A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

The impact of cash transfers on children outcomes in rural Thailand: Evidence from a social pension reform

Tabea Herrmann, Attakrit Leckcivilize and Juliane Zenker

Leibniz University of Hannover and University of Goettingen

01/09/2016

Motivation

Social pension

A.Leckcivilize (LUH)

Motivation

Why should we care about social pension scheme in Thailand?

Motivation

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Why should we care about social pension scheme in Thailand?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Aging society & Old-age poverty / vulnerability

Motivation

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Why should we care about social pension scheme in Thailand?

- Aging society & Old-age poverty / vulnerability
- Around 7.3 million recipients with total budget of 58.35 billion Baht in 2013

A.Leckcivilize (LUH)

Motivation

Background

- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Why should we care about social pension scheme in Thailand?

- Aging society & Old-age poverty / vulnerability
- Around 7.3 million recipients with total budget of 58.35 billion Baht in 2013

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

ightarrow Growing concerns on fiscal burdens of the policy

A.Leckcivilize (LUH)

Motivation

Background

- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Why should we care about social pension scheme in Thailand?

- Aging society & Old-age poverty / vulnerability
- Around 7.3 million recipients with total budget of 58.35 billion Baht in 2013
- ightarrow Growing concerns on fiscal burdens of the policy
- \rightarrow Recent debates about returning to targeted programme

A.Leckcivilize (LUH)

Motivation

Background

- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Why should we care about social pension scheme in Thailand?

- Aging society & Old-age poverty / vulnerability
- Around 7.3 million recipients with total budget of 58.35 billion Baht in 2013
- ightarrow Growing concerns on fiscal burdens of the policy
- \rightarrow Recent debates about returning to targeted programme

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Why should we care about social pension scheme in Thailand?

- Aging society & Old-age poverty / vulnerability
- Around 7.3 million recipients with total budget of 58.35 billion Baht in 2013
- ightarrow Growing concerns on fiscal burdens of the policy
- \rightarrow Recent debates about returning to targeted programme

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

What's new in this paper?

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Why should we care about social pension scheme in Thailand?

- Aging society & Old-age poverty / vulnerability
- Around 7.3 million recipients with total budget of 58.35 billion Baht in 2013
- ightarrow Growing concerns on fiscal burdens of the policy
- \rightarrow Recent debates about returning to targeted programme

What's new in this paper?

• Analysis of pension and child outcomes using panel data

A.Leckcivilize (LUH)

Motivation

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Why should we care about social pension scheme in Thailand?

- Aging society & Old-age poverty / vulnerability
- Around 7.3 million recipients with total budget of 58.35 billion Baht in 2013
- ightarrow Growing concerns on fiscal burdens of the policy
- \rightarrow Recent debates about returning to targeted programme

What's new in this paper?

- Analysis of pension and child outcomes using panel data
- Study of pension and child outcomes in Thailand

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Why should we care about social pension scheme in Thailand?

- Aging society & Old-age poverty / vulnerability
- Around 7.3 million recipients with total budget of 58.35 billion Baht in 2013
- ightarrow Growing concerns on fiscal burdens of the policy
- \rightarrow Recent debates about returning to targeted programme

What's new in this paper?

- Analysis of pension and child outcomes using panel data
- Study of pension and child outcomes in Thailand
- Among the first few studies to show that a small amount of pension benefit can lead to non-trivial effects

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodolog

Results

Robustness Checks

Conclusion

Literature

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

• Old-age pension and child outcomes

Literature

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

Social pension

A.Leckcivilize (LUH)

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

• Old-age pension and child outcomes

• Anticipated pension increases school attendance and reduces hours worked, especially for boys living with male pensioner(s) (Edmonds, 2009)

Motivation

Social pension

A.Leckcivilize (LUH)

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

• Old-age pension and child outcomes

- Anticipated pension increases school attendance and reduces hours worked, especially for boys living with male pensioner(s) (Edmonds, 2009)
- Pension increases enrollment and reduces hours worked for girls (Carvalho and Filho, 2012) Pension improves health and nutrition of girls if pension recipient is female (Duflo, 2003)

Motivation

Social pension

A.Leckcivilize (LUH)

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

• Old-age pension and child outcomes

- Anticipated pension increases school attendance and reduces hours worked, especially for boys living with male pensioner(s) (Edmonds, 2009)
- Pension increases enrollment and reduces hours worked for girls (Carvalho and Filho, 2012) Pension improves health and nutrition of girls if pension recipient is female (Duflo, 2003)

