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Abstract 

Understanding the impact of climate risks on financial stability is crucial for 

ensuring the resilience of banking sectors, particularly in economies exposed to 

climate change. This paper investigates how transition and physical risks influence 

systemic risk in Thailand’s banking sector. Transition risks are analyzed using the 

Fama-French multi-factor asset pricing model to estimate the risk premium of 

brown industries relative to green industries, termed Brown-minus-Green (BMG). 

Physical risks are assessed using the Standardized Precipitation Evapotranspiration 

Index (SPEI), an indicator of flood and drought conditions. Systemic risk at the 

bank level is measured using conditional value-at-risk (CoVaR). Panel regressions 

are employed to examine the relationship between climate risks and systemic risk. 

The results reveal that transition risks, as captured by the BMG factor, significantly 

heighten systemic risk among Thai banks, emphasizing their critical role in financial 

vulnerabilities. Additionally, physical risks, particularly those associated with flood 

exposure, create substantial challenges for bank portfolios. These findings highlight 

the importance of integrating transition and physical risk indicators into regulatory 

monitoring frameworks to enhance financial stability. Furthermore, Thai 

commercial banks can apply these insights to conduct climate stress tests and 

develop strategies for managing climate-related risks more effectively. 

Keywords: climate risk, systemic risk, Thailand, banking sector, BMG, SPEI, 

CoVar 
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1. Introduction 

Climate change poses a major challenge, threatening to significantly 

impact both the economy and the financial sector. Weather, climate, and 

water-related disasters negatively affect societies and economies. According 

to the World Meteorological Organization (WMO), approximately 2.1 million 

lives were lost, and economic losses totaling around USD 4.3 trillion were 

incurred globally due to weather, climate, and water-related hazards between 

1970 and 2021. Climate change introduces two primary types of risks: physical 

and transition risks (Grippa and Demekas, 2021). Physical risks refer to 

potential economic costs and financial losses resulting from long-term gradual 

changes in climate or climate-related hazards (e.g., heat waves, extreme 

precipitation, floods, droughts, etc.). Transition risks arise from policy and 

legal changes, technological progress, and market developments in response 

to climate-related financial risks (Wu et al., 2023). 

Physical and transition risks can adversely impact financial institutions 

through mechanisms such as losses in the value of financial portfolios, 

increases in claims paid by insurers, or reductions in the creditworthiness of 

borrowers. These shocks can threaten financial stability, particularly when 

they occur simultaneously or when extreme shocks propagate through the 

network of financial interconnections. These threats to the financial system 

stemming from climate risks are collectively referred to as “systemic climate 

risks.” This paper employs an empirical framework that integrates climate and 

stock market data to assess the influence of climate risks on systemic risk 

within the financial sector. 

Regarding physical risks, studies by Caldeira and Brown (2019), Cai et 

al. (2018), and Qiu and Zhao (2019) show that the frequent occurrence of 

extreme weather events reduces production efficiency. Similarly, research by 

Yannis et al. (2018), Bovari et al. (2018), and Huang et al. (2018) finds that 

business profitability and firms’ credit costs are adversely affected by climate 

extremes, contributing to higher loan defaults, reduced cash flows, and asset 

devaluation, which in turn increase risks in the banking sector. Transition risks 

arise during the transition to a low-carbon economy. Policies addressing 

climate change, such as carbon pricing measures, increase costs for companies 

with high energy consumption and greenhouse gas emissions. Furthermore, 

factors such as shifts in climate policy, technological advancements, 

regulatory changes, legal exposure, and evolving consumer preferences also 

contribute to transition risks (Krueger et al., 2020; Stroebel and Wurgler, 

2021). Systemic risks pertain to the potential for disruptions within a financial 

system that can lead to widespread instability. Jourde and Moreau (2023) 
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provide a broad measure of systemic climate risks based on market data, 

capturing the effects of climate risks on the financial sector. 

This paper examines the relationship between climate risks and 

systemic risks. This is essential for developing robust strategies to mitigate 

potential impacts and enhance resilience. Both physical and transition risks 

are analyzed using climate and financial data. Transition risk is assessed 

through the Fama-French multi-factor models, calculating the risk premium 

for brown versus green industries using a long-short portfolio (BMG). 

Physical risk is captured using the Standardized Precipitation 

Evapotranspiration Index (SPEI), while systemic risk at the bank level is 

measured using the conditional value-at-risk (CoVaR) based on trading data 

from the Stock Exchange of Thailand. Panel regressions, controlling for 

Fama-French (2015) risk factors and macroeconomic variables, are used to 

quantify the impact of climate risks on systemic risk, providing insights into 

how climate risks affect Thai banks and informing regulators about the 

implications for financial stability. 

This paper offers important contributions to the literature on climate 

risks and financial stability. It incorporates both transition and physical risks 

into the analysis of systemic risk in the banking sector, using SPEI to capture 

physical risks and BMG portfolios to highlight the financial sector’s exposure 

to transition risks. By addressing these dimensions, the paper bridges the gap 

between climate risk research and systemic risk frameworks, providing 

valuable insights into the challenges posed by climate risks for financial 

stability in Thailand. 

The rest of the paper is organized as follows: the next section reviews 

related studies on the impacts of physical and transition risks on the financial 

sector. Section 3 discusses the methods and data used to capture transition 

and physical risks, measure systemic risk, and conduct panel regressions to 

quantify the effects of climate risks on systemic risk. Section 4 presents the 

results of the analysis, and Section 5 concludes. 

2. Review of literature 

The literature highlights several unique characteristics of climate risk. First, 

climate risk is identified as systemic and non-linear (Battiston et al., 2017; 

Dafermos, 2021; Monasterolo, 2020) and is characterized by fat-tail 

distributions (e.g., Weitzman, 2009; Ackerman, 2017). This implies that if 

climate risks are not promptly addressed, they may trigger tipping points 

within ecosystems (Steffen et al., 2018; Lenton et al., 2019), leading to 

prolonged socio-ecological and economic crises. Such crises may cause 
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hysteresis effects, preventing environmental and economic systems from 

returning to their pre-crisis states and significantly impacting financial 

stability. Furthermore, the interconnectedness of actors plays a critical role in 

how these risks materialize; actions that seem optimal at the individual level 

can result in sub-optimal outcomes at the systemic level. Second, climate risk 

is endogenous, meaning that the realization of worst-case scenarios depends 

on the risk perceptions of key agents (such as policymakers and investors) and 

their subsequent actions (Battiston, 2019). Third, climate risk simultaneously 

involves and affects various dimensions of the food-water-energy nexus and 

related socio-economic activities through multiple channels, increasing the 

complexity of its impacts and complicating policy responses (Howarth and 

Monasterolo, 2016). 

