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Abstract

This paper studies the dynamic impact of climate shocks on economic activity and inflation in

Thailand, a developing country susceptible to the effects of climate change. We utilize a Vector

Autoregressive (VAR) analysis that accounts for the asymmetric and nonlinear impacts of climate

change. Overall, climate shocks are significantly contractionary on output whereas their effect on

inflation is rather muted. For output, the impact is more pronounced on the production rather

than expenditure side of the economy, although highly persistent climate shocks can have significant

effects on demand. Furthermore, we find that the macroeconomic impact of climate change varies

significantly across sectors of production as well as components of inflation. Raw food prices, in par-

ticular vegetables, are sensitive to climate shocks, consistent with the agricultural sector being most

vulnerable, with effects that are more pronounced in the short-run. This contrasts with industrial

production and service sectors that experience more persistent effects. We also find that dry versus

wet weather conditions deliver varying effects on output and inflation, and we also find that the

impact of climate shocks are more severe if extreme weather events are large, as well as sustained for

longer periods of time. Finally, utilizing a panel autoregressive distributed lag model (ARDL), we

quantify significant differences in the impact of climate shocks on aggregate output across provinces,

depending on the provincial level of income as well as its proportion of output tied to agricultural

activities.
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1 Introduction

The Earth’s climate has been changing at an unprecedented pace over past decades - with

weather events that have becoming more volatile, frequent, and extreme. The adverse

consequences of climate change are now not only concentrated in lower-income and de-

veloping countries that typically rely on agricultural activities (Dell et al., 2012; Acevedo

et al., 2018), but have also been reported to severely affect advanced economies as well.

Persistent changes in temperature or precipitation patterns including more volatile cli-

mate conditions can have both short and long-term macroeconomic consequences that

work to lower output per capita through various channels such as reduced production

and investment (Noy, 2009; Colacito et al. 2019; Acevedo et al, 2020), as well as cre-

ate risks for price stability by exerting upward pressure or creating volatility in prices

(Parker, 2018; Heinen et al., 2019; Faccia et al., 2021). Given that the severity of climate

change is expected to accelerate in the future, central bankers around the world are thus

expressing the urgency to incorporate the macroeconomic effects of climate change into

their monetary and financial stability mandates to ensure that their policy frameworks

are robust to such risks (Batten et al., 2020; Scott et al. 2017; Batten, 2018; Bremus et

al. 2020).

This paper aims to contribute to the ongoing debate on the macroeconomic conse-

quences of climate change and draw implications that are relevant to central banks.1.

From a central bank perspective, policymakers are concerned about whether climate

change can have significant and persistent effects on output and prices over horizons

relevant to monetary policy. Therefore, our work investigates the dynamic impacts of

climate shocks on output and inflation in Thailand, over both the short and medium

run horizons. We view Thailand as a suitable candidate for this study given its high

vulnerability to climate change due to its geography, economy, and level of development

(Marks, 2018)2. In particular, Thailand is one of the world’s largest food producers, and

therefore droughts, flooding, and tropical storms pose serious threats to agricultural ac-

tivities and livestock production. This risk is not only relevant to reduced output growth,

but also to large income losses as well, as the agricultural sector employs approximately a

third of Thailand’s population. Furthermore, as a developing nation, fresh food products

1This is a vast literature and includes studies that assesses the impact of both physical and transition risk. The effect

of physical risk, which is the focus of this study, arises from the interaction between higher average temperatures, more

frequent weather extremes and the exposure and vulnerability of society and economic systems to these hazards. Physical

risk can be divided into two categories: (i) gradual global warming and its associated physical changes, such as rising sea

levels or changes in precipitation patterns; and (ii) natural disasters such as hurricanes, floods and heatwaves (Drudi et al,

2021). On the other hand, transition risk is the risk inherent in changing strategies, policies or investments to reduce its

reliance on climate change related causes, e.g., use of carbon. This type of risk is more related to the strand of economics

of trade and climate and economics of adaptation.
2According to ADB and World Bank (2021), Thailand has been cited as one of the ten most flood-affected countries

in the world, with the Great Flood in 2011 leading to an estimated loss of 1,425 trillion (US$46.5 billion) in economic

damages through disruptions in production and supply chains.
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takes up approximately a fifth of Thailand’s CPI basket, thus extreme or unpredictable

weather events can raise challenges for price stability as food inflation becomes more

volatile. Changing climate conditions is also a key concern towards the livelihood of

coastal tourism, in which Thailand’s economy is highly reliant upon.

To investigate the macroeconomic impacts of climate change for Thailand, we adopt

two econometric approaches. First, we estimate a times-series vector autogressive (VAR)

model similar to Kamber et al. (2013) that includes a system of macroeconomic variables

to analyze the dynamic impact of climate shocks on output and inflation, while allowing

its impact to have nonlinear and asymmetric effects. To better understand how the shocks

propagate through various sectors of the economy, we also investigate its impact on the

subcomponents of GDP (e.g. agriculture, industrial and service sectors for the production

side, and consumption, investment, exports and imports for the expenditure side) and

inflation (core, energy and disaggregated food components). Second, to analyze whether

there are any differences in the cross-provincial impact of climate shocks on output that

can be explained by factors such as provincial levels of income or reliance of agricultural

activities, we estimate a panel autoregressive distributed lag model (ARDL) that is similar

in spirit to the cross-country study of Kahn et al. (2019).

Despite a large literature that investigates the economic effects of climate-related

shocks, the literature has documented mixed results - some suggesting limited or no effects

while other reporting significant damages (Tol, 2009; Dell et al., 2014; Hsiang, 2016;

for recent surveys). Our work helps shed light on these ongoing debates while offering

the following contributions. First, we choose to adopt the Standardized Precipitation

Evapotranspiration Index (SPEI) as our climate variable, which conveniently combines

the effect of both changing precipitation and temperature patterns. As such, we are able

to study how changing climate conditions holistically impact the economy, rather than

following the usual approach of studying rainfall and temperature effects separately. In

addition, the SPEI index measures climate conditions as standardized deviations from its

historical norm, which as emphasized by Kahn et al. (2019), is an important departure

from the literature. The focus on deviations helps capture changes in the distribution

of weather patterns such as its variability, which arguably matters more for economic

activity than just the average temperature or precipitation levels. Furthermore, by using

deviations of the SPEI, we avoid spurious results that could occur from the common usage

of trended variables, such as temperature levels, that are often employed in standard

climate regressions (Mendelsohn, 2016; Kahn et al., 2019; Tol, 2021).

