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Abstract

This paper proposes an approach to develop regime switching models where latent process

determining the switching is endogenously controlled by the model shocks with free functional

forms. The linear endogeneity assumption in the conventional endogenous regime switching mod-

els can therefore be relaxed. A recursive filter technique is applied to proceed maximum likeli-

hood estimation in order to estimate the model parameters. A nonlinear endogenous two-regime

switching mean-volatility model is conducted in numerical examples to investigate the model

performance. In the examples, the endogeneity in switching allows heterogeneous effects of the

shock signs (asymmetric endogeneity) and of the states being before the switching determination

(state-dependent endogeneity). Monte Carlo simulations show that the conventional switching

model ignoring the nonlinear endogeneity leads to the volatility biases. The estimates tend to be

over or under their true value depending on how the endogeneity characteristics are. In particu-

lar, the true model that accounts the nonlinear endogeneity effectively provides the more precise

estimates. The same model is also applied to real data of excess returns on US stock market, and

the estimation results informatively describe the effects influencing the regime shifts.
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1 Introduction

Regime switching models have been widely popular for various applications in time series

analysis. This approach can capture the behavior, such as in financial markets and economic

cycles, suddenly changed and possibly persisted. Hamilton (1989), a prominent article, intro-

duces an autoregressive model with discrete state of drift rate determined by a first-order Markov

process. This approach is extended by Kim (1994) in a general state-space model associated with

state-varying parameters. From this starting point, there is growing literature in studying avail-

able approaches to model the regime changes as well as the treatments in finance and economics

theories. The discussions of which can be referred to, e.g., Ang and Timmermann (2012), and

Hamilton (2010,2016).

Most studies employ regime switching models with exogenous transition probabilities inde-

pendent of realizations of underlying time series. For example, Hamilton (1989) considers the

fixed transition probabilities, and Diebold Lee and Weinbach (1994), Filardo and Gordon (1998),

and Bazzi et al. (2017) deal with the time-varying transition probabilities explained by exogenous

variables. In practice, however, the transition probabilities could be determined endogenously. In

other words, the realized shocks unexplainable in underlying model trigger the state transitions

of the model parameters in order to adjust the shocks, and thus it is endogeneity. This could also

be viewed as the concept of equilibrium correction that incorporates the feedback effects of the

shocks into the model. Another familiar phenomenon is that financial and economic crises are

usually unpredictable, so, when the crises occur, the model shocks could lead to abruptly shift

the states of economy as well as the model parameters. This indicates the endogeneity in the

regime switching model that needs to be considered.

In earlier works of endogenous regime switching models, Kim Piger and Startz (2008) develop

an estimation of endogenous Markov-switching regime where the regime shifts are controlled by

the latent state variable in a probit specification. The errors, of the underlying process and of

the latent process, are assumed to be jointly correlated so that the endogenous regime switch-

ing is accounted. Kang (2014) also extends this method to a general state-space model. Chib

and Dueker (2004) propose a non-Markovian regime switching model in which a latent process

determining the regime follows an autoregressive process. The size of autoregressive parameter

represents the strength of states dependency. The endogeneity is considered in the same manner

as Kim Piger and Startz (2008). Chang Choi and Park (2017) also propose an approach similar

to Chib and Dueker (2004) except that the underlying model error is correlated with the error

in the next period embedded in the autoregressive latent process. Chib and Dueker (2004) de-

velop model estimation based on Bayesian procedure, whereas frequentist approach is proposed

by Chang Choi and Park (2017). Extensions and applications of this approach are referred to

Cheng Gao and Yan (2018), Song Ryu and Webb (2018), Chang Tan and Wei (2018), Chang

Maih and Tan (2021).
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Those studies model the endogeneity based on the correlation structure in joint-normal dis-

tribution, which is linear. However, there could be some situations that financial shocks are

endogenous to drive states of economy in the nonlinear manners. For example, Veldkamp (2005)

explains slow boom and sudden crash in asset prices due to investors’ adjustment to the prices

with asymmetric information uncertainties during good time and bad time. There are confirma-

tions in several empirical works, e.g. Nelson (1991) Engle and NG (1993) Bekaert and Wu (2000)

Ghysels Clara and Volkanov (2005) Ghysels Guerin and Marcellino (2014), that return volatility

in equity markets asymmetrically respond to positive and negative return shocks. Zhang et al.

(2022) also documents in crude oil market that impact of negative returns on volatility is more

than that of positive returns. Therefore, in the context of endogenous regime switching model,

the characteristics of the endogeneity could play an important role to model the regime changes.

For instance, the volatility states in financial markets are changed due to the asymmetric return

shocks.

To capture the nonlinear endogeneity, this study proposes an approach to model the non-

linear endogenous switching where the endogeneity effects are considered in terms of flexible

functional form, which can be nonlinear and state-dependent. The model specification and esti-

mation method are extended of Kim Piger and Startz (2008) to a more general version. A filtering

technique, first proposed by Hamilton (1989), is modified in this study to construct a recursive

maximum likelihood estimation for the specified models. A two-regime switching model is first to

introduce the idea, and then is generalized to a multi-regime switching multivariate model. We

also discuss a special case of the nonlinear endogeneity using a piecewise linear function for the

two-regime model.

To evaluate the model performance, the simulations are explored based on a simple two-

regime switching mean-volatility model with the nonlinear endogenous switching that consists of

the asymmetric and state-dependent effects. That is, the regime changes are described by the

signs of the model shock and the state being before the changes. The results of the simulations

show that the typical linear endogenous switching model provides the estimated mean of each

state approximately indifferent from its true value but the estimated volatility quite biased. The

biases are either over or under the true values depending on the patterns of the asymmetric and

state-dependent endogeneity. Particularly, we obtain the more precise estimates if this nonlinear

endogeneity is allowed into the model. In the same model, it is applied to the excess returns data of

the US stock market, and we find that the state transitions strongly rely on the contemporaneous

positive shocks as well as the shocks associated with the previous high-volatility state.

This paper outlines the discussions into the rest five sections. Section 2 presents the nonlinear

endogenous switching models for double regimes. A generalization to the multivariate version is

in Section 3. Section 4 and 5 illustrate the numerical examples of the simulations and real data,

respectively. This paper concludes in Section 6.
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2 A two-regime switching model with nonlinear en-

dogenous switching

This section discusses specification and estimation of two-regime switching models where the

regime switching is nonlinearly endogenous. The notations for the following discussions are in-

troduced. Let p(·) and p(·|·) denote the generic notation for the unconditional and conditional

probability distribution functions, respectively. In addition, denote the probability density func-

tion and the cumulative distribution function of the standard normal random variable by ϕ(·) and
Φ(·). Those functions are respectively defined by ϕ2(·, ·; ρ) and Φ2(·, ·; ρ) to refer the bivariate

standard normal distribution functions where ρ denotes the correlation parameter between the

two random variables.

2.1 The model

Let xt denote a vector of exogenous or predetermined variables which may also include their

lags. Let st denote a discrete state process representing the regime. Consider an underlying time

series yt specified by

yt = µt + σtϵt, (1)

where ϵt ∼ i.i.d. N (0, 1), and µt and σt are defined by

µt = µ(st, ..., st−k, yt−1, ...., yt−k, xt), (2)

σt = σ(st, ..., st−k, yt−1, ...., yt−k, xt). (3)

In this case, µt and σt represent the time-varying mean and volatility functions, respectively,

which can be nonlinear in the input variables. This specification is extended of Kim Piger and

Startz (2008) and is similar to Chang Choi and Park (2017) that yt may depend on its lagged

values and the past regimes for k periods.

For the state process st, let us consider the double regimes that st ∈ {0, 1} is determined by

a continuous latent state process wt. Specifically,

st = 1{wt>0}, (4)

where 1{·} is an indicator function, and wt follows that

wt = νt + γtηt, (5)

where ηt ∼ i.i.d. N (0, 1), and νt and γt are defined by

νt = ν(st−1, ..., st−h, ϵt, ...., ϵt−h, zt), (6)

γt = γ(st−1, ..., st−h, ϵt, ...., ϵt−h, zt). (7)
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Similarly, νt and γt respectively represent the mean and volatility functions for controlling the

latent variable and thus regime shifts. zt is a vector that consists of exogenous variables which

also help the model determine the regime.1 It can be seen that the contemporaneous shock

ϵt and the historical shocks (ϵt−1, ..., ϵt−h) of the underlying model can endogenously determine

the state variable st through the functions νt and γt. Apparently, since st may depends on

st−j for j = 1, ..., k + h, it may not be a first-order Markov process that usually applies with

traditional Markov-switching models. The functional form of νt and γt are also free and allowed

to be nonlinear which can capture various relationships or patterns of the endogeneity in regime

switching. This structure is more flexible than previous studies that only consider the linear

endogeneity based on Gaussian approach. That is similar to setting that the random variables ϵt

and ηt are jointly normal, and the functions νt and γt are independent of ϵt and its lags. Lastly,

all functions above are assumed to be well defined, and σt and γt are strictly positive.