 The literature has highlighted two main channels through which 

climate change affects financial stability: physical and transition risks (Carney, 

2015; Battiston et al., 2021). Under physical risks, damages to firms’ assets 

and production capacity caused by climate change may increase banks’ credit 

risks, result in losses for the insurance sector, and weaken the financial 

position of governments. In terms of transition risks, a shift to a low-carbon 

economy can cause unexpected changes in asset prices and defaults across 

various asset classes, leading to financial shocks for asset managers, investors, 

and banks. According to Chabot and Bertrand (2023), as the economy 

transitions away from fossil fuels—driven by climate policies, technological 

advancements, or shifts in consumer preferences—this process creates 

opportunities for some industries while posing significant risks to others, 

particularly those reliant on fossil fuels. These risks can result in potential 

losses in profits and value for the affected companies and the banks that 

finance them. Businesses whose revenues depend on fossil fuel production, 

such as companies involved in extracting oil, gas, and coal, may face the issue 

of stranded assets as a result of the low-carbon transition (Leaton, 2011; Van 

der Ploeg and Rezai, 2020). 

However, the risk is not confined to the fossil fuel sector. Firms in 

other carbon-intensive or energy-intensive industries, or those relying on 

fossil fuels as production inputs, may also be significantly impacted 

(Matikainen and Soubeyran, 2022). These losses can, in turn, negatively affect 

the value of firms’ financial contracts and the financial portfolios exposed to 

these firms, such as bank loans and the equity and bond holdings of pension 

funds (Battiston et al., 2017; Stolbova et al., 2018; Semieniuk et al., 2020). 

Indeed, physical and transition risks have significant implications for 

various sectors of the economy, can adversely affect financial institutions, and 
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may pose a threat to financial stability if they occur simultaneously or if 

extreme shocks are transmitted to other institutions through the network of 

financial interconnections. According to Jourde and Moreau (2023), these 

threats to the financial system stemming from climate risks are referred to as 

“systemic climate risks.” 

Our work is related to several strands of literature. The first strand 

examines the impacts of climate risks on financial stability (Carney, 2015; 

Dietz et al., 2016; Battiston et al., 2017; Liu et al., 2021; Roncoroni et al., 

2021). Battiston et al. (2017) highlight the importance of climate stress-testing 

for financial stability, while Roncoroni et al. (2021) investigate the interplay 

between climate policy shocks and market conditions, proposing an 

operational framework for climate stress-testing. Roncoroni et al. (2021) 

extend the existing climate stress-testing framework for financial systems by 

incorporating an ex-ante network valuation of financial assets that accounts 

for both asset price volatility and endogenous recovery rates on interbank 

assets. Additionally, their study considers the dynamics of indirect contagion 

among banks and investment funds—key players in the low-carbon 

transition—through exposures to the same asset classes. 

The second strand of related literature focuses on systemic risk and 

financial linkages. Systemic risk is a critical concern that has received 

substantial attention due to the danger of distress in one bank amplifying fear 

and panic within the financial system during periods of stress. This can lead 

to the failure of other financial institutions and potentially trigger a financial 

crisis. Estimating the level of systemic risk and financial linkages among 

financial institutions is, therefore, essential. Such estimates can inform bank 

supervisors and regulators in designing more tailored policies and regulations. 

According to Roengpitya and Rungcharoenkitkul (2011), the sources of 

systemic risk can be classified into three categories: (i) instruments such as 

loans, bonds, equities, and derivatives; (ii) markets, such as bilateral over-the-

counter trading; and (iii) institutions, including banks, securities dealers, and 

insurance companies. The literature on estimating systemic risk and financial 

linkages often relies on credit default swap (CDS) data, as CDS data reflect 

the default dependence among financial institutions (Chan-Lau et al., 2009a, 

b; Giesecke and Kim, 2009; Segoviano and Goodhart, 2009). However, CDS 

data capture only credit risk. To estimate both systemic risk and financial 

linkages more comprehensively, Adrian and Brunnermeier (2008) proposed 

using stock market data to calculate the conditional value-at-risk (CoVaR). 

CoVaR measures the degree of “risk externalities” that an individual 

institution imposes on the broader financial system. The underlying 

hypothesis in Adrian and Brunnermeier’s (2008) approach is that, under 
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market efficiency, stock market prices should reflect all types of risks facing 

financial institutions. Roengpitya and Rungcharoenkitkul (2011) applied this 

approach to stock market data from 1996 to 2009 to quantify systemic risk 

and financial linkages in the Thai banking system using the concept of CoVaR. 

Their findings revealed that individual banks imposed additional risk on the 

overall system, particularly during the Asian financial crisis and subsequent 

periods, with larger banks contributing more significantly to systemic risk. 

However, the existing literature has yet to incorporate the role of climate risks 

in estimating systemic risk and financial linkages. 

The study by Jourde and Moreau (2023) utilized a market-based 

framework to examine systemic climate risks in the financial sector. Their 

measure of systemic risk applied methods proposed by Adams et al. (2014), 

Adrian and Brunnermeier (2016), and Kelly and Jiang (2014). Specifically, 

Jourde and Moreau (2023) estimated time-varying Value-at-Risk (VaR) from 

the stock returns of financial institutions using a GARCH model, under the 

assumption that equity returns provide information about the risks faced by 

financial institutions. Tail risk measures were also employed to assess whether 

climate risks pose a threat to financial stability. Principal component analysis 

was used to estimate systemic risks, capturing common shifts in the tails of 

financial institution returns, i.e., tail risk dependence within the financial 

sector. In particular, Jourde and Moreau (2023) constructed two long-short 

factor-mimicking portfolios based on carbon emission intensities and physical 

risk scores. For transition risks, the long and short positions were determined 

by carbon emission intensity (Giglio et al., 2021), defined as reported and 

estimated Scopes 1 and 2 emissions divided by net sales. The Brown-minus-

Green (BMG) factor captures the returns associated with the transition risk 

factor. These factors aim to quantify the impact of climate shocks on the value 

of non-financial firms, to which financial institutions are exposed through 

loans, portfolio holdings, or insurance contracts.For physical risks, studies 

such as Jourde and Moreau (2023) sort firms based on physical scores 

provided by Trucost, which aggregates data on seven types of climate hazards: 

cold waves, floods, heat waves, hurricanes, sea level rise, water stress, and 

wildfires. Jourde and Moreau (2023) employed the Composite Moderate 2050 

score, representing physical risk exposure in 2050 under the RCP4.5 pathway. 