A distinguishing feature of our work is that it also provides a highly comprehensive

within-country study of climate change. A long line of literature offers cross-country

analyses to highlight heterogeneous country experiences, and emphasize the differences

that stem from the level of income across nations (Sachs and Warner 1997; Gallup et al.
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1999; Nordhaus 2006; Dell et al., 2012; Cashin et al., 2017; Burke and Tanutama, 2019;

Kahn et al. 2019). However, results based on cross-sectional averages may not be entirely

relevant to macroeconomic policy of a particular country, nor can it uncover the full

scale of heterogeneity that might exist along various dimensions. For example, separate

studies highlight that the economic effects of climate change could differ depending on

the direction of shock (positive vs. negative), size (extreme vs. moderate), as well as

degree of persistence (sudden vs. long-lasting) (see Cavallo, 2013; Burke et al., 2015;

Kahn et al., 2019, Kim et al., 2021). Our study investigates whether climate shocks are

significant for output and prices along all these dimensions at the same time as examining

its heterogeneous impacts across sectors and provinces. Such an analysis is lacking for

Thailand, especially at the macroeconomic level, as much of the existing studies have only

focused on the impact of adverse weather conditions, particularly rainfall, on regional

output (Sangkhaphan and Shu, 2020) or individual crop production (Pipitpukdee et al.,

2020; Pakeechai et al., 2020).

Based on a preview of our results, climate shocks can have both significant short

and medium run effects on output and inflation. The impact is nevertheless highly

heterogenous depending on the sector affected, and it also crucially hinges upon the

direction, persistence and size of the climate shock. In particular, we find that climate

shocks mainly acts as a supply shock and it can be contractionary for real activity,

with overall muted but mildly inflationary effects on prices. The agricultural sector in

particular is highly vulnerable, consistent with raw food inflation especially vegetables

being highly responsive to climate shocks. Finally, there are important cross-provincial

differences in the effect of climate shocks depending on certain characteristics, such as

output in poor provinces contracting more following climate change.

This paper is organized into five sections. Section 2 describes the climate data for

our analyses and highlights important historical patterns of climate change in Thailand.

Section 3 contains country-level analysis of climate change and discusses how climate

shocks may affect aggregate output and inflation through various subcomponents and

over different time horizons. Section 4 contains the cross-provincial results. The final

section concludes and draws implication for monetary policy.

2 Climate Data and Climate Change Paterns

We utilize the Standardized Precipitation Evapotranspiration Index (SPEI) as a measure

of weather conditions, which combines the effect of both changing preciptation and tem-

perature patterns. The SPEI index was originally developed by Vicente-Serrano et al.

(2010), and due to its attractive features, it has been frequently used to examine climate

change in various countries (Couharde et al., 2019; Bremus et al., 2020). In this section,
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we describe the construction method of the SPEI index and document its key properties

that reflect the historical patterns of climate change in Thailand.

2.1 SPEI Data Construction

Our empirical study requires a country-level SPEI index for the VAR estimation and

provincial-level SPEI inidices for the panel ARDL analysis. Constructing the country-

level SPEI index is straightforward, as it can be obtained from aggregating over SPEI

indices that are calculated for individual grids that are available at https://spei.csic.es.3

For Thailand, there are 57 individual grids (see Figure 1b), where each grid represents a

0.5 degree spatial resolution that is available at a monthly frequency from January 1950

to present.

Figure 1: Map of SPEI Grids

(a) World Map (b) Thailand Map Source:

https://spei.csic.es

The SPEI index at the individual grid level are times series that represents the net

supply of water available for a particular area, calculated as the difference between pre-

cipitation and potential evapotranspiration4. This water balance can be cumulated over

different time periods, such as over 1, 3, 6, 9, 12, 24, 36, and 48 months, to capture vary-

ing degrees of persistence and severities in climate conditions. For example, the 3-month

SPEI index (SPEI3M) represents the water balance cumulated over three months. The

12-month SPEI index (SPEI12M) represents the water balance cumulated over a year

and captures more persistent and severe weather conditions.

A particularly attractive feature of the SPEI index is that it represents standard-

ized deviations of climate conditions from its historical norm since the cumulated water
3For robustness checks, we also consider other aggregation methods. This includes the median value, first principal

component, as well as aggregating only over cropland areas. All alternative measures of aggregation do not significantly

differ from the average value, and the correlation between measures are high at levels exceeding 0.9.
4The potential evapotranspiration can be estimated by using different types of models, however, the simplest model is

the Thornthwaite (1948) equation.
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balance is fitted to a Log-logistic distribution function5. A standardized index allows

for easy comparison across regions, as well as the convenience in aggregating SPEI in-

dices across grids. Moreover, calculating the climate variable as deviations from their

long-term norms offers various other benefits. First, as discussed in Kahn et al. (2019),

it avoids the econometric pitfalls in previous studies that tend to use trended variables

such as temperature levels in output growth equations when studying the impact of cli-

mate change which could lead to spurious results. Second, it allows us to consider the

directional effects of climate change, where a positive value in the SPEI index indicates

wetter-than-normal weather conditions and a negative value implies drier-than-normal

weather conditions. Finally, it offers for easy classification of climate conditions - from

normal, to moderate, and to exceptionally extreme. For example, according to the Na-

tional Oceanic and Atmospheric Administration (NOAA) classification as shown in Table

1, a SPEI value greater than 1.6 indicates weather conditions that are extremely moist.

This feature allows us to study the nonlinear impact of climate conditions on the macroe-

conomy based on the extremity of weather conditions as indicated by various ranges of

the SPEI index.