2.2 Maximum likelihood estimation

The estimation for the model parameters in (1) and (5) is discussed in this subsection. Let

Ft = [yt, yt−1, ..., y1]
′ and Ωt = [x′t, x

′
t−1, ..., x

′
1, z

′
t, z

′
t−1..., z

′
1]
′ denote all historical data observed

up to time t of underlying time series (y) and exogenous variables (x, z). Let θ be a vector of

model parameters associated with (1) and (5). For a number of observation T , the log-likelihood

function can be written as

lnL(θ) =

T∑
t=1

ln p(yt|Ft−1; Ωt, θ). (8)

θ̂ is then chosen to maximize the log-likelihood function, i.e.

θ̂ = argmax
θ∈Θ

lnL(θ). (9)

In order to compute p(yt|Ft−1; Ωt, θ) for each t = 1, ..., T , The recursive filter method proposed

by Hamilton (1989) can be applied to develop the recursive estimation based on the specified

models. Utilizing the Bayes’ rule, it can be written that

p(yt|Ft−1; Ωt, θ) =
1∑

st=0

· · ·
1∑

st−k−h=0

p(yt|st, ..., st−k−h,Ft−1; Ωt, θ)p(st, ..., st−k−h|Ft−1; Ωt, θ),

(10)

where

p(st, ..., st−k−h|Ft−1; Ωt, θ) = p(st|st−1, ..., st−k−h,Ft−1; Ωt, θ)p(st−1, ..., st−k−h|Ft−1; Ωt−1, θ),

(11)

1zt may include lags of yt up to order k + h if the equality p(st|st−1, ..., st−k−h,Ft−1; Ωt, θ) =

p(st|st−1, ..., st−k−h, yt−1, ..., yt−k−h; Ωt, θ), as shown in Proposition 2.1, still holds for the estimation.
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p(st, ..., st−k−h+1|Ft; Ωt, θ) =

1∑
st−k−h=0

p(st, ..., st−k−h|yt,Ft−1; Ωt, θ)

=

∑1
st−k−h=0 p(yt|st, ..., st−k−h,Ft−1; Ωt, θ)p(st, ..., st−k−h|Ft−1; Ωt, θ)

p(yt|Ft−1; Ωt, θ)
.

(12)

The recursion (10)-(12) is analogous to a conventional Kalman filter in which (11) and (12) could

be steps of prediction and updating, respectively.

To initialize the recursion (10)-(12), it may start at t = k + h and need the estimates of

p(sk+h, ..., s1|Fk+h; Ωk+h, θ). There would be a number of 2k+h − 1 estimates. They may be

approximated by unconditional or stationary distribution. On the other hand, they may be

assigned as additional parameters to be estimated. Applying the following results in Proposi-

tion 2.1 to compute the probability distribution functions p(st|st−1, ..., st−k−h,Ft−1; Ωt, θ) and

p(yt|st, ..., st−k−h,Ft−1; Ωt, θ), the recursion may be readily completed. Then, the maximum like-

lihood estimates could be obtained by working with numerical optimization.

Proposition 2.1. Suppose a joint stochastic process (st, yt) follows (1) and (4). Then, the

following results hold.

p(st|st−1, ..., st−k−h,Ft−1; Ωt, θ) =

∫ ∞

−∞

[
(1− st)

(
1− Φ

(νt
γt

))
+ stΦ

(νt
γt

)]
ϕ(ϵt)dϵt, (13)

p(yt|st, ..., st−k−h,Ft−1; Ωt, θ) =

ϕ
(yt − µt

σt

)[
(1− st)

(
1− Φ

(νt
γt

))
+ stΦ

(νt
γt

)]
σtp(st|st−1, ..., st−k−h,Ft−1; Ωt, θ)

. (14)

In addition, (st, yt) is a first (k + h)-order Markov process associated with the transition density

p(st, yt|st−1, ..., st−k−h, yt−1, ..., yt−k−h; Ωt, θ) =
1

σt
ϕ
(yt − µt

σt

)[
(1− st)

(
1− Φ

(νt
γt

))
+ stΦ

(νt
γt

)]
.

(15)

Proof. Consider yt = µ(st, ..., st−k, yt−1, ...., yt−k, xt)+σ(st, ..., st−k, yt−1, ...., yt−k, xt)ϵt ≡ µt+σtϵt

and wt = ν(st−1, ..., st−h, ϵt, ...., ϵt−h, zt) + γ(st−1, ..., st−h, ϵt, ...., ϵt−h, zt)ηt ≡ νt + γtηt where ϵt

and ηt are independent standard normal random variables. For st = 0, it can be shown that

Pr(st = 0|st−1, ..., st−k−h,Ft−1; Ωt, θ) = Pr(wt ≤ 0|st−1, ..., st−k−h, yt−1, ..., yt−k−h; Ωt, θ)

= Pr(wt ≤ 0|st−1, ..., st−k−h, ϵt−1, ..., ϵt−h; Ωt, θ)

=

∫ ∞

−∞
Pr
(
ηt ≤ −νt

γt
|st−1, ..., st−k−h, ϵt, ϵt−1, ..., ϵt−h; Ωt, θ

)
p(ϵt)dϵt

=

∫ ∞

−∞

(
1− Φ

(νt
γt

))
ϕ(ϵt)dϵt.
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Similarly, for st = 1,

Pr(st = 1|st−1, ..., st−k−h,Ft−1; Ωt, θ) =

∫ ∞

−∞
Φ
(νt
γt

)
ϕ(ϵt)dϵt.

The transition probability function (13) is already obtained. To derive (14), we first consider the

case st = 0 that

Pr(yt ≤ y|st = 0, st−1,..., st−k−h,Ft−1; Ωt, θ)

=
Pr(yt ≤ y, wt ≤ 0|st−1, ..., st−k−h, yt−1, ..., yt−k−h, ; Ωt, θ)

Pr(wt ≤ 0|st−1, ..., st−k−h, yt−1, ..., yt−k−h; Ωt, θ)

=

∫ y

−∞
Pr(wt ≤ 0|st−1, ..., st−k−h, yt, yt−1, ..., yt−k−h; Ωt, θ)ϕ

(yt − µt

σt

)
dyt

σtPr(wt ≤ 0|st−1, ..., st−k−h, yt−1, ..., yt−k−h; Ωt, θ)

=

∫ y

−∞

(
1− Φ

(νt
γt
; ϵt =

yt − µt

σt

))
ϕ
(yt − µt

σt

)
dyt

σt

∫ ∞

−∞

(
1− Φ

(νt
γt

))
ϕ(ϵt)dϵt

.

The last equality above holds by the fact that the information (st−1, ..., st−k−h, yt, yt−1, ..., yt−k−h)

is enough to deduce (st−1, ..., st−k−h, ϵt, ϵt−1, ..., ϵt−h) where ϵt−j = (yt−j−µt−j)/σt−j , j = 0, ..., h.

Therefore, we have the conditional density function of yt evaluated at any value of y given by

p(yt = y|st = 0, st−1, ..., st−k−h,Ft−1; Ωt, θ) =
∂

∂y
Pr(yt ≤ y|st = 0, st−1, ..., st−k−h,Ft−1; Ωt, θ)

=

(
1− Φ

(νt
γt
; ϵt =

y − µt

σt

))
ϕ
(y − µt

σt

)
σt

∫ ∞

−∞

(
1− Φ

(νt
γt

))
ϕ(ϵt)dϵt

.

Similarly, it can be accomplished for st = 1 where

p(yt|st = 1, st−1, ..., st−k−h,Ft−1; Ωt, θ) =

Φ
(νt
γt

)
ϕ
(yt − µt

σt

)
σt

∫ ∞

−∞
Φ
(νt
γt

)
ϕ(ϵt)dϵt

.

Now (14) is readily obtained. Lastly, it can be seen from above that p(st|st−1, ..., s1, yt−1, ..., y1; Ωt, θ)

= p(st|st−1, ..., st−k−h, yt−1, ..., yt−k−h; Ωt, θ) and p(yt|st, st−1, ..., s1, yt−1, ..., y1; Ωt, θ) = p(yt|st, st−1,

..., st−k−h, yt−1, ..., yt−k−h; Ωt, θ). It follows that (st, yt) is a first (k + h)-order Markov process

where

p(st, yt|st−1, ..., s1, yt−1, ..., y1; Ωt, θ)

= p(yt|st, st−1, ..., s1, yt−1, ..., y1; Ωt, θ)p(st|st−1, ..., s1, yt−1, ..., y1; Ωt, θ)

= p(yt|st, st−1, ..., st−k−h, yt−1, ..., yt−k−h; Ωt, θ)p(st|st−1, ..., st−k−h, yt−1, ..., yt−k−h; Ωt, θ)

= p(st, yt|st−1, ..., st−k−h, yt−1, ..., yt−k−h; Ωt, θ)
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and we obtain the transition density (15).