The Vulnerable-minus-Safe (VMS) factor captures the returns associated with 

the physical risk factor. Their findings indicate that transition risks related to 

the shift toward a low-carbon economy significantly influence systemic risk 

to a greater extent than physical risks, such as natural disasters. 

In this paper, we calculate the risk premium of brown industries 

relative to green industries using a long-short portfolio (Brown-minus-Green 
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or BMG) following the methodology of Jourde and Moreau (2023). However, 

unlike Jourde and Moreau (2023), who captured physical risk using the 

Composite Moderate 2050 score representing physical risk exposure in 2050, 

we capture physical risk using the Precipitation Evapotranspiration Index 

(SPEI). Systemic risk at the bank level is measured using the conditional 

value-at-risk (CoVaR), derived from trading data on the Stock Exchange of 

Thailand. This approach to constructing systemic risk follows the 

methodology outlined in Roengpitya and Rungcharoenkitkul (2011). 

3. Methods and Data  

3.1 Systemic risk measurement 

In this paper, the trading information from equity market is used to 

gauge the systemic risk for each commercial bank. In the Stock Exchange of 

Thailand (SET), there are twelve stocks listed in the banking sector index of 

SET. We exclude Thai credit bank, which listed in SET since February 2024, 

due the limited trading data. Table 1 shows the list of commercial banks listed 

in the Stock Exchange of Thailand ranked by their market capitalization. We 

classified banks into two categories: big bank for banks with market 

capitalization over 100,000 million baht and small bank for banks with market 

capitalization below 100,000 million baht and banks usually specialized in 

some services, such as TISCO Financial Group, Katnakin Phatra Bank and 

LH Financial Group, which specialize in auto leasing, private banking services 

and housing loan, respectively. 

 

Table 1: Classification of banks according to the market capitalization 

No. Classification Banks 
Name 

Abbreviations 

Market 
Capitalization  

(as of 30 Sep 2024) 

1 Big banks 
Siam 
Commercial 
Bank 

SCB 367,015 

2   Kasikorn Bank KBANK 355,399 

3   
Krungthai 
Bank 

KTB 287,907 

4   Bangkok Bank BBL 287,281 

5   
Bank of 
Ayudhya 

BAY 193,089 
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Source: Stock Exchange of Thailand 

To construct a measure of systemic risk among financial institutions, 

the common variation in tail risk is considered. We adopt the CoVaR 

(Conditional Value at Risk) framework introduced by Adrian and 

Brunnermeier (2016), which measures systemic risk by capturing the risk of 

the financial system conditional on a particular institution being in distress. 

Specifically, the CoVaR of the financial system, conditional on institution i at 

the q% quantile, is defined as the value at risk (VaR) of the system when 

institution i is in distress.  The ΔCoVaR is defined as the difference between 

the CoVaR conditional on institution i being in distress and the CoVaR 

conditional on institution i being in its median state: 

ΔCoVaRi
sys = CoVaRi

sys(i in distress) − CoVaRi
sys(i in median state) 

This measures the change in systemic risk due to the distress of 

institution i. The CoVaR and ΔCoVaR are estimated using quantile 

regression, a powerful tool to capture the behavior of the financial system's 

tail risks. The quantile regression allows for estimating the conditional 

quantiles of the financial system's losses given the losses of an individual 

institution. Formally, the CoVaR of the financial system at the q%-

quantile conditional on institution i's distress is obtained by estimating the 

following quantile regression model: 

Xq
sys=αq + βqXi 

No. Classification Banks 
Name 

Abbreviations 

Market 
Capitalization  

(as of 30 Sep 2024) 

6   
TMB 
Thanachart 
bank 

TTB 191,677 

7 
Small 
specialized 
banks 

Tisco Financial 
Group 

TISCO 77,262 

8  Thanachart 
Capital  

TCAP 52,955 

9   
Kiatnakin 
Phatra Bank 

KKP 43,185 

10   
CIMB Thai 
Bank 

CIMBT 18,456 

11   
LH Financial 
Group 

LHFC 17,794 
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where Xq
sys represents the predicted value of the system’s losses at the q%-

quantile given the losses of institution i (denoted by Xi). The CoVaR of the 

financial system conditional on institution i's distress, CoVaRq
sys∣i, is the 

predicted value of the financial system’s losses when the institution is at its 

Value at Risk level Xi=VaRq
i : 

CoVaRq
sys∣i=αq+βqVaRq

i 

To compute ΔCoVaR, we calculate the difference between the CoVaR 

when institution i is in distress (i.e., at its VaR level) and the CoVaR when the 

institution is in its median state: 

ΔCoVaRi
sys = βq(VaRq

i−VaR50
i) 

In this approach, the coefficients from the quantile regression 

(αq and βq) determine the relationship between the losses of institution i and 

the financial system. The quantile regression method is advantageous because 

it effectively captures the tail dependency between the two variables, which is 

crucial for systemic risk analysis. 

3.2 Climate Risk Factors 

 Next, we construct the climate risk factors that disentangle between 

transition and physical risks. Transition risk refers to policy and legal changes, 

technological progress, and market developments in response to the financial 

risks arising from climate change, while physical risk refers to the potential 

economic costs and financial losses due to long-term gradual changes in 

climate or climate-related hazards (e.g., heat waves, extreme precipitation, 

flood, drought, etc.). Physical and transition risks can adversely affect financial 

institutions through, for example, losses in the value of financial portfolios, 

increases in claims paid by insurers, or decreases in the creditworthiness of 

borrowers.  In the literature, there are several approaches that can be used in 

constructing the climate risk factors. Some papers apply the natural language 

processing to assess the degree of media coverage or the degree of media 

attention to climate change (Ardia et al., 2022; Engle et al., 2020). Other 

papers construct a climate stress indicator using investors flows toward 

sustainable exchange-traded funds (Briere and Ramelli, 2021). The approach 

used in this paper to construct transition risk factor is along the line of the 

literature which directly captures the effect of climate characteristics on the 

returns of non-financial stocks by building a long-short portfolios based on 

market and environmental variables (Görgen et al., 2020; Hsu et al., 2022). 

For the physical risk, we use the climate extreme index, specifically the 

Standardized Precipitation Evapotranspiration Index (SPEI), which takes into 

account both precipitation and potential evapotranspiration. Thus, the SPEI 
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index can be used as the climate indicator, which can capture both types of 

climate extremes, i.e., heavy precipitation and drought. Details of how the 

transition and physical risk factors are constructed are as follows.  