Table 1: Classification of Weather Conditions

Weather condition SPEI range

Exceptionally moist SPEI ≥ 2

Extremely moist 1.6 ≤ SPEI < 2

Very moist 1.3 ≤ SPEI < 1.6

Moderately moist 0.8 ≤ SPEI < 1.3

Slightly moist 0.5 ≤ SPEI < 0.8

Near Normal -0.5 ≤ SPEI < 0.5

Slightly dry -0.8 ≤ SPEI < -0.5

Moderately dry -1.3 ≤ SPEI < -0.8

Very dry -1.6 ≤ SPEI < -1.3

Extremely dry -2 ≤ SPEI < -1.6

Exceptionally dry SPEI < -2

Source: NOAA’s National Centres for Environmental Information

Next, we discuss the construction of the provincial SPEI index. Given that the grids

in Figure 1b do not exactly align with the 77 provinces in Thailand, we need to construct

provincial SPEI indices from raw monthly precipitation and temperature data that we

obtain from the Hydro-Informatics Institute. With this dataset, we construct provincial

SPEI indices for the 2001-2020 period by utilizing the official R package called ’SPEI’6,

which utilizes the Thornthwaite (1948) equation to estimate potential evapotranspiration

5In constructing the long-term norm, the norm is different in each month. For example, if we consider the data from

1950 to 2020, the SPEI index for Jan 2020 compares the cumulative water balance in Jan 2020 with the long-term norm

for all months of January, i.e. the norm for Jan 1950, Jan 1951,...,Jan 2020. The same idea applies to other months.

Therefore, due to this characteristic, we can utilize the SPEI index without seasonal adjustment.
6For more information about the package see https://cran.r-project.org/web/packages/SPEI/index.html
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levels. We check the robustness of our provincial SPEI indices by taking the simple

average of all provincial series, and comparing it to the previously calculated country-

level SPEI. As shown in Figure 2, both indices move together well, with a high correlation

of 0.89.

Figure 2: Aggregated SPEI Indices based on Grid-Level and Provincial-Level Data

Note: Average Regional SPEI is calculated from taking the average of individual SPEI indices across

88 individual provinces. The Average Grid SPEI is calculated by taking the average of individual SPEI

indices across 57 individual grids.

2.2 Historical Patterns of Climate Change

We analyze weather conditions in Thailand via the SPEI index over the 3, 6, and 12

month horizons (SPEI3M, SPEI6M, and SPEI12M). Figure 3 contains a plot of these

series, alongside their fitted trends. As shown, all SPEI indices appear to capture key

weather events in Thailand well. For example, the great drought (July 1979 - March 1980)

generated a sharp decline in all SPEI indices, while the great flood that spanned over

six months in the second half of 2011 caused all SPEI indices to increase dramatically.

It is also evident that climate conditions in Thailand has become drier than what is

considered normal over time as evident by negative and statistically significant trends for

all SPEI indices. The slope that becomes slightly steeper as the SPEI horizon increases is

also indicative of climate shocks that are becoming more extreme.7 Another interesting

observation is that the trend for all Thai SPEI indices dropped below zero around 1980,

signifying permanent drier than normal weather conditions. According to Nita et al.

(2022) among others, this is a global phenomenon as global temperatures have been

reported to rise sharply since the early 1980s.

Alongside a drier trend, we also find that weather conditions in Thailand are becoming

more volatile and extreme. Figure 4 shows the box plots associated with the SPEI3M,

SPEI6M, and SPEI12M time series. Each horizontal bar represents all possible values

7According to Mann Kendall statistical test that has been widely applied in the trend detection of hydrometeorological

time series, we find that the test statistics to the fitted trends of 3, 6, and 12 month SPEI indices are -0.36, -0.38 and -0.43

with corresponding p-values of 0.00. This indicates statistically significant monotonic downward trends.
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Figure 3: SPEI Indices and Drier Trends

Note: Country-level SPEI indices obtained from aggregating over individual grids. The solid line

represents the long-term trend.

of the SPEI index that fall within a 5-year interval. The fact that this horizontal bar

has become wider over time indicates more extreme weather events. The inner rectangle

that represents the interquartile range has also become wider over time, signifying more

volatile climate deviations from what is considered as normal. Given that the most recent

box for the SPEI12M index is particularly wide, this means that weather conditions are

not only becoming more volatile, but also more persistent. The thick black vertical line

marks the median SPEI value for each 5-year interval which has been gradually shifting

leftwards. This confirms our earlier observation of drier weather conditions over time for

Thailand.

Finally, we examine whether extreme weather conditions have been occurring more

frequently over time. We use the classification in Table 1 to calculate the proportion of

grids with SPEI values that fall into what is considered to be extremely moist, normal

and extremely dry at each point in time. Figure 5 illustrates the results over the full 1950-

2020 sample over 5-year increments. As shown, it is clear that Thailand has become more

susceptible to more frequent and extremely dry weather conditions. This observation

stands out in the most recent period (2015-2020), where the severe drought in 2019-2020

significantly widened the box plot and increased the SPEI median. Meanwhile, it has

become less likely that extremely wet or even normal weather conditions would occur.

This reaffirms our earlier findings that over past decades, climate conditions in Thailand
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is becoming more dry and severe over time.

Figure 4: Box plots of SPEI Indices

(a) SPEI 3-Month (b) SPEI 6-Month (c) SPEI 12-Month

Note: Box plots of country-level SPEI indices over various frequencies and five-year time intervals,

where the solid line represents the median value, the box is the IQR range, and dots are outliers.

Figure 5: Frequency of Extreme Climate Conditions

(a) Extremely Moist Condition (b) Normal Condition (c) Extremely Dry Condition

Note: Box plots of the frequency of occurrences of extreme (SPEI values in excess of 2 and -2) and

normal (SPEI values between -0.5 and 0.5) climate conditions are based on the SPEI6m country-level

index. The solid line represents the median value, the box is the IQR range, and dots are outliers,

where box plots are calculated over five year intervals.
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3 Country-level Macroeconomic Impact of Climate Shocks

3.1 Data and Model Specification

For our empirical analysis, we adapt the structural vector autoregression (VAR) model

of Buckle et al. (2007) and Kamber et al. (2013) to suit a small open economy such as

Thailand. It is specified as:

 Climatet

Globalt

Domestict

 = A0 +

A11 0 0

0 A22 0

A31 A32 A33

×

 Climatet−1

Globalt−1

Domestict−1

+ ϵt (1)

where A0 denotes a column vector containing constant terms of each equation, and ϵt is

the white noise error term. Climatet, Globalt, and Domestict are three separate blocs

that contain climate, global, and domestic variables respectively. These blocs are ordered

according to their degree of exogeneity, where we impose restrictions on the coefficient

matrix of their lag terms so that climate and global blocs are not affected by domestic

variables. This approach is standard in the small open economy literature.