Unconditional cash transfers and child outcomes

Motivation

Social pension

A.Leckcivilize (LUH)

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

• Old-age pension and child outcomes

- Anticipated pension increases school attendance and reduces hours worked, especially for boys living with male pensioner(s) (Edmonds, 2009)
- Pension increases enrollment and reduces hours worked for girls (Carvalho and Filho, 2012) Pension improves health and nutrition of girls if pension recipient is female (Duflo, 2003)

Unconditional cash transfers and child outcomes

• School participation: e.g. Schady and Arujo (2006), Edmonds and Schady (2012), Covarrubias et al. (2012)

Motivation

Social pension

A.Leckcivilize (LUH)

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

• Old-age pension and child outcomes

- Anticipated pension increases school attendance and reduces hours worked, especially for boys living with male pensioner(s) (Edmonds, 2009)
- Pension increases enrollment and reduces hours worked for girls (Carvalho and Filho, 2012) Pension improves health and nutrition of girls if pension recipient is female (Duflo, 2003)

Unconditional cash transfers and child outcomes

- School participation: e.g. Schady and Arujo (2006), Edmonds and Schady (2012), Covarrubias et al. (2012)
- Child labour: e.g. Akresh et al. (2013), Baird et al. (2011), Covarrubias et al. (2012), Robertson et al. (2013)

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodolog

Results

Robustness Checks

Conclusion

Preview of the results

Motivation

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Preview of the results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Children in households with pensioners are more likely to enroll in schools and less likely to work either full-time or part-time after the implementation of the universal pension scheme

Motivation

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Preview of the results

- Children in households with pensioners are more likely to enroll in schools and less likely to work either full-time or part-time after the implementation of the universal pension scheme
- Strong evidence for gender effects

Motivation

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Preview of the results

- Children in households with pensioners are more likely to enroll in schools and less likely to work either full-time or part-time after the implementation of the universal pension scheme
- Strong evidence for gender effects
- \Rightarrow Male (female) pension recipients favoring boys (girls)

Motivation

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Preview of the results

- Children in households with pensioners are more likely to enroll in schools and less likely to work either full-time or part-time after the implementation of the universal pension scheme
- Strong evidence for gender effects
- \Rightarrow Male (female) pension recipients favoring boys (girls)
- \Rightarrow Enrollment rates go up only for boys co-residing with newly eligible male (or male and female) pension recipients

Motivation

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Preview of the results

- Children in households with pensioners are more likely to enroll in schools and less likely to work either full-time or part-time after the implementation of the universal pension scheme
- Strong evidence for gender effects
- \Rightarrow Male (female) pension recipients favoring boys (girls)
- \Rightarrow Enrollment rates go up only for boys co-residing with newly eligible male (or male and female) pension recipients
- \Rightarrow Reductions in child work for girls in households with female pensioners

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodolog

Results

Robustness Checks

Conclusion

Old-age pension in Thailand

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Old-age pension in Thailand

• 1993 Social pension for elderly poor

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Old-age pension in Thailand

- 1993 Social pension for elderly poor
 - Limited budget (200 Baht per month, later 300 and 500 Baht)

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Old-age pension in Thailand

- 1993 Social pension for elderly poor
 - Limited budget (200 Baht per month, later 300 and 500 Baht)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Giving the poorest seniors in each village

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Old-age pension in Thailand

- 1993 Social pension for elderly poor
 - Limited budget (200 Baht per month, later 300 and 500 Baht)
 - Giving the poorest seniors in each village
 - Decentralizing to local governments around 2001-2002

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Old-age pension in Thailand

- 1993 Social pension for elderly poor
 - Limited budget (200 Baht per month, later 300 and 500 Baht)
 - · Giving the poorest seniors in each village
 - Decentralizing to local governments around 2001-2002

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• After 2009, universal pension for every person older than 60 years old who:

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Old-age pension in Thailand

- 1993 Social pension for elderly poor
 - Limited budget (200 Baht per month, later 300 and 500 Baht)
 - Giving the poorest seniors in each village
 - Decentralizing to local governments around 2001-2002
- After 2009, universal pension for every person older than 60 years old who:

do not receive any other pensions or salaries from the central or local governments