3.2.1 Transition risk 

The transition risk factor is constructed using the financial market data 

based on the empirical asset pricing model of Fama and French (1993, 2015). 

Particularly, we computed the premium of specified risk-factors by forming 

the portfolio that represent group of equity trading in stock market with the 

high- and low- risk characteristics. The differences between returns from 

portfolio forming with high- and low- risk characteristics are interpreted as 

required returns or risk premiums or discount factors, which can be varied 

over time.  These empirical returns are equivalent to those of the returns from 

portfolio forming with long positions in the high characteristics risk and short 

position in the low characteristics risk, hereafter “long and short portfolio”. 

We use the environmental indicators to form a portfolio demonstrating 

transition risk factors. The long and short positions are determined by their 

carbon emission intensity2. The Brown minus Green (BMG) represents the 

returns of the transition risk factor. Data on equity return and GHG emission 

intensity of non-financial equity return are retrieved from Bloomberg. 

To estimate the BMG factor, we focus on listed companies and limit 

our analysis to the top 300 firms by market capitalization. These companies 

are ranked by their greenhouse gas (GHG) emission intensity per unit of sales, 

an indicator of carbon efficiency. Based on these rankings, we classify stocks 

into quintiles, with the first quintile representing the most carbon-intensive 

(brown) stocks and the bottom quintile representing the least carbon-

intensive (green) stocks. The BMG factor is calculated as the difference in 

returns between the brown and green portfolios, formed by taking a long 

position in the brown stocks and a short position in the green stocks. These 

portfolios are rebalanced and updated quarterly to reflect changes in market 

capitalization and carbon intensity rankings. 

3.2.2 Physical risk 

 In the case of physical risk, unlike other paper such as Jourde and 

Moreau (2023) that uses the physical scores of climate hazards, such as flood, 

heatwave, hurricane, sea level rise, water stress and wildfire, this paper uses 

 
2
 It is important to highlight that the carbon emission intensity is considered as a fundamental measure of 

transition risk. While the carbon emissions intensity is likely to capture transition risks associated with 
changes in regulation, policies and consumer preferences, it might not be able to reflect the transition risks 
associated with technological changes (Giglio et al., 2021; Jourde and Moreau, 2023).  
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the Standardized Precipitation Evapotranspiration Index (SPEI) to capture 

the physical risk. These characteristics make the SPEI an ideal candidate to 

quantify drought severity and assess drought impacts across different sectors. 

In addition, the SPEI has a multi-scalar character, which enables it to be used 

by different scientific disciplines to detect, monitor and analyze droughts. 

Similar to other climate indices, such as the Palmer Drought Severity Index 

(PDSI) and the Standardized Precipitation Index (SPI), the SPEI can measure 

drought severity according to its intensity and duration, and can identify the 

onset and end of drought episodes. The procedure to calculate the index is 

detailed and involves a climatic water balance, the accumulation of 

deficit/surplus at different time scales, and adjustment to a log-logistic 

probability distribution (Vicente-Serrano et al., 2010). Mathematically, the 

SPEI is similar to the standardized precipitation index (SPI), but it includes 

the role of temperature.  

The SPEI is calculated using data of precipitation and atmospheric 

evaporative demand, and it can be calculated at different time scales (1-48 

months) (Vicente-Serrano et al., 2022; Beguería et al., 2014). Figure 1 shows 

the SPEI at different time scales. The time scales reflect the time periods in 

which the water balance is cumulated. SPEI1 to SPEI48 correspond with the 

case in which the water balance is cumulated over 1 to 48 months which 

capture varying degrees of persistence and severities in climate conditions.  

According to Han et al. (2021), even though the shorter timescales SPEI, i.e. 

(1-, 3-, and 6-month SPEI) could reflect the details of droughts or floods 

better, when the timescale is too short, the extracted drought events are 

overestimated and tend to last only 1 or 2 months, making it difficult to 

analyze drought from a longer time perspective. On the contrary, longer 

timescales SPEI (such as 24- or 48-month SPEI) can reflect drought trends, 

while the extracted drought events are underestimated and some more 

detailed information about droughts is smoothed out and lost. Therefore, in 

this study, the 12-month SPEI or SPEI12 is selected as it not only reflect the 

long-term trend but also maintain interannual drought changes (Liu et al., 

2021). The 12-month SPEI index (SPEI12) represents the water balance 

cumulated over a year and captures more persistent and severe weather 

conditions. 
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Figure 1: SPEI for Thailand at different time scales 

Source: Data from Begueria et al. (2023) SPEIbase v.2.9 (dataset) 
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The SPEI allows us to consider the directional effects of climate 

change, where a positive value in the SPEI index indicates wetter-than-normal 

climate conditions and a negative value implies drier-than-normal climate 

conditions. In addition, it is possible to classify climate conditions from 

normal, to moderate, and to exceptionally extreme climate conditions. For 

example, according to the National Oceanic and Atmospheric Administration 

(NOAA) classification as shown in Table 2, a SPEI value greater than 1.6 

indicates climate conditions that are extremely wet, while SPEI value less than 

-1.6 indicates climate conditions that are extremely dry. This feature allows us 

to study the nonlinear impact of climate conditions.  

Table 2: Classification of climate conditions according to SPEI value 

Climate conditions SPEI values 
Exceptionally wet 

Extremely wet 
Very wet 

Moderately wet 
Slightly wet 
Near normal 
Slightly dry 

Moderately dry 
Very dry 

Extremely dry 
Exceptionally dry 

SPEI ≥ 2 
1.6 ≤ SPEI < 2 

1.3 ≤ SPEI < 1.6 
0.8 ≤ SPEI < 1.3 
0.5 ≤ SPEI < 0.8 
-0.5 ≤ SPEI <0.5 

-0.8 ≤ SPEI < -0.5 
-1.3 ≤ SPEI < -0.8 
-1.6 ≤ SPEI < -1.3 
-2 ≤ SPEI < -1.6 

SPEI < -2 

Source: NOAA’s National Centres for Environmental Information 

 According to Figure 1 and classification presented in Table 2, drought 

seemed to take place around mid2015, end of 2019 and beginning of 2020, 

while flood seemed to take place in 2017, 2018 and 2022.  

3.3 Other control variables 

 Two main categories of control variables, i.e. financial market risk 

factors and macroeconomic risk factors, are applied. Details of these two 

categories of control variables are as follows.  