We describe the three blocs in the above specification in turn. First, the climate bloc,

which is the most exogenous, includes our measurement variable of climate, which is the

SPEI index. In the baseline specification, we follow Bremus et al. (2020) and utilize the

absolute value of the SPEI index to provide a measure of overall weather conditions:

Overallt = 1/N ×
N∑
i=1

|SPEIi,t| (2)

where N is the 57 SPEI grids and SPEIi,t is the SPEI index of grid i at time t. As

shown, the overall SPEI index captures the average climate of the country based on the

absolute SPEI values in the grids. Note that measured in this way, the climate variable

treats both wet (positive SPEI values) and dry (negative SPEI values) climate conditions

symmetrically.8

Next, the global bloc (Globalt) consists of variables aiming to capture global economic

conditions, in order to control for the effect of the global economy on Thailand’s small

open economy. We include the real GDP of OECD countries to capture global output, the

VIX index to capture global sentiment and risk aversion, and real global oil and non-fuel

8This means that in the VAR analysis, the impulse response function will represent how variables respond to a one

standard deviation increase in the average absolute value of climate shocks, which does not differentiate between increasingly

wet or dry conditions. For reference, a one standard deviation increase in the absolute SPEI index is equivalent to the

recent drought in Thailand as experienced during 2019-2020.
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prices to capture fluctuations in commodity prices. Lastly, the domestic bloc contains

key macroeconomic variables for Thailand, including real GDP, the consumer price in-

dex (CPI), the 2-year government bond yield, and the nominal effective exchange rate

(NEER). All macroeconomic variables are at the quarterly frequency and are expressed

as the percentage change differences from the same period in the previous year. They

are obtained from disparate sources - Thai GDP from the Office of the National Eco-

nomic and Social Development Council of Thailand (NESDC); CPI inflation, the 2-year

government bond yield, and the NEER from CEIC; OECD real GDP from the OECD

database, and VIX from the FRED. The sample spans 2001-2020, where the beginning

of the sample is determined based on the availability of government bond yield data, as

well the adoption of an inflation targeting regime in Thailand during 2001.

We are also interested in investigating the effects of climate change on sectoral vari-

ables to better understand the channels in which shocks propagate. To do so, we place

each disaggregated component of real output and CPI inflation in the VAR after either

aggregate output or inflation respectively. For real output, we analyze both disaggregated

components based on sectors of production as well as the expenditure side components

of real output. On the production side, the three main sectors are agriculture, industrial,

and service sectors, with average shares of 7.4%, 34.2%, and 58.4% respectively.9 As for

the expenditure share components, consumption, investment, exports and imports take

up 54.5%, 25.1%, 73.1%, and 68% of real output respectively.

Aside from the effects of climate change on output, inflation is another key variable

that can be directly affected by extreme changes in weather conditions. In particular,

global warming or extreme weather events can adversely impact global food production,

leading to food price inflation in many countries that rely on imported food. Thailand is

a developing economy that has a sizable portion of the consumption basket tied to food,

and therefore it is particularly vulnerable to changing weather conditions. Also, being a

small open economy, its fluctuations in inflation can be exposed to spillover effects from

international commodity trade (Heinen et al., 2019; Parker 2018; Peersman, 2018) as well

as global food price and energy shocks. We therefore investigate the impact of climate

shocks on inflation and its subcomponents, which include c, raw food and energy, which

take up a percentage share of 67, 20 and 12 precent of the CPI consumption basket.

3.2 Impact on Output and Components

We start with the empirical analysis on the overall effects of a climate shock on output

growth in Thailand. We present the analyses based on SPEI indices at 3, 6, and 12 month

9These shares have remained relatively constant over the full sample, with only minor increases in the share size of the

industrial sector in the 2010s, but the increase was only temporary. On the other hand, the share size of the service sector

saw a slight and steady increase from 57.5 62.7 percent over 2011 to 2020.
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horizons. At the aggregated level, it is clear from the first column of Figure 6a that a

one standard deviation increase in overall climate conditions significantly reduces real

GDP growth, with the largest contraction occurring around 3 months. The magnitude

of impact is similar for all three SPEI indices, occurring within the range of -0.5 to -0.7

percent. However, the results are more divergent with respect to the persistence of the

climate shock. As shown, a shock to the SPEI3M takes approximately 7 quarters to

dissipate, but a shock to the SPEI12M index takes as long as 15 quarters. Therefore, in

line with Kahn et al. (2019), our findings suggest that the overall impact of a climate

shock on output growth is largely contractionary, with more persistent climate shocks

delivering more long-lasting effects.

Figure 6: Impulse Response of Climate Shocks on the Growth of Real Output and Key Production

Components
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(d) Service

Note: Impulse response analyses based on the baseline VAR specification on real output growth

and its components. Shaded areas are 68% confidence intervals

The main channels in which climate shocks could affect output is through impacts

on physical capital, land, and agriculture and labor inputs. The early literature tends

to identify the impact of a weather event as a supply side shock, where natural disasters

and extreme weather conditions would most likely disrupt output such as capital stock,

putting upward pressure on prices, lowering future potential growth. However, recent

studies such as Batten et al. (2020), Ciccarelli and Marotta (2021) and Drudi et al. (2021)

emphasize the demand-side adjustments to a climate shock as well. On the demand size,

extreme weather events such as floods and storms could lead to losses in household and

firm balance sheets, ultimately reducing private consumption, investments, and exports.
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Longer term adjustments in consumer behavior as well as investments in infrastructures

could also come about through heightened climate awareness as well.

To better understand how climate change could alter output through changes in both

supply and demand, we investigate its impact on both production and expenditure sides

of real output. On the production side, we investigate the impact of a climate shock on

agriculture, industrial and service sectors. As shown in columns 2-4 of Figure 6a, it is

evident that the contractionary effects of climate shocks carry over to each of the main

sectors of real GDP growth. Not surprisingly, the agricultural sector is most impacted

through destroyed crop yields. The impact of the shock on this sector is extremely

sudden and causes real GDP growth to contract to its lowest point within a year. For

less persistent climate shocks (SPEI3M), GDP growth contracts to -1.5% while more

persistent climate shocks (SPEI12M) contracts to about -0.6%. By contrast, the impact

of a climate shock on the service and industrial sectors are smaller in comparison (less

than 1 percent), but takes longer to dissipate. For example, a shock from the SPEI12M

takes about 15-20 quarters to disappear for both sectors.