From the above results, the transition probability (13) is evaluated with the expected value

of cumulative standard normal distribution function on the contemporaneous endogeneity effects

of ϵt. The conditional density of yt shown in (14) is similar to a class of skew normal density as

referred by Kim Piger and Startz (2008). As modeling the endogeneity by the linear correlation

structure that proposed by Kim Piger and Startz (2008), the integration in (13) averages ϵt

out, and it can be written in terms of normal cumulative distribution function. This will be

shown as a special case in the next subsection. For the nonlinear endogeneity associated with

complicated correlation structures of ϵt on νt and γt, however, the formula for (13) may not be

explicit, and we need to approximate it using numerical integration.2 On the other hand, if νt

and γt are independent of the contemporaneous shock ϵt, it is easy to see that the transition

probability (13) becomes (1 − st)(1 − Φ(νt/γt)) + stΦ(νt/γt), and the conditional density (14)

becomes ϕ
(
(yt−µt)/σt

)
/σt. The model without the contemporaneous endogeneity then simplifies

the recursion. Furthermore, we also have that (st, yt) can be filtered from the information last

k+h periods, because, in the underlying model, the past k periods of the state st are determined

by the past information at most h periods additional from that each of k periods.

2.3 Endogenous regime switching with piecewise linear functions

In this subsection, simple model specifications of the latent process (5) are discussed. Consider

the typical linear endogenous regime switching model based on Gaussian approach that the latent

process follows:

wt = α(st−1, zt) + ρϵt +
√
1− ρ2ηt, (16)

where −1 < ρ < 1 and [
ϵt

ρϵt +
√

1− ρ2ηt

]
∼ i.i.d. N

([
0

0

]
,

[
1 ρ

ρ 1

])
. (17)

In this case, we specify νt = α(st−1, zt) + ρϵt and γt =
√
1− ρ2, where α(st−1, zt) is time-varying

mean rate as a function of the previous state and exogenous variables. It can be seen that

st = 1{wt>0} follows a first order Markov process. This endogeneity formulation assumes that the

shock of underlying model (ϵt) is linearly and contemporaneously correlated with the shock of the

latent model (ρϵt +
√
1− ρ2ηt) with ρ level. Similar analyses can be found in Chib and Dueker

(2004), Kim Piger and Startz (2008), Kang (2014), and others regarding applications applied with

linear endogenous switching models.

2The recursive estimation associated with the numerical integration may encounter computational time problem. It

may be simplified by the substitution method that transforms the infinite limits of the integration to be finite.
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As introduced before, the nonlinear endogeneity in regime changes could be crucial and,

however, is ignored in the formulation above. It can be easily extended by applying the piecewise

linear functions so that we can approximate the nonlinear effects of ϵt on wt. The effects between

the states can also be considered in order to account state-dependent endogeneity, so we may let

the correlation level be a function of previous states. Specifically, the latent equation given by

(5) can be written in terms of a finite M -piecewise linear as follows:

wt =



α1,t + ρ1,tϵt +
√

1− ρ21,tηt if −∞ < ϵt ≤ ϵ̄1,t,

α2,t + ρ2,tϵt +
√

1− ρ22,tηt if ϵ̄1,t < ϵt ≤ ϵ̄2,t,

...

αM,t + ρM,tϵt +
√
1− ρ2M,tηt if ϵ̄M−1,t < ϵt < ∞,

(18)

where

αi,t = αi(st−1, ..., st−h, zt), (19)

ρi,t = ρi(st−1, ..., st−h, zt), (20)

ϵ̄i,t = ϵ̄i(st−1, ..., st−h, zt), (21)

and −1 < ρi,t < 1 for all i = 1, ...,M . We assume the thresholds ϵ̄i,t, i = 1, ...,M − 1, satisfies

−∞ < ϵ̄1,t < ϵ̄2,t < ... < ϵ̄M−1,t < ∞. Also, note that ϵt and ηt are independent standard normal

random variables. Under the above specification, the state (st) is endogenously determined by the

contemporary shock of the underlying model (ϵt), and the historical shocks are assumed to have

no effect on the determination. The endogeneity effects depend on the piecewise correlation ρi,t,

which is a function of the ϵt levels and the previous states. In particular, the effects are different

across M disjoint intervals of ϵt levels and identical within each of the intervals. We may make it

to be more general by letting the intervals be able to change when the lagged states or exogenous

variables are changed. The number of intervals, M , can be viewed as a hyperparameter in the

model to be chosen. We have the following results to calculate the recursive filter (10)-(12), and

therefore the model parameters can be estimated by numerically maximizing the log-likelihood

function.

Proposition 2.2. Suppose that yt and wt are modeled by (1) and (18), respectively. Then, the

following results hold.

p(st|st−1, ..., st−k−h,Ft−1; Ωt, θ) = (1− st)(1− δt) + stδt, (22)

where

δt = −Φ2(−α1,t, ϵ̄1,t; ρ1,t)−
M−1∑
i=2

[
Φ2(−αi,t, ϵ̄i,t; ρi,t)− Φ2(−αi,t, ϵ̄i−1,t; ρi,t)

]
+Φ(αM,t)

+ Φ2(−αM,t, ϵ̄M−1,t; ρM,t),
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and

p(yt|st, ..., st−k−h,Ft−1; Ωt, θ) =
ϕ
(yt − µt

σt

)
σtp(st|st−1, ..., st−k−h,Ft−1; Ωt, θ)

×



(1− st)(1− Φ(ζ1,t)) + stΦ(ζ1,t) if −∞ <
yt − µt

σt
≤ ϵ̄1,t,

(1− st)(1− Φ(ζ2,t)) + stΦ(ζ2,t) if ϵ̄1,t <
yt − µt

σt
≤ ϵ̄2,t,

...

(1− st)(1− Φ(ζM,t)) + stΦ(ζM,t) if ϵ̄M−1,t <
yt − µt

σt
< ∞,

(23)

where

ζi,t =
αi,tσt + ρi,t(yt − µt)

σt
√
1− ρ2i,t

, i = 1, ...,M.

Proof. Define ϵ̄0,t = −∞ and ϵ̄M,t = ∞, and that −∞ = ϵ̄0,t < ϵ̄1,t < ... < ϵ̄M−1,t < ϵ̄M,t = ∞.

(18) can be written as

wt =
M∑
i=1

(
αi,t + ρi,tϵt +

√
1− ρ2i,tηt

)
1{ϵt∈(ϵ̄i−1,t,ϵ̄i,t]}.

Applying (13) in Proposition 2.1 with substituting νt =
∑M

i=1(αi,t + ρi,tϵt)1{ϵt∈(ϵ̄i−1,t,ϵ̄i,t]} and

γt =
∑M

i=1

√
1− ρ2i,t1{ϵt∈(ϵ̄i−1,t,ϵ̄i,t]}, we can derive the case st = 0:

Pr(st = 0|st−1, ..., st−k−h,Ft−1; Ωt, θ) =

∫ ∞

−∞
Φ
(
− νt

γt

)
ϕ(ϵt)dϵt

=
M∑
i=1

∫ ϵ̄i,t

ϵ̄i−1,t

∫ −
αi,t+ρi,tϵt√

1−ρ2
i,t

−∞

1√
2π

exp

(
−x2

2

)
dx

1√
2π

exp

(
−ϵ2t

2

)
dϵt

=

M∑
i=1

∫ ϵ̄i,t

ϵ̄i−1,t

∫ 0

−∞

1√
2π(1− ρ2i,t)

exp

(
−(w − αi,t − ρi,tϵt)

2

2(1− ρ2i,t)

)
1√
2π

exp

(
−ϵ2t

2

)
dwdϵt

=
M∑
i=1

∫ ϵ̄i,t

ϵ̄i−1,t

∫ 0

−∞

1

2π
√
(1− ρ2i,t)

exp

(
−(w − αi,t)

2 − 2ρi,tϵt(w − αi,t) + ϵ2t
2(1− ρ2i,t)

)
dwdϵt

=

M∑
i=1

∫ ϵ̄i,t

ϵ̄i−1,t

∫ −αi,t

−∞

1

2π
√

(1− ρ2i,t)
exp

(
− w̃2 − 2ρi,tϵtw̃ + ϵ2t

2(1− ρ2i,t)

)
dw̃dϵt

= Φ2(−α1,t, ϵ̄1,t; ρ1,t) +
M−1∑
i=2

[
Φ2(−αi,t, ϵ̄i,t; ρi,t)− Φ2(−αi,t, ϵ̄i−1,t; ρi,t)

]
+Φ(−αM,t)

− Φ2(−αM,t, ϵ̄M−1,t; ρM,t).