3.3.1 Financial market risk factors  

In this paper, we construct the financial market risk factors by 

considering the six factor models of Fama and French (2018). The factors 

include market risk premium (MKT), size premium (SMB), value premium 

(HML), profitability premium (RMW), investment strategy premium (CMA) 

and momentum premium (UMD). Data on these risk factors for the Thai 

financial market is obtained from the factor library of the Stock Exchange of 

Thailand, which was developed by Charoenwong et al (2021). The factor 
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library is computed by using the portfolio formation method based on the 

risk factors. For example, stock market capitalization is applied to identify the 

stock with high and low size factors.  The size risk premium is computed from 

the differences between the returns of portfolio of small market capitalization 

stocks minus those with large market capitalization. 

3.3.2 Macroeconomic risk factors 

The macroeconomic factors are the market-wide indicators that 

potentially determine the level of systemic risk. Rahman et al. (2022) show the 

importance of policy interest rate in determining the systemic risk in the 

Australian banking sector. According to Jourde and Moreau (2023), the 

economic sentiment indicator and yield spread between countries with high 

and low risk in the EU can significantly explain the systemic risk in the 

European banking sector. 

In this paper, for the domestic macroeconomic risk factors, we use the 

policy interest rate (RP) and term spread (TS), which is computed from the 

difference between the 5-years government bond yield and the yields of three 

– month government bond. In addition, we also include the international 

financial market factor computed from the option trading, i.e. VIX index, as 

well as the global macroeconomic risk factors, i.e. Economic Policy 

Uncertainty (EPU), which represent risk condition about economic and 

government policies observed by the news reports. 

After these risk factors are constructed, this paper analyzes the 

relationship between the climate risk and other risk factors by calculating the 

correlation coefficients. Then, we investigate the effects of climate risk on 

systemic risks in the Thai banking sector.  

3.4 Effects of climate risks on systemic risks in the Thai banking 

sector 

 To investigate the effects of climate risk on financial stability in the 

Thai banking sector, this paper uses the tail climate risk as the factors that 

influence the systemic risks in banking sector. The ΔCoVaRs for each 

individual banks are applied as the dependent variable as a proxy of systemic 

risk. The change in Value-at-Risk (ΔVaR) of BMG factor are used to measure 

the tail effect of transition risk. For the physical risk, the SPEI is used as a 

proxy. To represent the tail risk, we create the dummy variables. The SPEI 

values that exceed 1.6 or below -1.6 indicate the significant level of risks for 

flood and drought, respectively; the SPEI values that exceed 2.0 and below  

-2.0 indicate the extreme level of flood and drought risk, respectively. ΔVaR 

for financial market risk factors, macroeconomic risk factors and global 
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financial market risk factors are applied as control variables. The panel 

regression with fixed effect model is applied. We control for cross-sectional 

heteroscedasticity and contemporaneous correlation in computing robust 

standard errors. First, we consider the model with traditional risk factors. 

Model 1.1 use the change in VaR of the long and short portfolio of the six-

factor model (Fama & French, 2015). Model 1.2 used the domestic and global 

macroeconomics and financial market risk factors as determinant factors. 

Finally, we combined both ΔVaR and macro-finance risk factors in model 1.3.  

4. Findings 

4.1 Measures of systemic risk among Thai financial institutions 

 First, we consider the common variation in the tail risk, which is the 

measure for systemic risk among the Thai financial institutions. We compute 

the 1-month 95% Value-at-Risk, i.e. the negative return that is not exceed 

within a month with 95% probability, for each Thai commercial bank. We 

then compute the Conditional VaR (CoVAR) indicator, which represents the 

contribution of each financial institution to the financial market sector’s tail 

risk or a proxy for systemic risk. Figure 2 show the plot of ΔCoVar for the 11 

Thai commercial banks. 

 

Figure 2: ΔCoVar for the Thai commercial banks 

The figure illustrates the dynamics of systemic risk contributions 

(ΔCoVar) for Thai commercial banks from 2014 to 2024, providing insights 

into how individual banks’ financial distress may affect the broader financial 
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system. A significant decline in ΔCoVar values is observed around 2020, 

coinciding with the onset of the COVID-19 pandemic. This sharp drop 

reflects an increase in systemic risk contributions during this period of 

heightened financial instability. 

The trajectories of ΔCoVar across banks exhibit a high degree of co-

movement, underscoring the interconnectedness of Thai commercial banks 

and their collective vulnerability to negative shocks. Following the sharp 

decline in 2020, the ΔCoVar values show a gradual recovery, indicating a 

reduction in systemic risk contributions and a stabilization of financial 

conditions in the years that follow. This trend highlights the capacity of the 

banking system to recover from significant periods of financial stress. By 

examining these temporal patterns, the figure emphasizes the importance of 

tracking systemic risk contributions over time and highlights the challenges 

posed by episodes of financial turbulence. 

4.2 Measures of climate risk factors 

 To capture the transition risk factor, the long and short portfolio for 

the BMG factor is constructed and shown in Figure 3.  

 

Figure 3: Portfolio construction for BMG factor 

Next, we compute the Value-at-Risk (VaR) of the long and short 

portfolio. The factor VaR from transition risk factors (BMG) are used to 

measure impacts of transition risk on systemic risk. The change in VaR from 

the previous level (ΔVaR) reflect the dynamics of tail transition risk. “An 

increase in tail climate risks may be resulted from a higher risk of correction 

in GHG intensive stock or an increase in probability of outperformance in 
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low emitter, which is likely to occur in the event of unexpected climate 

shocks” (Jourde and Moreau, 2024). 

For the physical risk factors, Figure 4 displays the SPEI during our 

study period, along with the critical thresholds of -2.0, -1.5, 1.5, and 2.0. 

Figure 4 indicates that extreme wet conditions occurred in August 2017 and 

December 2022. There are no extreme drought conditions within our sample. 

Moderate drought conditions were observed from December 2019 to May 

2020. Additionally, there are two episodes of moderate wet conditions. The 

first occurred from July 2017 to April 2018, and the second took place 

between August 2022 and December 2022. 
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Figure 4: SPEI index for Thailand  

Source: Data from Begueria et al. (2023) SPEIbase v.2.9 (dataset) 

 

4.3 Other control variables 

Table 3 contains the descriptive statistics for the transition risk factors, 

along with the premiums from other risk factors, which will be used as the 

control variables. The results from Table 3 show that momentum risk has the 

strongest premium among all risk factors, followed by investment strategy 

risk, market risk  and value premiums. In terms of volatility, which is 

measured by the standard deviation, transition risk, market risk and 

momentum risk exhibit the highest fluctuation.  