Despite the significant contractionary effects of climate shocks on the production side

of the economy, we find less clear-cut evidence for the expenditure components of real

GDP growth (see Figure 7). First, for some components, the response is even expansion-

ary in the short-term, before experiencing a decline in later stages. For investment, this

increase is particularly pronounced, which may signify a short-term increase in invest-

ment following natural disasters such as severe floods. Second, the contractionary effects

of a climate shocks on the components of real output are not statistically significant in

some cases. However, more persistent climate shocks (SPEI12M) tend to deliver slightly

more significant effects, with the decline in output being largest for imports and exports.

Interestingly, we observe the effect of shocks to be slightly more persistent on the expendi-

ture side compared to production sectors. These observations confirm our interpretation

of a climate shock on expenditure components as demand shocks, whereas the relatively

pronounced yet short-lived effects of the climate shock on production components are

consistent with the supply-side story.
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Figure 7: Impulse Response of Climate Shocks on Real GDP Expenditures
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Note: Impulse response analyses based on the baseline VAR specification on real output growth

and its components. Shaded areas are 68% confidence intervals.

3.3 Impact on Inflation and Components

Next, we turn to investigate the impact of climate shocks on inflation and its components.

Compared to the literature that focuses on the effects of climate change on economic

growth, much less is known about its impact on prices. However, physical losses incurred

during an extreme weather event could create temporary shortages in goods and services,

translating to higher prices. However, the empirical findings from the few studies that in-

vestigate the inflationary costs of climate disasters are rather mixed. Parker (2018) finds

negligible effects of natural disasters on the inflation rates of advanced economies, but

moderately longer-lasting effects on developing ones. Kim et al. (2021) shows that for the

US, severe weather conditions have a time-varying effect, with only more recent impacts

that are statistically significant. On the other hand, Heinen et al. (2016) studies the im-

pact of hurricane and floods on Caribbean islands and finds significant price increases due

to natural disasters. Finally, using detailed supermarket prices and quantities, Cavallo et

al. (2014) documents that despite a significant decline in product availability following

earthquake episodes in Chile and Japan, prices remained extremely sticky.

We analyze the impact of a climate shock on headline CPI inflation in Thailand.

According to the first column of Figure 8a, we find that the overall impact is positive,

but its magnitude is small at around 0.1% and is not statistically significant. An ex-
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ception is the longer term impact of a persistent weather shock based on the SPEI12M

on headline inflation which is positive and statistically significant beyond the 15 month

horizon. As for the main components of inflation, the impact of a weather shock is not

statistically significant either (see Figures 8b-8d). Based on their direction however, the

estimated impact of a climate shock is positive for core and food components, while being

contractionary for energy.

Figure 8: Impulse Response of Climate Shocks on Aggregate Inflation and Its Major Components
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(d) Energy

Note: Impulse response analyses based on the baseline VAR specification with the addition of

major components of headline CPI inflation. Shaded areas are 68% confidence intervals

Analyzing the impact on food inflation further, the impact of extreme weather events

should be mainly concentrated on crops and agricultural products, leading to an elevation

in food prices. However, we find that the impacts of extreme weather events on food infla-

tion for SPEI3M and SPEI6M while positive, is statistically insignificant. For SPEI12M,

there appears to be some evidence of negative price pressures on food inflation in the

medium run. This finding is more or less in line with Faccia et al. (2021), where they

show that while food can initially receive upward price pressures due to supply shortages

following a climate shock in the short run, it can later put downward pressure on demand

and result in a negative response in the medium- to long-term. Once we drill down to

the disaggregated raw food sectors of the CPI, we find that there are actually clear and

sizable increases in the price of vegetables following a climate shock, in contrast to meat

products that are not statistically significant (Figure 9b). In Figure 9c, vegetable infla-

tion increases by 1.5 percent, and interestingly, for more persistent climate shocks such

as the SPEI12M, the impact of the shock can be exceptionally long-lasting. This finding

15



highlights the heterogenous effects of climate shocks for the disaggregated components of

inflation.

Figure 9: Impulse Response of Climate Shocks on Selected Sub-Components of Inflation
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(c) Vegetable

Note: Impulse response analyses for the baseline specification with the addition

of food subcomponents. Shaded areas are 68% confidence intervals

3.4 Asymmetries and Nonlinearities

We account for asymmetries and nonlinearities in our empirical investigation of climate

shocks by replacing the climate variable in Eq. 1 with appropriate climate variables.

First, to explore directional asymmetry, it is important to differentiate between positive

(wet) and negative (dry) weather conditions via the following climate specification:

Positivet =

{
SPEI i,t, SPEI i,t > 0

0, SPEI i,t ≤ 0
(3)

Negativet =

{
0, SPEI i,t ≥ 0

|SPEI i,t|, SPEI i,t < 0
(4)

where Positivet and Negativet captures wet and dry climates respectively and SPEI i,t

denotes the average of SPEI values. For size reference, a one standard deviation shock to

the Positivet index is equivalent to one-forth of the size of the 2011 Great flood episode

in Thailand, while a one standard deviation shock to the Negativet index is equivalent

to the size of 2019-2020 drought.
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Next, to explore the impact of extreme weather conditions in our analysis, we define

the climate variable as:

Extremityt = 1/N ×
N∑
i=1

[SPEIi,t × I(threshold)i,t] (5)

where Extremityt is an index that captures extreme climate conditions as measured at

time t. I(threshold)i,t is the index function with the value being 1 if the SPEIi,t falls

within a certain specified threshold of interest, and 0 otherwise. We consider two types

of extremities, moderately and very moist (dry), where the thresholds are defined by

0.8 ≤ SPEIi,t < 1.6 (−1.6 ≤ SPEIi,t < −0.8), and extremely and exceptionally moist

(dry), where the thresholds are defined by SPEIi,t ≥ 1.6 (SPEIi,t ≤ −1.6) (see Table

1).

We now turn to discuss the results from our empirical analysis that accounts for the

asymmetric and nonlinear impacts of climate shocks. Starting with the asymmetric effects

of climate shocks on real GDP growth, we first ask whether positive versus negative SPEI

shocks generate the same impact on real activity10. As shown in Figure 10, there are clear

differences between positive and negative climate conditions on real activity. For example,

given that precipitation brings moisture and minerals into the soil which is crucial for

crops to grow, a positive SPEI shock leads to growth in the output of agriculture sector,

as shown in Figure 10a. Meanwhile, negative SPEI shocks, representing droughts which

are harmful for crops, decrease agricultural output.