10



It follows that Pr(st = 1|st−1, ..., st−k−h,Ft−1; Ωt, θ) = 1− Pr(st = 0|st−1, ..., st−k−h,Ft−1; Ωt, θ).

The transition probability (22) is obtained. Similarly, substituting νt and γt into (14) easily yields

the conditional density function (23).

This is an example of the latent specification that we can account for the nonlinear endogeneity

effects. As shown in (22), the transition probability function can be written in terms of univariate

and bivariate standard normal cumulative distribution functions represented in δt, and we are

not necessary to evaluate numerical integration during the recursive estimation as previously

mentioned. The conditional density (23) is also constructed with different structures depending

on the levels of ϵt = (yt−µt)/σt. If we let ϵt explain the latent process with identical structure so

that αi,t = αt and ρi,t = ρt for all i = 1, ...,M , the conditional probability distribution functions

(22)-(23) are given by

p(st|st−1, ..., st−k−h,Ft−1; Ωt, θ) = (1− st)(1− Φ(αt)) + stΦ(αt), (24)

p(yt|st, ..., st−k−h,Ft−1; Ωt, θ) =
ϕ
(yt−µt

σt

)[
(1− st)

(
1− Φ

(αtσt+ρt(yt−µt)

σt

√
1−ρ2t

))
+ stΦ

(αtσt+ρt(yt−µt)

σt

√
1−ρ2t

)]
σtp(st|st−1, ..., st−k−h,Ft−1; Ωt, θ)

.

(25)

In this case, the endogeneity effect via ρt is symmetric across the levels of the shock, but it can

still be state-varying that capture nonlinear response to the shock. The Markov regime switching

model with the linear endogenous switching as, for example, proposed by Kim Piger and Startz

(2008) specifies αt = α(st−1, zt) and especially ρt = ρ which is fixed. Therefore, the existence

of the nonlinear endogeneity effects may lead to the model estimation biases to the conventional

switching models that ignore the effects.

3 A multi-regime switching multivariate model with

nonlinear endogenous switching

3.1 The model

Consider aK−state regime switching model for a system of n equations. Let yt = [y1,t, ..., yn,t]
′

denote the vector of underlying time series associated with the the vector of corresponding errors

ϵt = [ϵ1,t, ..., ϵn,t]
′. Let si,t ∈ {0, ...,K − 1} denote the state process to represent the individual

regime of yi,t, and define st = [s1,t, ..., sn,t]
′. We also use xt to denote exogenous variables the

same as previous section. yi,t is explained by individual time-varying mean µi,t and volatility σi,t

measured by the following functions:

µi,t = µi(si,t, ..., si,t−k,yt−1, ...,yt−k, xt), (26)

σi,t = σi(si,t, ..., si,t−k,yt−1, ...,yt−k, xt), (27)
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where σi,t is strictly positive. In this multivariate version, both µi,t and σi,t can be varied depend-

ing on the current and past states of its individual regime, and the lagged underlying time series

in the system. In addition, yi,t is allowed to be correlated with yj,t via their error components

associated with the correlation function

qij,t = qij(si,t, ..., si,t−k, sj,t, ..., sj,t−k,yt−1, ...,yt−k, xt), (28)

where −1 < qij,t = qji,t < 1 if i ̸= j, and qij,t = 1 if i = j. Let Qt denote a time-varying

correlation matrix whose entries are qij,t. We can apply a Cholesky decomposition to find a lower

triangular matrix Lt whose entries are lij,t so that

Qt = LtL
′
t, (29)

where

Lt =


l11,t 0 · · · 0

l21,t l22,t · · · 0
...

...
. . .

...

ln1,t ln2,t · · · lnn,t

 (30)

with

l11,t = 1, lii,t =

√√√√1−
i−1∑
k=1

l2ik,t for 1 < i ≤ n, (31)

li1,t = qi1,t for 1 ≤ i ≤ n, lij,t =
1

ljj,t

(
qij,t −

j−1∑
k=1

lik,tljk,t

)
for 1 < j < i ≤ n. (32)

We also assume that
∑i−1

k=1 l
2
ik,t < 1, for i = 2, ..., n, to guarantee the real positive diagonal entries

of Lt. Therefore, we write
y1,t
y2,t
...

yn,t

 =


µ1,t

µ2,t
...

µn,t

+


σ1,t 0 · · · 0

0 σ2,t · · · 0
...

...
. . .

...

0 0 · · · σn,t




l11,t 0 · · · 0

l21,t l22,t · · · 0
...

...
. . .

...

ln1,t ln2,t · · · lnn,t




ϵ1,t
ϵ2,t
...

ϵn,t

 (33)

where ϵt = [ϵ1,t, ..., ϵn,t]
′ is i.i.d. n−dimensional standard normal random vector. It can be seen

that E[Ltϵtϵ
′
tL

′
t|st, ..., st−k,yt−1, ...,yt−k, xt] = Qt, and the entries (i, j) of Cov(yt|st, ..., st−k,yt−1

, ...,yt−k, xt) are σi,tσj,tqij,t.

In addition, similar to the system of the underlying processes, we characterize the system of la-

tent processes wi,t, i = 1, ..., n, that their individual mean and volatility functions are respectively

given by

νi,t = νi(si,t−1, ..., si,t−h, ϵt, ..., ϵt−h, zt), (34)

γi,t = γi(si,t−1, ..., si,t−h, ϵt, ..., ϵt−h, zt), (35)
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where γi,t > 0 and zt is exogenous. The correlations between wi,t and wj,t via their error terms

can also be accounted with the quantity

rij,t = rij(si,t−1, ..., si,t−h, sj,t−1, ..., sj,t−h, ϵt, ..., ϵt−h, zt), (36)

where −1 < rij,t = rji,t < 1 if i ̸= j and rij,t = 1 if i = j. A correlation matrix whose entries

(i, j) are rij,t is denoted by Rt, and it is associated with the lower triangular matrix M t whose

entries are mij,t so that Rt = M tM
′
t. Thus, mij,t, 1 ≤ j ≤ i ≤ n, can be written in terms of rij,t

by the same recursive formulas of (31)-(32) with assuming
∑i−1

k=1m
2
ik,t < 1 for i = 2, ..., n. Then,

we model the system of the latent processes as
w1,t

w2,t
...

wn,t

 =


ν1,t
ν2,t
...

νn,t

+


γ1,t 0 · · · 0

0 γ2,t · · · 0
...

...
. . .

...

0 0 · · · γn,t




m11,t 0 · · · 0

m21,t m22,t · · · 0
...

...
. . .

...

mn1,t mn2,t · · · mnn,t




η1,t
η2,t
...

ηn,t

 , (37)

where [η1,t, ..., ηn,t]
′ is i.i.d. n−dimensional standard normal random vector. Let [τ0, τ1, ..., τK−1, τK ]′

denote the fixed thresholds, where τ0 = −∞, τK = ∞, and −∞ = τ0 < τ1 < ... < τK−1 < τK =

∞. The value of si,t is determined by which the threshold interval taken by the latent factor wi,t,

as follows:

si,t =



0 if τ0 < wi,t ≤ τ1,

1 if τ1 < wi,t ≤ τ2,
...

K − 1 if τK−1 < wi,t < τK , i = 1, ..., n.

(38)

From the construction above, the nonlinear endogenous switching on the system of regimes is

described by the current and past shocks from underlying equations that control the latent vari-

ables. It is important to note that we may encounter the identification problem for some model

specifications of the latent variables if [τ1, ..., τK−1]
′ are model parameters to be estimated. For

instance, wi,t has an intercept in νi,t, so there could be multiple values of [τ1, ..., τK−1]
′ consistent

with corresponding multiple values of intercept, i.e. adding any constant to [τ1, ..., τK−1]
′ and the

intercept equally. The intercept could also play a role of benchmark level for the fixed state tran-

sition probabilities independent of the endogenous shocks and exogenous variables. Therefore,

to avoid this problem, we may let wi,t, i = 1, ..., n, have the (regime-dependent) intercept and

set [τ1, ..., τK−1]
′ = [Φ−1( 1

K ), ...,Φ−1(K−1
K )]′ as a choice of hyperparameters, where Φ−1(p) is a

quantile function of standard normal distribution to each probability p. This choice is to control

the estimates of νi,t and γi,t so that wi,t evolves relative to standard normal distribution.

Lastly, we write the vectors wt = [w1,t, ..., wn,t]
′, ηt = [η1,t, ..., ηn,t]

′, µt = [µ1,t, ..., µn,t]
′,

Σt = diag(σ1,t, ..., σn,t), νt = [ν1,t, ..., νn,t]
′, and Γt = diag(γ1,t, ..., γn,t). These, as well as Lt and
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M t, can be viewed as the functions of all individual states st and their lags. The multivariate

regime switching model given by (33) and (37) can be written in a following compact form:

yt = µt +ΣtLtϵt, (39)

wt = νt + ΓtM tηt, (40)

where si,t ∈ st for each i and t follows (38).