Table 3: Descriptive statistics for  Fama-French six factors asset 

pricing models and transition risk factors   

  BMG MKT SMB HML CMA RMW UMD 

 Mean -0.003 0.003 0.000 0.003 0.005 0.001 0.009 
 Median -0.005 0.003 -0.003 0.002 0.002 0.001 0.009 
 
Maximum 0.130 0.180 0.114 0.058 0.120 0.053 0.099 
 
Minimum -0.132 -0.153 -0.096 -0.058 -0.104 -0.037 -0.175 
 Std. Dev. 0.046 0.044 0.028 0.025 0.028 0.020 0.041 
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Remark: BMG – Brown minus Green, MKT – market risk premium, SMB – size 

premium, HML – value premium, CMA – investment strategy risk premium, RMW – 

profitability premium, UMD – momentum risk premium 

 

Next, we compute the Value-at-Risk (VaR) of the long and short 

portfolio. The VaR of the other risk factors among with the BMG factor are 

shown in Figure 5.  

 

Figure 5: Value-at-Risk (VaR) of the long and short portfolio 

According to Figure 5, the market risk is the most sensitive risk factors 

in the equity market, followed by the BMG factor. Even though, the VaR has 

increased simultaneously during the Covid-19 pandemic in 2020, the size and 

timing of change in risk are not the same. For example, the tail risk of market 

risk factor increased quickly when the Covid-19 pandemic started in the first 

and second quarters of 2020, while the tail risk of the BMG factor increased 

during the later period. The tail risk of the BMG factor was still high during 

2022 and 2024, which is consistent with the trend of climate risk awareness 

and adoption of climate-related measures in the developed countries (e.g. the 

Cross Border Adjustment Mechanism (CBAM) in the European Union (EU) 

EU's tool to put a fair price on the carbon emitted during the production of 

carbon intensive goods that are entering the EU, and to encourage cleaner 
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industrial production in non-EU countries3) which affect the listed companies 

in SET that have exposure in those countries. 

 The macroeconomic and global financial market risk factors, namely 

the policy interest rate (RP), term spread (TS), VIX index (VIX) and 

Economic Policy Uncertainty (EPU), are shown in Figure 6. 

 Next, we analyze the relationship between the climate risk and other 

risk factors. The correlation coefficients are shown in Tables 4 as follows. 

According to Table 4, the correlation among financial market risk factors is 

usually lower than 0.5 with the exception of correlation between market risk 

and momentum risk that has correlation coefficient equal to -0.511. The 

correlation between the transition risk factor and other factor is less than 0.2. 

For physical risk, the correlation between SPEI and other factor is the highest 

in case of correlation with term spread (0.703) and value factor (HML) 

(0.254). The correlation between SPEI and other factors is less than 0.2. 

 

Figure 6: Plots of macroeconomic and global financial market risk 

factors 

Overall, we found that the financial market and macroeconomics risk 

factors are generally not high. These results highlight the importance of 

incorporating climate risk to explain systemic risk in Thailand, as it could offer 

 
3
 Source: https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en 
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additional explanatory power beyond traditional factors. The empirical 

evidence is presented and discussed below. 
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Table 4: Correlation coefficient of macroeconomic risk factors and financial market risk factors 

  SPEI12 BMG MKT SMB HML RMW CMA UMD RP TS VIX EPU 

SPEI12 1 0.014 0.079 -0.239 0.227 -0.112 0.118 -0.002 0.104 0.667 -0.267 -0.333 

BMG 0.014 1 -0.046 -0.096 -0.127 0.012 -0.181 -0.020 0.199 -0.016 -0.110 0.060 

MKT 0.079 -0.046 1 -0.037 0.116 -0.123 -0.276 -0.511 -0.033 -0.014 -0.612 -0.072 

SMB -0.239 -0.096 -0.037 1 -0.169 0.138 -0.189 0.109 -0.336 -0.070 0.052 -0.031 

HML 0.227 -0.127 0.116 -0.169 1 -0.486 0.259 -0.095 0.047 0.165 -0.026 -0.178 

RMW -0.112 0.012 -0.123 0.138 -0.486 1 -0.136 0.053 0.130 -0.209 0.031 -0.033 

CMA 0.118 -0.181 -0.276 -0.189 0.259 -0.136 1 0.326 -0.147 0.154 0.185 -0.028 

UMD -0.002 -0.020 -0.511 0.109 -0.095 0.053 0.326 1.000 0.041 -0.114 0.431 -0.002 

RP 0.104 0.199 -0.033 -0.336 0.047 0.130 -0.147 0.041 1 -0.248 0.016 0.033 

TS 0.667 -0.016 -0.014 -0.070 0.165 -0.209 0.154 -0.114 -0.248 1 -0.058 0.012 

VIX -0.267 -0.110 -0.612 0.052 -0.026 0.031 0.185 0.431 0.016 -0.058 1 -0.148 

EPU -0.333 0.060 -0.072 -0.031 -0.178 -0.033 -0.028 -0.001 0.033 0.012 -0.148 1 
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4.4 Effects of climate risk on systemic risks in the Thai banking 

sector  

This subsection discusses the effects of climate risk on systemic risk in 

the Thai banking sector. Three models are considered to find different 

determinant factors of systemic risks captured by D(CoVAR). Model 1.1 uses 

the change in VaR (ΔVaR) of the long and short portfolio of the six-factor 

model (Fama & French, 2015). Model 1.2 uses the domestic and global 

macroeconomics and financial market risk factors as determinant factors. 

Model 1.3 combines both ΔVaR and macro-finance risk factors. The 

regression results are show in Table 5.  

Table 5 Regressions on D(CoVaR) with Fama-French 6-factor model 

(model 1.1) and Macroeconomic risk factor (model 1.2)  

Dependent 
variable 

D(CoVaR) 

Model 1.1 
 

Model 1.2 Model 1.3 

    

D(VARM_MKT) 3.4220  3.290 
 (5.738)  (3.169) 
D(VARM_SMB) 2.016  0.502 
 (8.919)  (5.523) 
D(VARM_HML) -7.365  -21.809** 
 (10.400)  (7.039) 
D(VARM_RMW) 38.589**  14.036 
 (13.900)  (8.098) 
D(VARM_CMA) 3.844  1.658 
 (9.956)  (5.796) 
D(VARM_UMD) 4.261  4.418 
 (4.969)  (3.688) 
RP  0.431*** 0.439*** 
  (0.061) (0.064) 
TS  0.442*** 0.473*** 
  (0.083) (0.087) 
LOG(VIX)  -0.260* -0.256* 
  (0.141) (0.136) 
LOG(EPU)  -0.501** -0.473** 
  (0.178) (0.173) 
C -0.585*** 2.057** -1.864** 

 (0.048) 0.727 (0.705) 
Adjust-Rsquared 0.117 0.617 0.672 

MKT – market risk premium, SMB – size premium, HML – value premium, RMW – 

profitability premium, CMA – investment strategy risk premium, UMD – momentum 

risk premium, RP – monetary policy interest rate (repurchase rate), TS – term spread (5 

year bond yield – 3 month bond yield, VIX is US volatility index, EPU – global 

economic policy uncertainty index. 
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 According to Table 5, the results from model 1.1 show that the ΔVaR 

of traditional market risk factors have limited ability to explain systemic risk 

in the Thai banking sector. Only ΔVaR of profitability risk factor (RMW) is 

statistically significant. Surprisingly, the market risk (MKT), which is the key 

risk factors in financial theory is not statistically significant. Moreover, the 

adjusted-R-squared is 0.117, which exhibit the omission of key important 

factors in the model. In model 1.2, the adjusted R-squared equals to 0.617. 