Figure 10: Directional Asymmetry of Climate Shocks on Major Sectors of Production
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Note: Impulse response analyses based on the baseline VAR specification that takes into account directional

asymmetry for climate conditions. Shaded areas represent 68% confidence intervals

Meanwhile, opposite effects can be observed for some activities in industrial and

service sectors. Overall results are mainly driven by mining and construction sectors

(see Figure 11a and 11b) where wet conditions make it more difficult to engage in these

outdoor activities and vice versa. Finally, we observe that activities in the service sector

is contractionary for dry conditions but expansionary for wet conditions. We conjecture

that the results are mainly driven by tourism activities where accommodation (Figure

10Due to space considerations, going forward we will only present the results based on the SPEI6M index. The results

based on alternative SPEI horizons generate similar qualitative responses and are available upon request.
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11c) and transportation (Figure 11d), gets an expansionary boost during wet conditions,

and is reduced during dry conditions. This is most likely seasonally related as tourists

tend to avoid hot summer months.

Figure 11: Directional Asymmetry of Climate Shocks on Selected Sectors of Production
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Note: Impulse response analyses based on the baseline VAR specification that

takes into account directional asymmetry for climate conditions. Shaded areas

are 68% confidence intervals.

Apart from the directional impact of climate shocks that may invite varying responses

from real activity, the extremity of the shock also matters. For real GDP for example,

the impulse response in the case of exceptionally wet conditions are two times the impact

of the moderate case (Figure 12a). For the agricultural sector, this difference is even

more pronounced. We find that when there is a strong drought, the impact is almost

three times as large as the moderate case (Figure 12b). However, for industrial and

service sectors, we do not observe any differentiated responses based on extremities of

shocks. Overall however, our results indicate that there are important asymmetries and

non-linearities in the impact of climate shocks on certain components of real output that

should be taken into careful consideration.

The importance of asymmetric and non-linear impacts of climate shocks carry over

to inflation. In terms of directional asymmetry, we find that there are some differences

between the impact of wet versus dry climate shocks on some inflation components.

According to Figure 13c, more wet conditions pushes up energy prices while dry climate

shocks act in the opposite direction. Parker (2018) arrives at an opposite conclusion

based on a cross-country panel regression, where they explain that energy prices receive

downward pressure following floods as plentiful rainfall reduces the cost of hydroelectric

power generation. However, the source of electricity in Thailand mainly comes from

natural gases. As such, we conjecture that during wet conditions when mining activities

are affected, upward pressure is placed on prices. This is consistent with our finding for
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Figure 12: The Impact of Extreme Climate Shocks for Output Growth and Agriculture
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(b) Agriculture
Note: Impulse response analyses based on the baseline VAR specification

that takes into account the different effects of extremities for climate con-

ditions. Shaded areas are 68% confidence intervals

mining activities in Figure 11a.

In Figure 13b, we do not observe any directional asymmetries on food inflation. How-

ever, they become prominent at the subcomponent level (see Figure 14). Raw food, rice,

and vegetable inflation in particular, decline in response to wet conditions due to over-
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Figure 13: Directional Asymmetry of Climate Shocks on Inflation and Components
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Note: Impulse response analyses based on the baseline VAR specification that takes into account directional

asymmetry for climate conditions. Shaded areas are 68% confidence intervals

supply, whereas dry conditions conversely leads to higher inflation. As for the response

of meat inflation, we observe slight differences in direction only in the short term. The

response of meat inflation to a dry weather shock coincides with the findings of Kam-

ber et al. (2013) where, initially after drought, an increasing in livestock slaughters put

downward pressure on meat prices due to higher supply, but later decreases as subsequent

slaughters reduces supply and increases meat inflation.

Figure 14: Directional Asymmetry of Climate Shocks on Food Inflation
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Note: Impulse response analyses based on the baseline VAR specification that

takes into account directional asymmetry for climate conditions. Shaded areas

are 68% confidence intervals

Finally, we find little evidence of differentiated responses to extreme weather condi-

tions for headline CPI inflation (Figure 15a). The overall impact of both moderate and

extreme weather shocks are not statistically significant. However, the degree of climate

shocks do matter at the subcomponent level. The impact of extreme weather shocks on

vegetable inflation in particular is particularly pronounced (Figure 15b), where prices

respond by about two to three times higher. As such, while there is little threat to price

stability from climate shocks, especially on headline inflation, it would be important to

monitor price movements in certain subcomponents especially in the raw food category,
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especially as climate shocks in the future become more frequent and severe.

Figure 15: The Impact of Extreme Climate Shocks for Headline and Vegetable Inflation
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(b) Vegetable
Note: Impulse response analyses based on the baseline VAR specification

that takes into account the effects of weather extremities for climate con-

ditions. Shaded areas are 68% confidence intervals
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4 Cross-provincial Macroeconomic Impacts of Climate Shocks

This section will examine the cross-provincial impacts of climate shocks along various

dimensions. First, a large literature emphasizes that the impact of climate change varies

across the rich and the poor, thus we investigate the extent in which the impact of

climate change may depend on the gross provincial product (GPP) per capita. Second, in

previous sections, we find that the effect of climate shocks on real output is heterogenous

across sectors, and agricultural and tourism activities in particular, are disproportionately

affected. Given that these two sectors are key engines to economic growth in Thailand -

not only in terms of production, but also towards employment - we also investigate the

extent in which the impact of climate change may vary based on each province’s reliance

on agricultural and tourism activities.

4.1 Data and Model Specification

To study the cross-provincial differences in the impact of climate change on real output,

we utilize a similar panel autoregressive distributed lag model (ARDL) to Kahn et al.

(2019), as outlined below11:

∆yi,t = α1∆SPEIi,t+α2∆SPEIi,t−1+α3∆SPEIi,t−2+β1∆yi,t−1+β2∆yi,t−2+γi+at+ϵi,t.

(6)

In the above specification, Δyi,t is the real Gross Provincial Product (GPP) per capita

growth rate in province i at time t; ΔSPEIi,t is the 12-month average of differences of

SPEI in province i at time t that is weighted by the population in province i; γi is the

province fixed effect; ai is the time fixed effect and ϵi,t is the unexplained residual.12 With

the inclusion of fixed effect estimators, we implicitly assume that the climate variables

are strictly exogenous, thus ruling out any reverse causality from economic growth to

climate variables. This is a consistent assumption with the majority of literature, see for

example, Dell et al. (2012) and Auffhammer et al. (2020).