3.2 Maximum likelihood estimation

Let F t = [y′
t,y

′
t−1, ...,y

′
1]
′ denote all historical information of the observed underlying time

series up to period t. Let Ωt denote all available information of exogenous variables up to period

t. Let θ denote the model parameters. We write the log-likelihood function associated with the

recursive formulation as follows:

lnL(θ) =
T∑
t=1

ln p(yt|F t−1; Ωt, θ) (41)

where

p(yt|F t−1; Ωt, θ) (42)

=
∑

st∈{0,...,K−1}n
· · ·

∑
st−k−h∈{0,...,K−1}n

p(yt|st, ..., st−k−h,F t−1; Ωt, θ)p(st, ..., st−k−h|F t−1; Ωt, θ),

p(st, ..., st−k−h|F t−1; Ωt, θ) = p(st|st−1, ..., st−k−h,F t−1; Ωt, θ)p(st−1, ..., st−k−h|F t−1; Ωt−1, θ),

(43)

p(st, ..., st−k−h+1|F t; Ωt, θ) =
∑

st−k−h∈{0,...,K−1}n
p(st, ..., st−k−h|yt,F t−1; Ωt, θ)

=

∑
st−k−h∈{0,...,K−1}n p(yt|st, ..., st−k−h,F t−1; Ωt, θ)p(st, ..., st−k−h|F t−1; Ωt, θ)

p(yt|F t−1; Ωt, θ)
. (44)

The recursion above is similar to that expressed in the two-regime case. The model parameters

θ will be chosen with using the numerical optimization in order to maximize the log-likelihood

function.

To proceed the above recursion, we may need to estimate p(st|st−1, ..., st−k−h,F t−1; Ωt, θ)

and p(yt|st, ..., st−k−h,F t−1; Ωt, θ). Let πn(x;v,V ) denote the probability density function of

n−dimensional normal random vector evaluated at x with the parameters represented by the

mean vector v and the covariance matrix V . Lastly, recall that ϕ and Φ denote the probability

density function and the cumulative distribution function of the standard normal random variable.

We have the following results.
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Proposition 3.1. Suppose the multivariate regime switching model is modeled by (38), (39) and

(40). Then, the following results hold.

p(st|st−1, ..., st−k−h,F t−1; Ωt, θ)

=

∫ ∞

−∞
· · ·
∫ ∞

−∞

n∏
i=1

[Φ(ci,t(st + 1))− Φ(ci,t(st))]ϕ(ϵ1,t) · · ·ϕ(ϵn,t)dϵ1,t · · · dϵn,t, (45)

p(yt|st, ..., st−k−h,F t−1; Ωt, θ) =
πn(yt;µt,ΣtQtΣt)

∏n
i=1[Φ(ci,t(st + 1))− Φ(ci,t(st))]

p(st|st−1, ..., st−k−h,F t−1; Ωt, θ)
, (46)

where [c1,t(st), ..., cn,t(st)]
′ = M−1

t Γ−1
t (τ (st)−νt), τ (st) = [τs1,t , ..., τsn,t ]

′, and 1 is n−dimensional

unit vector.

Proof. Let s̄ = [s̄1, ..., s̄n]
′ ∈ {0, ...,K − 1}n denote possible representatives of the states. Define

τ (st) = [τs1,t , ..., τsn,t ]
′ and let 1 be n−dimensional unit vector. Similar to the derivations in

Proposition 2.1, it can be shown that

Pr(st = s̄|st−1, ..., st−k−h,F t−1; Ωt, θ)

= Pr(τ (s̄) < wt ≤ τ (s̄ + 1)|st−1, ..., st−k−h,yt−1, ...,yt−k−h; Ωt, θ)

= Pr(τ (s̄) < wt ≤ τ (s̄ + 1)|st−1, ..., st−k−h, ϵt−1, ..., ϵt−h; Ωt, θ)

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
Pr(M−1

t Γ−1
t (τ (s̄)− νt) < ηt ≤ M−1

t Γ−1
t (τ (s̄ + 1)− νt)|st−1, ..., st−k−h, ϵt,

ϵt−1, ..., ϵt−h; Ωt, θ)p(ϵt)dϵt

=

∫ ∞

−∞
· · ·
∫ ∞

−∞

n∏
i=1

[Φ(ci,t(s̄ + 1))− Φ(ci,t(s̄))]ϕ(ϵ1,t) · · ·ϕ(ϵn,t)dϵ1,t · · · dϵn,t

where [c1,t(st), ..., cn,t(st)]
′ = M−1

t Γ−1
t (τ (st)−νt). The last equality is obtained by the fact that

the joint probability distribution function of the independent random variables is the product of

their individual probability distribution function. Then, (45) is obtained. In addition, for st = s̄,

we can write

p(yt|st = s̄, ..., st−k−h,F t−1; Ωt, θ)

=
Pr(τ (s̄) < wt ≤ τ (s̄ + 1)|st−1, ..., st−k−h,yt,yt−1, ...,yt−k−h; Ωt, θ)πn(yt;µt,ΣtQtΣt)

Pr(τ (s̄) < wt ≤ τ (s̄ + 1)|st−1, ..., st−k−h,yt−1, ...,yt−k−h; Ωt, θ)
.

Note that µt,Σt and Qt in the πn(yt;µt,ΣtQtΣt) above depend on st evaluated at s̄. To

determine wt, the information (st−1, ..., st−k−h, ϵt, ϵt−1, ..., ϵt−h) is deduced from the information

(st−1, ..., st−k−h,yt,yt−1, ...,yt−k−h) where ϵt−j = L−1
t−jΣ

−1
t−j(yt−j − µt−j), j = 0, ..., h. Thus, we

obtain (46).
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4 Monte Carlo experiments

This section provides Monte Carlo experiments to evaluate models performance. Various

simulations are conducted with data generated by the nonlinear endogenous switching model.

The estimation results based on the linear endogenous switching model (i.e. restricted) is set to be

benchmark in order to compare with the nonlinear endogenous switching model (i.e. unrestricted).

4.1 Model parameters and simulations

Consider a data-generating process given by

yt = µ(st) + σ(st)ϵt, st = 1{wt>0}, (47)

wt =

α(st−1) + ρ+(st−1)ϵt +
√
1− ρ2+(st−1)ηt if ϵt > 0,

α(st−1) + ρ−(st−1)ϵt +
√
1− ρ2−(st−1)ηt if ϵt ≤ 0,

(48)

where ϵt and ηt are i.i.d. standard normal random variables, and−1 < ρ+(0), ρ−(0), ρ+(1), ρ−(1) <

1. The model above is a Markov two-regime switching mean and volatility model with constant

transition probabilities. The model also allows the regime switching associated with the asymmet-

ric and state-dependent endogeneity. In other words, the state transition probability endogenously

and asymmetrically responds to the contemporary shock of the underlying model, and the degree

of the responses also depends on the state before the transition. The same model will be used in

the next section for an empirical analysis on stock market return data. The parameters in the

experiments are set to be approximately consistent with those obtained in the empirical section.

The states may be viewed as the economic conditions such that the lower (higher) volatility and

the higher (lower) mean of stock return represent the lower (higher) financial stress regime. We

refer st = 0 and st = 1 to denote the states of low-volatility and high-volatility, respectively. For

the simulations model, we consider the parameters of each regime to represent the conditions. The

true parameters of the underlying process are set as (µ(0), µ(1)) = (0.7, 0.0) and (σ(0), σ(1)) =

(2.5, 6.5) under several characteristics of the endogenous regime switching. When the financial

stress is high, the return mean is zero and the return volatility exceeds the level doubled from

the lower regime.

For the latent process, there are three sets of simulations that rely on different degrees and

features of the endogeneity. First, the asymmetric endogeneity is individually considered so that

the latent process (48) is set as ρ+(0) = ρ+(1) = ρ+ and ρ−(0) = ρ−(1) = ρ− with ρ+ ̸= ρ−.

Specifically,

wt =

α(st−1) + ρ+ϵt +
√
1− ρ2+ηt if ϵt > 0,

α(st−1) + ρ−ϵt +
√
1− ρ2−ηt if ϵt ≤ 0.

