Table 4: The Effects of Temperature on Agricultural Output Value by diversification strategies – Pooled cross-sectional analysis 

 (1) (2) (3) (4) (5) (6) 

 By number of agricultural activities By types of agricultural activities By number of crops grown 

 1 Activity 2/3 Activities Cropping 
Cropping & 
Livestock 

Monocrop Multicrop 

Temperature 0.852*** 0.325* 0.714*** 0.421** 1.475*** 0.239 

 (0.125) (0.127) (0.121) (0.132) (0.233) (0.143) 

Temperature Squared -0.018*** -0.007** -0.014*** -0.009*** -0.028*** -0.005 

 (0.002) (0.002) (0.002) (0.003) (0.004) (0.003) 

Precipitation -3.76×10−4*** -3.60×10−4*** -3.52×10−4*** -4.47×10−5*** -3.02×10−4 -6.20×10−4*** 

 (9.87×10−5) (1.08×10−4) (9.09×10−5) (1.15×10−4) (1.64×10−4) (1.06×10−4) 

Precipitation Squared 2.30×10−7*** 1.29×10−7* 2.04×10−7*** 1.57×10−7** 1.83×10−7** 3.10×10−7*** 

 (4.17×10−8) (5.03×10−8) (3.86×10−8) (5.35×10−8) (6.86×10−8) (4.52×10−8) 

Share of irrigated land 0.290*** 0.238*** 0.284*** 0.232*** 0.028 0.321*** 

 (0.013) (0.014) (0.012) (0.015) (0.022) (0.015) 

Constant 0.486 6.835*** 2.057 6.328*** -5.244 17.307*** 

 (1.594) (1.629) (1.543) (1.671) (3.385) (2.055) 

No. of Observations 65160 42055 61692 36109 18682 43010 

R-squared 0.377 0.413 0.410 0.418 0.353 0.451 

Adjusted R-squared 0.377 0.413 0.410 0.417 0.352 0.451 

Note: This table presents the coefficients obtained from regression using pooled cross-sectional data. The dependent variable is agricultural output value trimmed at top 0.5%. Unit of 
observations is household. All regressions include a set of region dummies and a quadratic time trend. Other household-level controls included but not shown in the table are household size, 
whether household head is female, age of household head, whether household head completed secondary education, whether household has cooperatives or BAAC membership, share of rented 
land, the size of land tenured used for agriculture, whether household engage in growing rice, dummy variables for cropping years 2011/2012 and 2014/2015. Robust standard errors are reported 
in the parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 5: The Effects of Temperature on Agricultural Output Value – Pseudo-panel analysis 

 (1) (2) (3) (4) (5) (6) 

 By number of agricultural activities By types of agricultural activities By number of crops grown 

 1 Activity 2/3 Activities Cropping 
Cropping & 
Livestock 

Monocrop Multicrop 

Temperature 3.023*** 2.020* 3.104*** 2.015* 2.516*** 1.848 

 (0.704) (0.953) (0.665) (0.789) (0.694) (0.997) 

Temperature Squared -0.059*** -0.039* -0.061*** -0.038* -0.049*** -0.037 

 (0.013) (0.013) (0.013) (0.015) (0.013) (0.019) 

Precipitation -6.89×10−4 2.57×10−4 -6.70×10−4 8.66×10−5 -5.76×10−4 -1.02×10−3 

 (3.55×10−4) (5.46×10−4) (3.52×10−4) (5.36×10−4) (3.24×10−4) (6.73×10−4) 

Precipitation Squared 2.63×10−7* -8.21×10−8 2.65×10−7* -6.20×10−9 2.47×10−7* 3.70×10−7 

 (1.26×10−7) (2.24×10−7) (1.23×10−7) (2.16×10−) (1.17×10−7) (2.26×10−7) 

Share of irrigated land -0.052 0.140 0.012 0.164 0.318* 0.066 

 (0.172) (0.151) (0.193) (0.123) (0.122) (0.160) 

Constant -26.183** -14.419 -26.183** -14.419 -26.183** -14.419 

 (9.234) (12.429) (9.234) (12.429) (9.234) (12.429) 

No. of Observations 1045 1005 1045 1005 1040 1018 

R-squared 0.387 0.373 0.387 0.373 0.400 0.364 

Adjusted R-squared 0.376 0.362 0.376 0.362 0.390 0.353 

Note: This table presents the coefficients obtained from pseudo-panel regression data. The dependent variable is the mean agricultural output value trimmed at top 0.5%. Unit of observations 
is province-year. All regressions include a quadratic time trend. Other household-level controls averaged across cohort are household size, % of households with female head, age of household 
head, % of households whose head completed secondary education, % of households that have cooperatives or BAAC membership, share of rented land, the size of land tenured used for 
agriculture, % of households engaging in growing rice, dummy variables for cropping years 2011/2012 and 2014/2015. For regressions in column (5) and (6), we control for the size of land 
tenured used for cropping in place of the size of land tenured used for agriculture. Robust standard errors are reported in the parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001 

 

 



 

Table 6: Elasticity at Mean of Agricultural Output Value with Respect to Annual Average 

Temperature 

Note: This table presents point elasticity of temperature evaluated at mean temperature (26.4°�) over 2006–2020 experienced 
by households in the sample. The elasticities are calculated from coefficients of temperature and temperature squared in model 
2. The 95 % confidence intervals are reported in parentheses. ∗∗∗p<0.001 
 
 
 
 

 
 

Whole Sample 

By number of agricultural activities By types of agricultural activities 

1 Activity 2/3 Activities Cropping only 
Cropping and 

Livestock 

Elasticity 

-1.736∗∗∗ 
 

-2.039∗∗∗ 
 

 
-0.939∗∗∗ 

 

 
-1.046∗∗∗ 

 

 
-1.069∗∗∗ 

 

(-2.04, -1.459) 
 

( -2.421, -1.658) 
 

(  -1.316,  -0.562) 
 

( -1.396, -0.695) 
 

( -1.475, -0.663) 
 



 

Figure 1: Point Elasticity of Agricultural Output Value with Respect to Annual Average Temperature 

(a) Whole sample (Model 2)                       (b) Whole sample (Model 3) 
 

  
 
 
 
 
 
 
 
 
 
 
(c) By number of agricultural activities (Model 2)     (d) By types of agricultural activities (Model 2)     (e) By number of crops grown (Model 2) 

Note: Panels (a) to (e) of Figure 1 illustrate point elasticity of agricultural output value along with 95% confidence interval calculated from the 
nonlinear combination of estimated parameters. 



 

 

Figure 2: Agricultural Output Value and Temperature Projection 

(a) Temperature Projection 

 

(b) Agricultural Output Value Projection 

Note: Panel (a) illustrates the temperature predictions from the latest Intergovernmental 
Panel on Climate Change (IPCC) Assessment Report (AR6). Panel (B) illustrates the 
projected annual average household’s real agricultural output value by different climate 
change scenarios. The average household and plot characteristics in 2020 were used to 
calculate the projected values.  



 

Figure 3: Output Value Projection by Number of Agricultural Activities 

 

Note: The figure illustrates the projected annual average household’s real agricultural output 
value by different climate change scenario and by number of agricultural activities. We use 
the average household and plot characteristics in 2020 to calculate the projected values. 



 

Figure 4: Output Value Projection by Type of Agricultural Activities 

 

Note: The figure illustrates the projected annual average household’s real agricultural output 
value by different climate change scenario and type of agricultural activities. We use the 
average household and plot characteristics in 2020 to calculate the projected values. 
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