We estimate the panel ARDL model above by feasible generalized least squares

(FGLS) to ensure heteroskedastic-robust results (see Bai et al., 2020).13 In doing so,

apart from being able to quantify the short term effects of climate change on real GPP
11We opt for a panel ARDL model rather than a panel VAR because we only have provincial data on output and not

inflation.
12Note that alternatively, population growth can be included as a control variable in similar regressions (Odusola and

Abidoye, 2015 ; Zeb, 2013).
13Panel heteroskedasticity tests, i.e., the Breusch–Pagan/ Cook–Weisberg tests were undertaken to investigate the sta-

tionary variance of the error term where all the models exhibited heteroskedasticity. In addition, the Im–Pesaran–Shin

(CIPS) panel unit root test was conducted to confirm that all macroeconomic variables in the regression are indeed sta-

tionary to avoid spurious results.
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per capita growth through estimates of the beta coefficients, a key advantage of the

panel ARDL specification is that we can also quantify the medium-run effects of climate

change.14. In particular, the medium-run impact of changes in the climate variables on

real GPP per capita growth (Θ) can be calculated from the OLS estimates of the short-run

coefficients in equation (6) where:

Θ =

∑l
j=1 αj

1−
∑p

k=1 βk

.

To investigate the cross-provincial differences based on level of income and reliance

on agricultural and tourism activities, we interact the current and lagged climate variable

∆SPEIi,t that appears in Equation (6) with dummy variables. More specifically, we first

generate a “Poor” dummy variable (Pt) that takes on the value of 1 if the GPP per capita

in that province is below or equal to the 25th percentile of GPP per capita on average

during the sample, and 0 otherwise. This approach identifies 20 provinces in the northern

and northeastern region as being “Poor”15. As per the Thai GPP data that we use, it is

available at an annual frequency and is obtained from NESDC. The sample is available

over 2001-2019, and therefore we have a panel of 19 years for 77 provinces nationwide.

Table 2 shows the summary statistics of GPP per capita and population as it varies across

various Thai regions.

Table 2: Summary Statistics of Thai regional related data

Source: Office of the National Economic and Social Development Council of Thailand (NESDC)

Second, we utilize NESDC data to further differentiate between agricultural versus
14While the literature may define this as a long-run impact, we opt for a calling it a medium-run effect since the coverage

is a 3-year horizon.
15These 20 poor provinces are Amnat Charoen, Buri Ram, Chaiyaphum, Kalasin, Mae Hong Son, Maha Sarakham,

Mukdahan, Nakhon Phanom, Nan, Narathiwat, Nong Bua Lam Phu, Phatthalung, Phrae, Roi Et, Sakon Nakhon, Si Sa

Ket, Sukhothai, Surin, Ubon Ratchathani and Yasothon.
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non agricultural reliant provinces by defining an “Agricultural” dummy variable (At)

that takes on the value of 1 if the proportion of agricultural output is more than 5

percent of its GPP on average during the year 2001 to 2019, and a 0 otherwise. In

doing so, we identify 62 agricultural provinces in Thailand16. According to Table 3, while

the agricultural sector contributes a rather small share of 6.14% to total GDP, but its

importance is significant in certain regions such as the South where it accounts for almost

a fifth of its regional output. We also choose to investigate the impact of climate shocks

on agricultural provinces because of its coverage of workforce, where the agricultural

sector employs around one-third of the country’s labor force over a widespread area (see

Figure 16). Most importantly, this sector is highly vulnerable to climate shocks as shown

in the empirical findings of the previous section.

Table 3: Real Gross Regional Product (GRP) classified by Sectors, as of 2019

Third, we generate a ”Tourism-related” province (Tt) that takes on the value of 1 if,

according to the Ministry of Tourism and Sports, that province heavily relies on Tourism,

and a 0 otherwise17. Tourism takes up a large share of the services sector in Thailand,

which according to Table 3, it is mostly concentrated in Bangkok, Northern and Southern

regions.

16These 62 agricultural-related provinces are Amnat Charoen, Bueng Kan, Buri Ram, Chai Nat, Chaiyaphum, Chan-

thaburi, Chiang Mai, Chiang Rai, Chumphon, Kalasin, Kamphaeng Phet, Kanchanaburi, Khon Kaen, Krabi, Lampang,

Lamphun, Loei, Lop Buri, Maha Sarakham, Mukdahan, Nakhon Nayok, Nakhon Pathom, Nakhon Phanom, Nakhon

Ratchasima, Nakhon Sawan, Nakhon Si Thammarat, Nan, Narathiway, Nong Bua Lam Phu, Nong Khai, Pattani, Phang-

nga, Phatthalung, Phayao, Phetchaburi, Phichit, Phitsanulok, Phrae, Prachuap Khiri Khan, Ranong, Ratchaburi, Roi Et,

Sa Kaeo, Sakon Nakhon, Samut Sakhon, Satun, Si Sa Ket, Songkhla, Sukhothai, Suphan Buri, Surat Thani, Surin, Tak,

Trang, Trat, Ubon Ratchathani, Udon Thani, Uthai Thani, Uttaradit, Yala, and Yasothon.
17These 13 tourism-related provinces are Bangkok, Phuket, Phang-nga, Krabi, Prachuap Khiri Khan, Surat Thani,

Chiang Mai, Chiang Rai, Chonburi, Trat, Phra Nakhon Si Ayutthaya, Songkhla and Rayong.
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Figure 16: Agricultural area in Thailand (shown in green shade)

Source: Food and Agriculture Organisation of the United Nations (FAO)

Finally, for the climate variable in estimation, we use the 12-month SPEI index to be

consistent with GPP growth data that is available at an annual frequency. As mentioned

earlier, we construct the provincial SPEI index from temperature and rainfall data in

each province. To get a sense of this climate data that we use to estimate Equation (6),

we show in Figure 17 that the distribution of the annual change in the 12-month SPEI

index during the 2001-2019 period is left-skewed, reflecting drier conditions across most

of the regions. Negative median box plots in Figure 18 across regions also confirm drier

conditions in Thailand over the sample period.