(49)
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This is to study the nonlinear endogeneity bias when the positive and negative shocks have distinct

effects on changing the regime. They are varied as (ρ+, ρ−) = (-0.3,-0.7), (-0.1,-0.9), (-0.7,-0.3),

(-0.9,-0.1). Second, another side is explored by only allowing the state-dependent endogeneity so

that ρ+(0) = ρ−(0) = ρ(0) and ρ+(1) = ρ−(1) = ρ(1) with ρ(0) ̸= ρ(1). (48) can be written as

wt = α(st−1) + ρ(st−1)ϵt +
√
1− ρ2(st−1)ηt. (50)

In other words, the regime transition probability symmetrically responds to the shock signs but

it is different based on the previous regime.3 They are characterized by the same degrees as

(ρ(0), ρ(1)) = (-0.3,-0.7), (-0.1,-0.9), (-0.7,-0.3), (-0.9,-0.1). Third, the combined effects between

the asymmetric and state-dependent endogeneity are considered in the simulations. The endo-

geneity parameters in (48) are chosen to be (ρ+(0), ρ+(1), ρ−(0), ρ−(1)) = (-0.1,-0.5,-0.5,-0.9),

(-0.5,-0.9,-0.1,-0.5), (-0.5,-0.1,-0.9,-0.5), (-0.9,-0.5,-0.5,-0.1). For this first two subcases, the effects

are relatively strong when the previous state is in the high-volatility, and rely more on negative

and positive shocks respectively. For this last two subcases, the more effects are set to be in the

previous regime being low-volatility, and the relative effects to the shock signs are the same as

the first two subcases.

In addition to considering the correlation function ρ, α(0) and α(1) are chosen to control the

degrees of state persistence. We consider two degrees by choosing the probabilities being the same

state that
(
p(st = 0|st−1 = 0), p(st = 1|st−1 = 1)

)
equals (0.95,0.90) for the high persistence, and

equals (0.85,0.70) for the low persistence. Their stationary distributions are equivalent, and they

have the unconditional probabilities 2/3 for st = 0 and 1/3 for st = 1.4

4.2 Monte Carlo results

For the Monte Carlo simulations described above, the models (47)-(48) are simulated with

generations of ϵt and ηt.
5 This study considers 300 replications, and each replication is conducted

with the sample of 500 periods (T = 500). Tables 1-3 below report the mean and the root

mean squared error from the true value (RMSE) calculated from the 300 maximum likelihood

estimates under the various characteristics of regime switching and the model restrictions.6 The

conventional regime switching model that restricts to the linear endogenous switching, i.e. wt =

3The state-dependent endogeneity is also investigated in Cheng Gao and Yan (2018). But their latent model follows

a first-order autoregressive latent process associated with one-period lag effect of the endogeneity, which is different from

this study.
4Note that a Markov chain associated with a fixed transition probability matrix (P ) has the stationary distribution

(π) such that πP = π.
5To complete the data generation, we may need to initialize s0. For each iteration of the simulations, it is drawn

from the stationary distribution of the specified two-state Markov process.
6In the simulations, the correlation functions, ρ, and the transition probabilities are also estimated from the maximum

likelihood estimation. The mean of the estimates are mostly consistent with the true values but are not reported here.
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α(st−1)+ρϵt+
√

1− ρ2ηt, is referred to the restricted model. On the other hand, the unrestricted

model is the model with the true endogeneity specification. It allows the endogeneous switching

to be nonlinear so that the correlation ρ can be the function of the shock asymmetry (asymmetric

endogeneity) or the previous state (state-dependent endogeneity) instead of a constant. The

functions (24)-(25) where ρt = ρ are applied to the recursive filter (10)-(12) for calculating the

log-likelihood function of the restricted model. As the latent process (48) is a special case of

(18), the functions (22)-(23) given in Proposition 2.2 with the two partitions and the shock

threshold at zero are instead applied for the calculation of the unrestricted model. Then, the

parameters of each model can be estimated by the numerical optimization applying with the

Broyden–Fletcher–Goldfarb–Shanno algorithm.

Table 1 presents the Monte Carlo results based on the true model associated with the only

asymmetric endogeneity in regime switching so that ρ+ ̸= ρ−. The mean estimates of µ(0) are

approximately close to the true value under the estimation of restricted and unrestricted models.

For µ(1), the mean estimates are slightly biased from zero (or the true value) despite unrestricted

model estimation, but they tend to be insignificant as shown in the high levels of RMSE. However,

we can observe the biased characteristics of the volatility parameters. As shown in the restricted

model, the mean estimates of σ(0) are underestimated from the true value when the true model

has the endogeneity effect highly on the negative shock (|ρ+| < |ρ−|). In this case, it can also

be seen in the overestimation to the mean estimates of σ(1). In contrast, when the endogeneity

effect is highly on the positive shock (|ρ+| > |ρ−|), the mean estimates of σ(0) and σ(1) are biased

from their true values in the opposite direction accordingly. The degrees of the biases become

more obvious when the asymmetry level increases. Moreover, if we compare them between the

state persistence levels, the biases tend to expand when the state persistence is relatively weak

(or the regime is likely switched more frequently). For the results under the unrestricted model

that the asymmetric endogeneity is accounted, the model performance improves as the nonlinear

endogeneity biases decrease, especially in the volatility parameters. In addition, based on the

levels of RMSE reported in all cases (also including the cases in Table 2-3), the estimators under

the stronger state persistence tend to be relatively more efficient. This may be because of the

higher frequency of the state transition that leads to more variation of the estimated parameters.

For the cases that the state-dependent endogeneity (ρ(0) ̸= ρ(1)) is embedded in the regime

shifts, the Monte Carlo results are reported in Table 2. The mean estimates of µ(0) are mostly

close to its true value analogous to previous simulations. For the restricted model, the estimated

µ(1), especially in the low persistence of state, seems to be biased to the negative value when

|ρ(0)| < |ρ(1)| and positive value when |ρ(0)| > |ρ(1)|. But the samples of their estimates

are still highly distributed as represented in RMSE levels. Particularly, the overestimation and

underestimation of the volatility estimates occur. The mean estimates of σ(0) and σ(1) tend

to be over and under their true value, respectively, when the endogeneity effect depends more
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Restricted model Unrestricted model

(ρ+, ρ−) µ(0) µ(1) σ(0) σ(1) µ(0) µ(1) σ(0) σ(1)

0.70 0.00 2.50 6.50 0.70 0.00 2.50 6.50

High persistence: p(st = 0|st−1 = 0) = 0.95, p(st = 1|st−1 = 1) = 0.90

(-0.3,-0.7) 0.69 0.13 2.46 6.72 0.71 -0.04 2.49 6.52

(0.17) (0.74) (0.14) (0.51) (0.17) (0.70) (0.15) (0.54)

(-0.1,-0.9) 0.69 0.32 2.42 7.07 0.74 -0.18 2.49 6.46

(0.16) (0.85) (0.14) (0.75) (0.16) (0.64) (0.12) (0.43)

(-0.7,-0.3) 0.67 0.01 2.53 6.19 0.72 -0.15 2.47 6.45

(0.19) (0.71) (0.15) (0.51) (0.20) (0.75) (0.16) (0.55)

(-0.9,-0.1) 0.64 0.04 2.62 5.92 0.75 -0.21 2.49 6.38

(0.20) (0.74) (0.21) (0.69) (0.20) (0.75) (0.18) (0.54)

Low persistence: p(st = 0|st−1 = 0) = 0.85, p(st = 1|st−1 = 1) = 0.70

(-0.3,-0.7) 0.73 0.12 2.40 6.85 0.67 0.05 2.47 6.61

(0.24) (1.29) (0.22) (0.61) (0.24) (0.96) (0.20) (0.56)

(-0.1,-0.9) 0.74 0.45 2.26 7.33 0.69 -0.12 2.41 6.58

(0.24) (1.50) (0.30) (0.99) (0.16) (0.54) (0.17) (0.38)

(-0.7,-0.3) 0.64 -0.04 2.61 6.15 0.73 -0.22 2.48 6.41

(0.26) (1.27) (0.23) (0.62) (0.26) (0.95) (0.26) (0.60)

(-0.9,-0.1) 0.60 -0.51 2.73 5.63 0.75 -0.29 2.51 6.24

(0.33) (1.93) (0.30) (1.07) (0.27) (0.71) (0.26) (0.75)

Table 1

Monte Carlo results under the regime switching with the asymmetric endogeneity, i.e. ρ+(0) = ρ+(1) = ρ+ and

ρ−(0) = ρ−(1) = ρ−. Notes: The true values of (ρ+, ρ−) are presented in the first column and are associated with two

degrees of persistence. The true value of (µ(0), µ(1), σ(0), σ(1)) are given in the column heading. Each cell contains

the mean of the maximum likelihood estimates and the corresponding root mean squared error in the parenthesis. The

restricted model is referred to the linear endogeneity with ρ+ = ρ−. The unrestricted model is referred to the nonlinear

endogeneity allowing ρ+ ̸= ρ−.

on the previous high-volatility regime that |ρ(0)| < |ρ(1)|. The bias directions of the mean

estimates are also converse for the cases that |ρ(0)| > |ρ(1)|. Similarly, the degree of the biases

is likely to increase in the level of state-dependent endogeneity and decrease in the level of state

persistence. Overall, the biases of the mean estimates are significantly reduced if the state-

dependent endogeneity is allowed in the model estimation, and the results are shown in the

unrestricted model.