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Old-age pension in Thailand

- 1993 Social pension for elderly poor
 - Limited budget (200 Baht per month, later 300 and 500 Baht)
 - · Giving the poorest seniors in each village
 - Decentralizing to local governments around 2001-2002
- After 2009, universal pension for every person older than 60 years old who:

do not receive any other pensions or salaries from the central or local governments

register to receive the pension with local authorities (around Nov the year before you turn 60)

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Old-age pension in Thailand

- 1993 Social pension for elderly poor
 - Limited budget (200 Baht per month, later 300 and 500 Baht)
 - · Giving the poorest seniors in each village
 - Decentralizing to local governments around 2001-2002
- After 2009, universal pension for every person older than 60 years old who:

do not receive any other pensions or salaries from the central or local governments register to receive the pension with local authorities (around Nov the year before you turn 60)

• Stepwise pension system based on age after 2012

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Old-age pension in Thailand

- 1993 Social pension for elderly poor
 - Limited budget (200 Baht per month, later 300 and 500 Baht)
 - · Giving the poorest seniors in each village
 - Decentralizing to local governments around 2001-2002
- After 2009, universal pension for every person older than 60 years old who:

do not receive any other pensions or salaries from the central or local governments register to receive the pension with local authorities (around Nov the year before you turn 60)

• Stepwise pension system based on age after 2012

60-69 years old \Rightarrow 600 Baht per month

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Old-age pension in Thailand

- 1993 Social pension for elderly poor
 - Limited budget (200 Baht per month, later 300 and 500 Baht)
 - · Giving the poorest seniors in each village
 - Decentralizing to local governments around 2001-2002
- After 2009, universal pension for every person older than 60 years old who:

do not receive any other pensions or salaries from the central or local governments register to receive the pension with local authorities (around Nov the year before you turn 60)

• Stepwise pension system based on age after 2012

60-69 years old \Rightarrow 600 Baht per month 70-79 years old \Rightarrow 700 Baht per month

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Old-age pension in Thailand

- 1993 Social pension for elderly poor
 - Limited budget (200 Baht per month, later 300 and 500 Baht)
 - · Giving the poorest seniors in each village
 - Decentralizing to local governments around 2001-2002
- After 2009, universal pension for every person older than 60 years old who:

do not receive any other pensions or salaries from the central or local governments register to receive the pension with local authorities (around Nov the year before you turn 60)

• Stepwise pension system based on age after 2012

60-69 years old \Rightarrow 600 Baht per month 70-79 years old \Rightarrow 700 Baht per month 80-89 years old \Rightarrow 800 Baht per month

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Old-age pension in Thailand

- 1993 Social pension for elderly poor
 - Limited budget (200 Baht per month, later 300 and 500 Baht)
 - · Giving the poorest seniors in each village
 - Decentralizing to local governments around 2001-2002
- After 2009, universal pension for every person older than 60 years old who:

do not receive any other pensions or salaries from the central or local governments register to receive the pension with local authorities (around Nov the year before you turn 60)

• Stepwise pension system based on age after 2012

60-69 years old \Rightarrow 600 Baht per month 70-79 years old \Rightarrow 700 Baht per month 80-89 years old \Rightarrow 800 Baht per month 90 years old and older \Rightarrow 1,000 Baht per month

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

F

Conclusion

Education Expenditure in 2009

Table 2.6.2. Household education expenditure in Thailand, by education levels and school type, 2009

(average THB per head per year)

	Private School				Public School			
	Tuition Fees	Uniform	Books and equipment	Transport	Tuition Fees	Uniform	Books and equipment	Transport
re-primary	8 703	980	823	3 612	1 546	708	456	2 317
rimary	11 031	1 315	1 454	4 794	1 976	880	761	2 837
ower Secondary.	10 894	1 507	1 600	5 022	2 562	1 139	1 122	3 580
Jpper Secondary	23 643	1 430	1 809	5 898	4 615	1 238	1 416	3 927
ocational	12 604	1 770	2 303	6 578	4 565	1 4 4 3	1 528	4 6 4 5
ertiary	37 683	1 978	3 3 4 6	8 510	14 461	1 636	2 459	6 231
nformal ducation	2 426	692	559	2 418			-	
otal	13 824	1 272	1 500	5 052	5 120	970	973	3 533

Source: OECD Development Centre's calculation based on Socio-Economic Survey (SES) data and National Statistical Office (NSO).