The regression results under model 1.2 shows that the macroeconomic and 

global financial market risk factor are the key elements determining the 

systemic risk in Thai banking sector. This result is not surprising as the 

banking sector is sensitive to the policy interest rate and yield spread. The 

global risk factors, such as VIX and global economic policy uncertainty index 

(EPU), are statistically significant at 10 and 5 percent level, respectively. 

Lastly, model 1.3 shows that by controlling the risk from macroeconomic 

factors, ΔVaR from valuer risk (HML) become statistically significant. All 

macroeconomic and global risk factors still exhibit significant results. 

Adjusted R-squared of model 1.3 increases to 0.672. These results provide the 

robustness of our baseline model in explaining the systemic risk in the Thai 

banking sector. 

Next, we consider the models with climate risk factors as the additional 

explanatory factors for determining systemic risk in the Thai banking sector. 

We include ΔVaR for transition risk (BMG) and SPEI index for physical risk. 

Moreover, as discussed in previous section the value of SPEI provides the 

risk in both size of positive and negative number, with positive and negative 

numbers reflecting the wet and dry conditions, respectively. To control for 

this issue, we employ the absolute value and squared value of SPEI index in 

model 2.1 and 2.2, respectively. The 12-month SPEI or SPEI12 is considered 

in the regression.  Table 6 presents the regression results.  

According to Table 6, the results show that ΔVaR for BMG factor is 

statistically significant at 5 percent significant level. The adjusted R-squared 

of models 2.1 and 2.2 are 0.742 and 0.738, respectively. In addition, the 

physical risk factor SPEI is statistically significant at 5 percent level in both 

models 2.1 and 2.2, where model 2.1 considers the absolute value of SPEI12 

and model 2.2 considers the squared value of SPEI12.  

Next, in model 2.3, we investigate the asymmetric effect of physical 

risk during the wet and dry conditions. We use the dummy variable with value 

of 1 when SPEI exceeds 0 and 0 when SPEI is equal to/ or less than zero to 

separate the positive and negative impact of physical risk. The positive SPEI 

(SPEI+) is computed from the product between the dummy variables and 
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SPEI index (SPEI+ = Dummy*SPEI), while the negative SPEI (SPEI-) is 

calculated from the case of negative value in SPEI (SPEI- = (1-

Dummy)*SPEI). As shown in Table 6, in model 2.3, both SPEI+ and SPEI- 

are  not statistically significant at 10 percent level.  

Last but not least, we consider the tail of physical risk by using dummy 

variable for moderate and severe values of dry and wet conditions. We include 

the dummy variable, SPEI>1.6 equal to 1 when SPEI is more than 1.6. We 

also use these dummy variables for the value of SPEI >2, SPEI < -1.6. As 

discuss in last section, there are no period with the extreme drought condition 

(SPEI <-2) in our sample thus the dummy SPEI < -2 is not included in the 

regression.  These dummy variables provide the way to determine the tail 

physical risk. The results from model 2.4 in Table 6 show that the dummy 

variables are significantly in case of SPEI > 1.6, which show the sensitivity of 

systemic risk to the moderate level of flood in Thailand. The dummy variable 

for tail physical risk, i.e., SPEI>2, is not statistically significant. The adjusted 

R-squared number for models 2.4 is equal to 0.740. The results from 

transition risk factor are consistnent in all models. The increase in the 

transition risk (ΔVAR(BMG)) leads to an increased sensitivity of systemic risk 

in the Thai banking sector. For the other variables, the macroeconomic risk 

factors, i.e. the monetary policy interest rate (RP), term spread (TS) and global 

economic policy uncertainty (EPU) are statistically significant. The change in 

Value-at-Risk of the market risk factor is also significant at 5 percent level in 

model 2.4. These results confirm the role of macroeconomic and international 

financial market risk factors in determining the systemic risk in the Thai 

banking sector. The results also show that including tail of both transition and 

physical risk provide additional explanatory power for systemic risk in the 

Thai banking sector.
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Table 6 Regressions on D(CoVaR) with climate risks factors  

 Model 2.1  Model 2.2  Model 2.3  Model 2.4 

        

|SPEI| -0.114** SPEI^2 -0.049** SPEI+ -0.078 SPEI > 2 0.121 

 (0.043)  (0.022)  (0.047)  (0.106) 

      SPEI > 
1.6 

-0.141* 

       (0.070) 

    SPEI- 0.196 SPEI < -
1.6 

0.225 

     (0.115)  (0.192) 

D(VARM_BMG) 10.818**  11.364**  10.314**  11.680** 

 (4.184)  (4.292)  (3.988)  (4.467) 

D(VARM_MKT) 3.919  4.102  3.559  7.014* 

 (3.229)  (3.309)  (3.066)  (3.508) 

D(VARM_SMB) -5.337  -5.122  -5.264  -5.024 

 (6.037)  (6.126)  (6.089)  (6.011) 

D(VARM_HML) -17.847*  -17.991*  -15.181*  -22.204** 

 (8.346)  (8.375)  (8.249)  (8.547) 

D(VARM_RMW) 25.516**  24.146**  27.321**  18.920* 

 (8.909)  (8.983)  (9.200)  (8.777) 

D(VARM_CMA) -3.241  -3.482  -3.721  -3.341 

 (6.393)  (6.503)  (6.319)  (6.182) 

D(VARM_UMD) 8.390*  8.606*  8.839**  7.147* 

 (3.816)  (3.895)  (3.926)  (3.890) 

RP 0.687***  0.680***  0.688***  0.661*** 

 (0.084)  (0.082)  (0.083)  (0.085) 