From the results discussed above, due to the restricted model, we observe that there are

interesting bias features on the volatility parameters depending on either asymmetric or state-

dependent endogeneity effects. For the last cases, we consider the regime switching model that the

asymmetric and state-dependent endogeneity effects are combined together. The results reported

in Table 3 are consistent with those obtained from the simulations based on the individual en-

dogeneity effect. Specifically, (ρ+(0), ρ+(1), ρ−(0), ρ−(1)) = (−0.1,−0.5,−0.5,−0.9) is associated

with the cases of the relatively high effects on the negative shock (|ρ+| ≤ |ρ−|) and on the previous
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Restricted model Unrestricted model

(ρ(0), ρ(1)) µ(0) µ(1) σ(0) σ(1) µ(0) µ(1) σ(0) σ(1)

0.70 0.00 2.50 6.50 0.70 0.00 2.50 6.50

High persistence: p(st = 0|st−1 = 0) = 0.95, p(st = 1|st−1 = 1) = 0.90

(-0.3,-0.7) 0.69 -0.10 2.57 6.14 0.68 0.02 2.51 6.43

(0.19) (0.76) (0.16) (0.53) (0.18) (0.74) (0.15) (0.55)

(-0.1,-0.9) 0.68 -0.13 2.65 5.92 0.67 0.05 2.52 6.43

(0.19) (0.86) (0.24) (0.73) (0.18) (0.79) (0.16) (0.54)

(-0.7,-0.3) 0.69 0.21 2.43 6.75 0.69 0.00 2.48 6.53

(0.17) (0.70) (0.14) (0.50) (0.16) (0.69) (0.14) (0.46)

(-0.9,-0.1) 0.68 0.56 2.37 7.14 0.69 0.03 2.49 6.54

(0.16) (0.90) (0.17) (0.77) (0.15) (0.66) (0.12) (0.39)

Low persistence: p(st = 0|st−1 = 0) = 0.85, p(st = 1|st−1 = 1) = 0.70

(-0.3,-0.7) 0.71 -0.41 2.61 6.13 0.69 -0.15 2.52 6.38

(0.30) (1.45) (0.25) (0.62) (0.30) (1.45) (0.24) (0.62)

(-0.1,-0.9) 0.85 -1.35 2.67 5.81 0.71 -0.18 2.50 6.30

(0.40) (2.07) (0.31) (0.87) (0.30) (1.24) (0.22) (0.65)

(-0.7,-0.3) 0.66 0.51 2.38 6.87 0.69 0.06 2.49 6.56

(0.23) (1.31) (0.21) (0.66) (0.22) (1.27) (0.21) (0.51)

(-0.9,-0.1) 0.69 0.92 2.21 7.22 0.69 0.05 2.49 6.54

(0.20) (1.40) (0.33) (0.90) (0.17) (0.90) (0.16) (0.44)

Table 2

Monte Carlo results under the regime switching with the state-dependent endogeneity, i.e. ρ+(0) = ρ−(0) = ρ(0) and

ρ+(1) = ρ−(1) = ρ(1). Notes: The true values of (ρ(0), ρ(1)) are presented in the first column and are associated with

two degrees of persistence. The true value of (µ(0), µ(1), σ(0), σ(1)) are given in the column heading. Each cell contains

the mean of the maximum likelihood estimates and the corresponding root mean squared error in the parenthesis.

The restricted model is referred to the linear endogeneity with ρ(0) = ρ(1). The unrestricted model is referred to the

nonlinear endogeneity allowing ρ(0) ̸= ρ(1).

regime being high-volatility (|ρ(0)| ≤ |ρ(1)|). In this case, the restricted model provides the ap-

propriate results as the biased estimates produced from the individuals are possibly offset. It also

holds for the cases (ρ+(0), ρ+(1), ρ−(0), ρ−(1)) = (−0.9,−0.5,−0.5,−0.1). On the other hand, the

results under the cases that (ρ+(0), ρ+(1), ρ−(0), ρ−(1)) = (−0.5,−0.9,−0.1,−0.5) are also consis-

tent with that individuals |ρ+| ≥ |ρ−| and |ρ(0)| ≤ |ρ(1)|. That is, the mean estimates of σ(0) and

σ(1) under the restricted model are respectively above and below their true values. It can be ex-

plained in the same way to the cases that (ρ+(0), ρ+(1), ρ−(0), ρ−(1)) = (−0.5,−0.1,−0.9,−0.5).

As the results, the nonlinear endogenous switching, if taken into account, provides more accurate

estimates.

Lastly, the power of the statistical test is also explored to evaluate a significance of model

improvement. Let us consider the likelihood ratio test statistic given by

2(lnL(θ̂UR)− lnL(θ̂R)) (51)

where θ̂UR and θ̂R represent a set of parameters estimated from the unrestricted and restricted
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Restricted model Unrestricted model

(ρ+(0), ρ+(1), ρ−(0), ρ−(1)) µ(0) µ(1) σ(0) σ(1) µ(0) µ(1) σ(0) σ(1)

0.70 0.00 2.50 6.50 0.70 0.00 2.50 6.50

High persistence: p(st = 0|st−1 = 0) = 0.95, p(st = 1|st−1 = 1) = 0.90

(-0.1,-0.5,-0.5,-0.9) 0.70 -0.07 2.51 6.39 0.74 -0.21 2.49 6.47

(0.18) (0.75) (0.14) (0.43) (0.19) (0.85) (0.16) (0.59)

(-0.5,-0.9-0.1,-0.5) 0.65 -0.04 2.67 5.89 0.70 -0.08 2.50 6.45

(0.19) (0.73) (0.24) (0.73) (0.19) (0.71) (0.17) (0.58)

(-0.5,-0.1,-0.9,-0.5) 0.69 0.45 2.39 7.16 0.69 0.00 2.49 6.55

(0.16) (0.86) (0.16) (0.79) (0.16) (0.67) (0.13) (0.46)

(-0.9,-0.5,-0.5,-0.1) 0.67 0.14 2.48 6.47 0.71 -0.09 2.47 6.52

(0.18) (0.72) (0.14) (0.43) (0.18) (0.71) (0.15) (0.56)

Low persistence: p(st = 0|st−1 = 0) = 0.85, p(st = 1|st−1 = 1) = 0.70

(-0.1,-0.5,-0.5,-0.9) 0.77 -0.44 2.47 6.41 0.78 -0.43 2.45 6.46

(0.30) (1.45) (0.22) (0.48) (0.31) (1.45) (0.24) (0.6)

(-0.5,-0.9-0.1,-0.5) 0.69 -0.93 2.75 5.63 0.73 -0.25 2.48 6.27

(0.30) (2.16) (0.32) (1.04) (0.28) (0.95) (0.23) (0.68)

(-0.5,-0.1,-0.9,-0.5) 0.71 0.85 2.28 7.40 0.65 0.04 2.43 6.65

(0.22) (1.62) (0.27) (1.09) (0.17) (0.57) (0.17) (0.41)

(-0.9,-0.5,-0.5,-0.1) 0.63 0.33 2.47 6.49 0.78 -0.34 2.41 6.47

(0.25) (1.14) (0.18) (0.53) (0.25) (0.93) (0.23) (0.54)

Table 3

Monte Carlo results under the regime switching with the asymmetric and state-dependent endogeneity, i.e. unrestricted

values of (ρ+(0), ρ+(1), ρ−(0), ρ−(1)). Notes: The true values of (ρ+(0), ρ+(1), ρ−(0), ρ−(1)) are presented in the first

column and are associated with two degrees of persistence. The true value of (µ(0), µ(1), σ(0), σ(1)) are given in the

column heading. Each cell contains the mean of the maximum likelihood estimates and the corresponding root mean

squared error in the parenthesis. The restricted model is referred to the linear endogeneity with ρ+(0) = ρ+(1) = ρ−(0) =

ρ−(1). The unrestricted model is referred to the nonlinear edogeneity allowing unrestricted (ρ+(0), ρ+(1), ρ−(0), ρ−(1)).

models, respectively. It is asymptotically chi-squared distributed with the degree of freedom that

equals to the difference number of parameters between θ̂UR and θ̂R. Table 4 reports the power as

the percentage of the Monte Carlo simulations rejected the null hypothesis that the endogeneity

is linear at 5% significance level. For the cases that the endogeneity is individually asymmetric or

state-dependent shown in the first two panels, intuitively, the power increases in the nonlinearity

size. For the results from the combined effects of asymmetric and state-dependent endogeneity

shown in the last panel, the power is relatively high when both effects individually lead to the

same biased characteristics under the restricted model. The low level of the state persistence

tends to have higher level of the power as more biased levels of the estimated parameters appear

in the restricted model. This is mostly consistent with the results discussed above.
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Asymmetric endogeneity with

(ρ+, ρ−) to be

(-0.3,-0.7) (-0.1,-0.9) (-0.7,-0.3) (-0.9,-0.1)

High persistence 21.7 76.3 16.0 58.0

Low persistence 19.3 84.0 20.7 66.0

State-dependent endogeneity with

(ρ(0), ρ(1)) to be

(-0.3,-0.7) (-0.1,-0.9) (-0.7,-0.3) (-0.9,-0.1)

High persistence 21.0 77.7 24.0 87.7

Low persistence 33.3 85.7 38.3 96.3

Asymmetric and state-dependent endogeneity with

(ρ+(0), ρ+(1), ρ−(0), ρ−(1)) to be

(-0.1,-0.5,-0.5,-0.9) (-0.5,-0.9,-0.1,-0.5) (-0.5,-0.1,-0.9,-0.5) (-0.9,-0.5,-0.5,-0.1)

High persistence 12.0 44.3 60.3 6.0

Low persistence 19.3 36.3 73.7 10.3

Table 4

The power of the likelihood ratio test. Note: Each cell containing the number reports the percentage of the Monte Carlo

simulations rejected the null hypothesis that the endogeneity is linear at the 5% significance level. The results in the

first two and last panels are based on the tests associated with one and a three degrees of freedom, respectively.