Background

Data

Methodolog

Results

Robustness Checks

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

• Household survey data

Data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

/// Leibniz Universität Hannover Social pension

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

- Household survey data
 - Conducted by FOR 756 'Vulnerability in Southeast Asia' Project funded by German Science Foundation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

A.Leckcivilize (LUH)

li l lo 2 Social pension

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

- Household survey data
 - Conducted by FOR 756 'Vulnerability in Southeast Asia' Project funded by German Science Foundation
 - Interviewing households in rural areas of the Northeast Thailand

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

Social pension

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

- Household survey data
 - Conducted by FOR 756 'Vulnerability in Southeast Asia' Project funded by German Science Foundation
 - Interviewing households in rural areas of the Northeast Thailand
 - Five waves, i.e. 2007, 2008, 2010, 2011 (sub-sample) and 2013

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

Social pension

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

- Household survey data
 - Conducted by FOR 756 'Vulnerability in Southeast Asia' Project funded by German Science Foundation
 - Interviewing households in rural areas of the Northeast Thailand
 - Five waves, i.e. 2007, 2008, 2010, 2011 (sub-sample) and 2013
- Sample Restriction

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

Social pension

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

- Household survey data
 - Conducted by FOR 756 'Vulnerability in Southeast Asia' Project funded by German Science Foundation
 - Interviewing households in rural areas of the Northeast Thailand
 - Five waves, i.e. 2007, 2008, 2010, 2011 (sub-sample) and 2013
- Sample Restriction
 - Before (2008) and after reform (2010 2013)

Motivation

Social pension

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

- Household survey data
 - Conducted by FOR 756 'Vulnerability in Southeast Asia' Project funded by German Science Foundation
 - Interviewing households in rural areas of the Northeast Thailand
 - Five waves, i.e. 2007, 2008, 2010, 2011 (sub-sample) and 2013
- Sample Restriction
 - Before (2008) and after reform (2010 2013)
 - Children aged 6-18 in 2008 and living in three-generation households

Motivation

Social pension

- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

- Household survey data
 - Conducted by FOR 756 'Vulnerability in Southeast Asia' Project funded by German Science Foundation
 - Interviewing households in rural areas of the Northeast Thailand
 - Five waves, i.e. 2007, 2008, 2010, 2011 (sub-sample) and 2013
- Sample Restriction
 - Before (2008) and after reform (2010 2013)
 - Children aged 6-18 in 2008 and living in three-generation households
 - 1,220 children and 748 households

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Descriptive analysis

Table 1 :SCHOOL ENROLLMENT AND CHILD WORK(PERCENTAGE)

	Before reform	After	reform
	2008	2010	2013
Panel A: Enrollment			
Children with newly eligible elderly	81.8	82.3	64.1
Children in control group	79.3	77.0	58.0
All boys	79.0	76.3	58.3
All girls	81.7	82.0	62.6
Panel B: Work status			
Children with newly eligible elderly	9.2	13.5	28.5
Children in control group	9.7	19.7	34.7
All boys	11.0	19.7	35.0
All girls	8.1	14.5	29.2

Note: School enrollment and work status of children aged 6 to 18 in 2008.

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Methodology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Social pension A.Leckcivilize (LUH)

Leibniz Universität

- Motivation
- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

• Using **Instrumental Variable** technique with second stage:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Social pension A.Leckcivilize (LUH)

Leibniz Universität

- Motivation
- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

• Using **Instrumental Variable** technique with second stage:

$$y_{it} = \beta_0 + \mathbf{X}'_{it}\beta_1 + \beta_2 Pension_{it} + D_t + e_{it}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Social pension A.Leckcivilize (LUH)

Leibniz Universität

- Motivation
- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

• Using **Instrumental Variable** technique with second stage:

$$y_{it} = \beta_0 + \mathbf{X}'_{it}\beta_1 + \beta_2 Pension_{it} + D_t + e_{it}$$

• y_{it} be dummies for enrollment or work status of child i at time t

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Using Instrumental Variable technique with second stage:

$$y_{it} = \beta_0 + \mathbf{X}'_{it}\beta_1 + \beta_2 Pension_{it} + D_t + e_{it}$$

- y_{it} be dummies for enrollment or work status of child i at time t
- X_{it} is a vector of child and household characteristics

Social pension

A.Leckcivilize

(LUH)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Using Instrumental Variable technique with second stage:

 $y_{it} = \beta_0 + \mathbf{X}'_{it}\beta_1 + \beta_2 Pension_{it} + D_t + e_{it}$

- *y_{it}* be dummies for enrollment or work status of child i at time t
- X_{it} is a vector of child and household characteristics
 (1) Age (2) Age-squared (3) Gender

Social pension

A.Leckcivilize

(LUH)

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Using Instrumental Variable technique with second stage:

 $y_{it} = \beta_0 + \mathbf{X}'_{it}\beta_1 + \beta_2 Pension_{it} + D_t + e_{it}$

- *y_{it}* be dummies for enrollment or work status of child i at time t
- X_{it} is a vector of child and household characteristics

 (1) Age (2) Age-squared (3) Gender
 (4) Household income (5) Size of land owned by the household in 2008 (6) Years of education of head of HH

Social pension

A.Leckcivilize

(LUH)

Using Instrumental Variable technique with second stage:

 $y_{it} = \beta_0 + \mathbf{X}'_{it}\beta_1 + \beta_2 Pension_{it} + D_t + e_{it}$

- *y_{it}* be dummies for enrollment or work status of child i at time t
- X_{it} is a vector of child and household characteristics

 Age (2) Age-squared (3) Gender
 Household income (5) Size of land owned by the household in 2008 (6) Years of education of head of HH and (7) Number of members in following gender-age groups ⇒ Five-year interval of age from 0-4, 5-9, ..., 55-59, 60-64 to 65-69, then with ten-year interval for 70-79, 80-89 and 90 years old onwards

Social pension

A.Leckcivilize

(LUH)

Using Instrumental Variable technique with second stage:

 $y_{it} = \beta_0 + \mathbf{X}'_{it}\beta_1 + \beta_2 Pension_{it} + D_t + e_{it}$

- *y_{it}* be dummies for enrollment or work status of child i at time t
- X_{it} is a vector of child and household characteristics

 (1) Age (2) Age-squared (3) Gender
 (4) Household income (5) Size of land owned by the household in 2008 (6) Years of education of head of HH and (7) Number of members in following gender-age groups ⇒ Five-year interval of age from 0-4, 5-9, ..., 55-59, 60-64 to 65-69, then with ten-year interval for 70-79, 80-89 and 90 years old onwards
- *Pension_{it}* is a dummy for pension status which is equal to 1 if child i stayed in a household reporting to receive public pension in period t

Motivation

Social pension

A.Leckcivilize

(LUH)

Background

Data

Methodology

Results

Robustness Checks

Using Instrumental Variable technique with second stage:

 $y_{it} = \beta_0 + \mathbf{X}'_{it}\beta_1 + \beta_2 Pension_{it} + D_t + e_{it}$

- y_{it} be dummies for enrollment or work status of child i at time t
- X_{it} is a vector of child and household characteristics

 (1) Age (2) Age-squared (3) Gender
 (4) Household income (5) Size of land owned by the household in 2008 (6) Years of education of head of HH and (7) Number of members in following gender-age groups ⇒ Five-year interval of age from 0-4, 5-9, ..., 55-59, 60-64 to 65-69, then with ten-year interval for 70-79, 80-89 and 90 years old onwards
- *Pension_{it}* is a dummy for pension status which is equal to 1 if child i stayed in a household reporting to receive public pension in period t
- *D_t* are time dummies for two post-reform periods (2010 and 2013)

Motivation

Social pension

A.Leckcivilize

(LUH)

Background

Data

Methodology

Results

Robustness Checks

Using Instrumental Variable technique with second stage:

 $y_{it} = \beta_0 + \mathbf{X}'_{it}\beta_1 + \beta_2 Pension_{it} + D_t + e_{it}$

- y_{it} be dummies for enrollment or work status of child i at time t
- X_{it} is a vector of child and household characteristics

 (1) Age (2) Age-squared (3) Gender
 (4) Household income (5) Size of land owned by the household in 2008 (6) Years of education of head of HH and (7) Number of members in following gender-age groups ⇒ Five-year interval of age from 0-4, 5-9, ..., 55-59, 60-64 to 65-69, then with ten-year interval for 70-79, 80-89 and 90 years old onwards
- *Pension_{it}* is a dummy for pension status which is equal to 1 if child i stayed in a household reporting to receive public pension in period t
- *D_t* are time dummies for two post-reform periods (2010 and 2013)
- *e*_{it} are the error terms