Figure 17: Yearly Changes in SPEI, 2001-2019
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Figure 18: Yearly Changes in SPEI across regions, 2001-2019

4.2 Empirical Findings

We estimate equation (6) to obtain baseline results, where we focus on the medium run

impacts of climate change. As shown in Panel (a) of Table 4, we find that a change

in the climate variable generates a statistically significant negative impact on real GPP

per capita growth in the medium-run. More specifically, we find that if the SPEI12M

increases by 1 unit annually, average per capita real GPP growth in the medium run will

be statistically significantly lower by 2.28 percent per year. In terms of the direction of

impact, this finding is in line with our previous country-level VAR results that the impact

of a SPEI shock on real GDP is in general contractionary.

Table 4: Effects of a change in 12-month average SPEI on Real GPP per capita growth across provincial

characteristics, 2001 - 2019

Next, we investigate whether the climate change effect on regional output differs

across groups of provinces as classified by certain characteristics by the inclusion of

dummy variables as described earlier. Based on the estimation results in Table 4, there
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Table 5: Effects of a directional change in 12-month average SPEI on Real GPP per capita growth across

provincial characteristics, 2001 - 2019

are important climate change impacts across provinces. According to the results in col-

umn (b), we find that climate change tends to affect poor provinces more since the

effect of lagged SPEI variation has a negative and statistically significant impact on the

medium-run economic growth of poor provinces, which differs from non-poor provinces

by 0.74 percent. These results are in line with the literature, for example, Jones and

Olken (2010), World Bank (2012), and Mehar et al. (2016). The literature states that,

in addition to the limited economic resources and coping mechanisms, the destruction

of critical infrastructure has a disproportionate negative impact on the well-being and

opportunities of the poor. Next, turning to examine column (c), the study finds that

the medium-run impact of climate change also depends on whether the province relies on

agricultural activities. We find that, although the net effect to agricultural provinces is

negative, climate shocks tend to affect these provinces less (benefit more) by 0.63 percent

which is in line with the findings of rainfall effects on agricultural sector by Akram (2012)

and the rainfall effects on cassava yields by Phatcharopaswatanagul (2018). However, in

column (d), there are no significant differences in climate change based on whether the

province is reliant on tourism. This contrasts with the results of Sangkhaphan and Shu

(2020), studying Thailand case, and Becken and Wilson (2013), studying New Zealand

case.

Finally, we investigate whether positive and negative SPEI shocks can impact real

GPP growth per capita in different ways. In doing so, we separate ΔSPEIi,t into positive
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and negative values, and interact them with current and lagged climate variables in equa-

tion (6) to account for the potential asymmetrical effects of climate change on economic

growth18. As shown in Table 5, there is clear cut evidence of directional asymmetry

for climate change. In fact, the directional impact of weather conditions also depends

on provincial characteristics, such as whether they are poor or non-poor provinces or

whether they are engaged heavily in agricultural activities. For example, in column (g),

given an increase in positive or wet climate conditions, the real GPP per capita growth

of agricultural provinces tends to be higher than non-agricultural ones by 1.45 percent

per year, although the net effect to these provinces are still negative. In other words,

wet or moist weather conditions less affect (benefit more) economic activity growth in

agricultural provinces which is in line with, for example, Loayza et al. (2012) and Birthal

and Hazrana (2019). On the other hand, in column (f), if SPEI conditions become in-

creasingly dry, real GPP per capita growth of poorer provinces improve by more than

non-poor ones by 1.54 percent per year, which is in contrast with Sangkhaphan and

Shu (2019). This again highlights the importance of accounting for heterogeneity across

provinces when analyzing the effects of climate change.

5 Conclusion

This paper provides a comprehensive analysis of the macroeconomic impacts of climate

shocks for output and inflation in Thailand. We find that overall, the physical risks that

stem from climate change causes real output growth to contract at both short and medium

run horizons, albeit with less pronounced effects on inflation. However, the dynamic

impact of climate shocks in Thailand heavily depends on the sector of production and

disaggregated component of inflation. For example, the agricultural sector is particularly

vulnerable to climate shocks as well as vegetable prices. Also, we find that the effect of

climate shocks are both asymmetric and non-linear as the impact becomes increasingly

severe as the shock becomes more persistent and extreme, and the effect of the shock

for various sectors depend crucially on the direction of the climate shock. The effects of

climate change also varies across provinces, with poorer provinces and provinces that are

more reliant on agricultural activities disproportionately affected.

Against the backdrop of a warmer climate trend, and greater occurrences of more

severe and persistent climate shocks for Thailand, some implications from our results

for policymakers are as follows. First, a slowdown in output growth can be expected.

Key sectors that Thailand are heavily reliant upon namely agriculture and tourism are

at the greatest risk, alongside poor provinces that are most vulnerable and may face

challenges adjusting. In other words, it implies that the impact of climate change will

18Note that while we would also like to consider the impact of extreme climate conditions on regional output, given that

the panel regression utilizes annual data, our sample size limitations does not allow for this possibility.
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be unevenly distributed across economic sectors, posing further challenges to monetary

policy in promoting inclusive and sustainable growth.

Second, while we find that the impact of climate change on inflation is rather muted,

climate shocks can be inflationary for some components of inflation, particularly raw food.

Given that a large portion of Thailand’s CPI consumption basket is tied to raw food,

greater occurrences of climate shocks can induce heightened inflation risks to Thailand.

Moreover, it is possible that more persistent and extreme climate shocks can lead to a

changing inflation process as relative price shocks may become more volatile, persistent

and broad-based. Should this occur, policymakers need be particularly wary to the

possibility that relative price shocks, particularly in the food sector, may trigger second-

round effects or de-anchor inflation expectations. Thus, a credible monetary policy regime

is key towards dealing with the possible price stability risks of climate change.

Finally, policymakers need to be acutely aware of important asymmetries and nonlin-

earities in the impact of climate change on output and prices. Indeed, these characteristics

complicate the policymakers’ task of understanding as well as mitigating the impact of

climate change on the macroeconomy, as non-linearity implies that probability distribu-

tions of risks in historical data may be a poor gauge of what the future holds. As such,

empirical work related to the impacts of climate change that can account for such fea-

tures are highly encouraged. Furthermore, while we acknowledge the important impact

of climate shocks on the macroeconomy, we do not account for the endogenous feedback

loop between the macroeconomy to climate conditions, which will only become all the

more important over future years. Future research work in this area will be critical and

highly welcomed.
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