TS 0.408***  0.407***  0.294*  0.499*** 
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 Model 2.1  Model 2.2  Model 2.3  Model 2.4 

 (0.091)  (0.090)  (0.152)  (0.097) 

LN(VIX) -0.076  =0.078  -0.056*  -0.107 

 (0.148)  (0.148)  (0.201)  (0.145) 

LN(EPU) -0.383  -0.398**  -0.236  -0.520** 

 (0.171)  (0.174)  (0.224)  (0.207) 

C 0.7690  0.813  -0.013  1.459 

 (0.724)  (0.734)  (1.067)  (0.889) 

Adjusted-
Rsquared 

0.742  0.738  0.744  0.740 

 

MKT – market risk premium, SMB – size premium, HML – value premium, RMW – Profitability premium, CMA – investment strategy risk 

premium, UMD – momentum risk premium 

RP – monetary policy interest rate (repurchase rate), TS – term spread (5 year bond yield – 3 month bond yield, VIX is US volatility index, GEPU – 

global economic policy uncertainty index.  

Transition risk BMG – Brown industries minus Green industries, SPEI - Standardized Precipitation Evapotranspiration Index
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5. Concluding remarks 

As climate change can profoundly affect asset prices and financial stability 

(Carney, 2015), the impact of climate risks on systemic risk has become one 

of the central concerns in the financial community. This paper investigates 

the effects of climate risks on systemic risk in the Thai banking sector. Both 

types of climate risks—transition and physical risks—are considered. 

The transition risk factor is constructed using the financial market data 

based on the empirical asset pricing model of Fama and French. Specifically, 

the risk premium of brown industries relative to green industries is calculated 

using the long and short portfolio. This is denoted by Brown minus Green 

(BMG). The physical risk is captured through the Standardized Precipitation 

Evapotranspiration Index (SPEI). Systemic risk at the bank level is measured 

using the conditional value-at-risk (CoVaR), based on trading data from the 

Stock Exchange of Thailand.  

To examine the effects of climate risks on systemic risk, panel regressions 

are conducted. The explanatory variables in the regressions include the Fama-

French (2015) risk factors, macroeconomic and global financial market risk 

factors, as well as the climate risk factors—both BMG and SPEI. Our 

empirical results show that macroeconomic risk factors, such as the monetary 

policy interest rate (RP) and term spread (TS), as well as global financial 

market risk factors, such as global economic policy uncertainty (EPU), are 

statistically significant. Furthermore, the transition risk, measured by the 

BMG factor, significantly impacts systemic risk among Thai banks. For 

physical risk, bank portfolios are particularly exposed to moderate wet 

conditions (i.e., flood risks). These findings confirm the role of 

macroeconomic and international financial market risk factors in shaping 

systemic risk in the Thai banking sector. Additionally, incorporating the tails 

of both transition and physical risks provides further explanatory power for 

systemic risk in Thailand’s banking sector. 

As the impacts of climate risks on financial stability become an 

increasing concern for central banks and financial supervisors, the findings of 

this paper can inform policymakers in Thailand about the extent to which 

climate risks affect systemic risk and the degree of risk externalities that 

individual banks impose on the financial system. This, in turn, has 

implications for financial stability. As Thailand and many other countries 

transition toward a low-carbon economy, banks and financial institutions with 

cleaner investment and lending portfolios are likely to be less exposed to 

transition risks. 
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To manage the physical risks facing banks, strategies can be 

implemented by both the banks themselves and central banks or regulatory 

bodies. For banks, these strategies may involve risk identification, risk 

assessment, and the development of risk reduction measures. 

First, in terms of risk identification, banks and financial institutions 

could conduct sector and location analyses using portfolio exposure and 

climate hazard data. These analyses help identify vulnerable areas and climate 

hotspots that require focused attention. Second, for risk assessment, three 

components of risk should be considered: hazard, vulnerability, and exposure. 

Climate hazard assessment involves identifying extreme weather events, such 

as floods and droughts, that affect specific regions. Vulnerability assessment 

measures the sensitivity of businesses to these hazards in terms of the severity 

and frequency of such events. Finally, exposure assessment evaluates the 

extent to which assets, workforces, loan portfolios, and other resources are 

affected by climate hazards. 

Examples of physical risk reduction strategies for banks include using 

credit protection insurance, adjusting pricing in highly exposed areas, 

adopting climate risk protection insurance, shifting the mix of customer 

segments, or offering higher discounts on low-risk assets (Goossens et al., 

2023).  

Beyond managing risks, banks can also create competitive advantages 

and generate value by developing innovative financing products and solutions 

for their clients. For example, they could foster and finance the adoption of 

climate adaptation measures. While physical climate risks pose significant 

threats to banks, they also present unique opportunities for innovation within 

the banking sector. Banks that act early and take appropriate steps can not 

only enhance their financial stability but also help mitigate negative 

externalities on systemic risks. Commercial banks in Thailand, in particular, 

can leverage the indicators presented in this paper to conduct climate stress 

tests and develop strategies for managing these risks more effectively. 

 To manage transition risks, it is imperative for banks to assess the risks 

within their loan portfolios and identify mitigating solutions (Park-Minc, 

2022). Banks should adopt appropriate valuation models or metrics to 

evaluate the financial risks associated with their carbon-intensive assets. The 

process of integrating transition risk management involves a series of steps: 

assessment, quantification of financial impact, integration, and reporting. This 

process is complex and requires banks to first build internal capacity, utilize 
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tailored technical tools, and establish dedicated task forces to implement the 

steps effectively. Even when a third party is employed to conduct the entire 

process, it is highly recommended that banks maintain internal oversight to 

ensure accuracy and reliability. The complete transition risk integration 

framework typically includes seven steps, from initial assessment to final 

reporting. 

Central banks and financial sector supervisors, as the guardians of 

financial stability, also have crucial roles in mitigating the impacts of climate 

risks on the financial system. They must ensure that climate-related risks are 

adequately assessed and incorporated into supervisory processes (Adrian, 

2023). For instance, physical risks, such as increasingly frequent and severe 

natural disasters, and transition risks, such as stranded assets during the shift 

to a low-carbon economy, must be integrated into risk assessments and 

prudential frameworks. This approach ensures that financial institutions are 

resilient to climate-related shocks. 

To support banks in accurately measuring these risks, central banks and 

financial supervisors need to enhance their stress-testing frameworks. These 

frameworks should account for the transmission channels through which 

climate risks exacerbate and propagate risks within the financial sector. 

Additionally, addressing data gaps in supervisory reporting and financial 

disclosures is a prerequisite for effective climate-related risk supervision. 
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