5 An empirical example

This section applies the nonlinear endogenous regime switching model to the monthly excess

returns on the US stock market. The value-weighted stock returns data on the NYSE index is

considered in the excess of the US three-month T-bill rates as the risk-free rates. The data is

collected from January 1966 to December 2023 in the daily basis. The monthly stock returns are

computed by rt = ( NYSEt
NYSEt−1

−1)×100 where NYSEt is the value of the index at the end of month

t. For the monthly risk-free rates, the data is obtained in terms of continuously compounded

rates, so they are constructed by rft = [exp (T-bill ratet−1

365 ×Nt)− 1]× 100 where T-bill ratet is the

rate quoted at the end of month t and Nt is the number of days in month t. Then, define the

time series data yt = rt − rft as the monthly excess returns.

The data is applied to estimate the two-regime switching mean-volatility model that allows

the endogenous switching with asymmetric and state-dependent effects given by (47)-(48). Table

5 reports the estimation results under different endogeneity specifications based on two sample

periods given by the full sample period (Jan 1966 - Dec 2023) and the more recent sample period

(Jan 2000 - Dec 2023). We obtain µ̂(0) > 0 and σ̂(0) < σ̂(1). For the estimation results on the full

sample period, µ̂(0) are around 0.5% representing positive excess return during the low-volatility

regime. The estimates of µ̂(1), except the exogenous switching case, are also positive but seem to

be insignificant due to the high level of standard errors relative to the estimates. Ghysels Guerin

Marcellino (2014), in a context of regime switching conditional variance MIDAS model, interpret

the negative return during the high-volatility regime by the flight-to-quality effect. This is con-

22



Endogeneity Spec.
Parameter

Log-likelihood
µ(0) µ(1) σ(0) σ(1) α(0) α(1) Endogeneity

Sample period: Jan 1966 - Dec 2023

Exogenous 0.70 -0.84 3.20 6.20 -1.50 1.05 -1985.9

(0.18) (0.54) (0.19) (0.36) (0.25) (0.28)

ρ

Linear 0.34 0.89 3.33 6.43 -1.64 1.15 -0.65 -1977.7

(0.19) (0.73) (0.18) (0.38) (0.19) (0.25) (0.16)

ρ+ ρ−
Asymmetric 0.55 0.18 3.17 6.72 -1.34 1.29 -0.77 -0.18 -1976.7

(0.17) (0.70) (0.24) (0.57) (0.47) (0.24) (0.17) (0.50)

ρ(0) ρ(1)

State-dependent 0.36 0.92 3.29 6.81 -1.64 1.14 -0.51 -0.79 -1976.8

(0.19) (0.77) (0.23) (0.58) (0.21) (0.23) (0.34) (0.13)

ρ+(0) ρ+(1) ρ−(0) ρ−(1)

Asymmetric and 0.58 0.20 3.25 7.05 -1.33 1.14 -0.76 -0.74 -0.02 -0.61 -1975.7

State-dependent (0.14) (0.49) (0.24) (0.66) (0.60) (0.30) (0.77) (0.19) (0.61) (0.84)

Sample period: Jan 2000 - Dec 2023

Exogenous 0.98 -0.23 2.33 5.51 -1.71 1.83 -810.8

(0.25) (0.47) (0.21) (0.30) (0.30) (0.26)

ρ

Linear 0.77 0.24 2.45 5.70 -1.63 1.72 -0.62 -808.0

(0.28) (0.52) (0.24) (0.34) (0.25) (0.29) (0.32)

ρ+ ρ−
Asymmetric 0.91 0.03 2.34 6.19 -1.16 1.71 -0.89 -0.08 -804.2

(0.28) (0.36) (0.27) (0.43) (0.68) (0.24) (0.14) (0.74)

ρ(0) ρ(1)

State-dependent 0.82 0.28 2.34 6.10 -1.63 1.71 -0.37 -0.93 -805.1

(0.29) (0.55) (0.29) (0.38) (0.25) (0.21) (0.91) (0.08)

ρ+(0) ρ+(1) ρ−(0) ρ−(1)

Asymmetric and 0.93 0.11 2.31 6.33 -1.12 1.66 -0.85 -0.94 0.06 -0.64 -803.3

State-dependent (0.15) (0.60) (0.30) (0.44) (0.94) (0.24) (0.99) (0.08) (1.18) (1.08)

Table 5

Maximum likelihood estimates for the model (47)-(48) with different endogeneity specifications. Note: The parameters

are estimated on the monthly excess returns data. The estimated parameters are reported corresponding to the column

heading and endogeneity specifications. The standard errors of the estimators reported in the parentheses are based on

the outer product of the gradient of the log-likelihood function.

sistent with them for the case that the regime switching is exogenous, but we find that the effect

tends to disappear when the endogenous regime switching is allowed. For the model accounting

the linear endogeneity, the return shock is negatively correlated to the probability of state being

the high-volatility regime (i.e. ρ̂ < 0). This is also consistent with Kim Piger and Startz (2008)

and Chang Choi and Park (2017) who propose the linear endogenous switching models and applies

their model to the stock return data as well. However, the model accounting the asymmetric and

state-dependent endogeneity effects informatively provides that the regime changes are strongly
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affected by the contemporaneous positive shocks, especially during the previous regime being

high-volatility. In addition, the model ignoring the nonlinear endogeneity effects could lead to

the biased volatility estimation. Namely, it overestimates σ̂(0) and in particular underestimates

σ̂(1). For the estimation results on the more recent sample period, the estimates µ̂(0) relatively

increase, and σ̂(0) and σ̂(1) relatively decrease for all endogeneity cases. In particular, the results

present the increases in the nonlinear endogeneity effects, so it may cause the volatility biases

to be more serious. Based on this example, the model that allows the nonlinear endogenous

switching as proposed could be more effective as well as give us additional information on the

characteristics in transferring states.

6 Conclusion

This paper proposes the regime switching models in which the switching can be nonlinearly

endogenous. The latent process controlling the state transition is endogenously explained by the

shocks of the underlying model. The endogenous effects of the shocks are characterized by the

free functional form which allows nonlinearities. This approach is mainly an extension of the

endogenous switching model proposed by Kim Piger and Startz (2008) to a more general version.

We also refer to the traditional endogenous switching models that usually assume the shocks

between the underlying and latent equations to be jointly normal and correlated in the linear

manner. In this paper, the model parameters estimation is provided by applying the recursive

filer algorithm to conduct the maximum likelihood estimation. A two-regime switching model is

first discussed, and then extended to a multivariate model with multiple regimes switching.

The two-regime switching mean-volatility model is considered for the numerical examples

to explore the advantage of allowing the nonlinear endogenous switching characterized by the

asymmetric and state-dependent effects. The Monte Carlo studies show that the presence of

either two effects, if ignored, could noticeably lead to the volatility biases, but it is not obvious

for the mean. Under the linear endogenous switching model, the estimated volatility during the

high-volatility regime tends to be overestimated (underestimated) when the asymmetric effect is

more negative (positive) and/or the state-dependent effect relies more on the low-volatility (high-

volatility) regime. It is conversely true for the estimated volatility during the low-volatility regime.

The proposed model and estimation that allows the nonlinear endogeneity in regime switching

provides the more accurate estimates. In addition, the same model is analyzed to the monthly

excess returns on the US stock market. The results show that the regime shifts are essentially

controlled by the contemporaneous positive shocks, and especially during the previous regime

being high-volatility. Under the linear endogenous switching model, we obtain the biased patterns

of the volatility consistent with that obtained from the Monte Carlo simulations. This paper only

analyzes the empirical example by the simple model with the contemporary endogeneity effects.
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The lagged endogeneity effects are not yet explored here. It would also be interesting to apply the

proposed approach to other applications, for instance, multivariate analyses using the multivariate

regime switching models taken into account the nonlinear endogenous switching.
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