Motivation

Social pension

A.Leckcivilize

(LUH)

Background

Data

Methodology

Results

Robustness Checks

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Methodology cont.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A.Leckcivilize (LUH)

Methodology cont.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

First stage:

- Motivation
- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Methodology cont.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

First stage:

 $\begin{aligned} \textit{Pension}_{it} &= \alpha_0 + \mathbf{X}'_{it}\alpha_1 + \alpha_2\textit{PenAge}_{it} + \alpha_3\textit{PenAge70}_{it} \\ &+ \alpha_4\textit{PenAge80}_{it} + \alpha_5\textit{PenAge90}_{it} + D_t + u_t \end{aligned}$

/ l Leibniz l o 2 Universität l o o 4 Hannover

Social pension

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Methodology cont.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

First stage:

$$\begin{aligned} & \textit{Pension}_{it} = \alpha_0 + \mathbf{X}'_{it}\alpha_1 + \alpha_2\textit{PenAge}_{it} + \alpha_3\textit{PenAge70}_{it} \\ & + \alpha_4\textit{PenAge80}_{it} + \alpha_5\textit{PenAge90}_{it} + D_t + u_t \end{aligned}$$

• using *PenAge_{it}*, *PenAge*70_{*it*}, *PenAge*80_{*it*} and *PenAge*90_{*it*} as an instrument for Pension status (*Pension_{it}*)

lil Leibniz ioj2 Universität iooi4 Hannover

Social pension

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Methodology cont.

First stage:

 $\begin{aligned} & \textit{Pension}_{it} = \alpha_0 + \mathbf{X}'_{it}\alpha_1 + \alpha_2\textit{PenAge}_{it} + \alpha_3\textit{PenAge70}_{it} \\ & + \alpha_4\textit{PenAge80}_{it} + \alpha_5\textit{PenAge90}_{it} + D_t + u_t \end{aligned}$

- using *PenAge_{it}*, *PenAge*70_{*it*}, *PenAge*80_{*it*} and *PenAge*90_{*it*} as an instrument for Pension status (*Pension_{it}*)
- where *PenAge_{it}* is a dummy variable equal to 1 if child i stayed in a household with senior citizen(s), i.e. older than 60 after 2010

li l lo 2 lo 0 4 Social pension

A.Leckcivilize (LUH)

Methodology cont.

First stage:

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

 $\begin{aligned} \textit{Pension}_{it} &= \alpha_0 + \mathbf{X}'_{it}\alpha_1 + \alpha_2\textit{PenAge}_{it} + \alpha_3\textit{PenAge70}_{it} \\ &+ \alpha_4\textit{PenAge80}_{it} + \alpha_5\textit{PenAge90}_{it} + D_t + u_t \end{aligned}$

- using *PenAge_{it}*, *PenAge*70_{*it*}, *PenAge*80_{*it*} and *PenAge*90_{*it*} as an instrument for Pension status (*Pension_{it}*)
- where *PenAge_{it}* is a dummy variable equal to 1 if child i stayed in a household with senior citizen(s), i.e. older than 60 after 2010
- PenAge70_{it}, PenAge80_{it} and PenAge90_{it} are dummy variables for child i in a household with senior citizen(s) aged 70-79, 80-89 and 90 and older in 2013 respectively

l l Leibniz l o 2 Universităt l o 6 4 Hannover

Social pension

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Methodology cont.

First stage:

 $\begin{aligned} & \textit{Pension}_{it} = \alpha_0 + \mathbf{X}'_{it}\alpha_1 + \alpha_2\textit{PenAge}_{it} + \alpha_3\textit{PenAge70}_{it} \\ & + \alpha_4\textit{PenAge80}_{it} + \alpha_5\textit{PenAge90}_{it} + D_t + u_t \end{aligned}$

- using *PenAge_{it}*, *PenAge*70_{*it*}, *PenAge*80_{*it*} and *PenAge*90_{*it*} as an instrument for Pension status (*Pension_{it}*)
- where *PenAge_{it}* is a dummy variable equal to 1 if child i stayed in a household with senior citizen(s), i.e. older than 60 after 2010
- PenAge70_{it}, PenAge80_{it} and PenAge90_{it} are dummy variables for child i in a household with senior citizen(s) aged 70-79, 80-89 and 90 and older in 2013 respectively
 Reduced form:

tit toj2 Looj4 Social pension

A.Leckcivilize (LUH)

Methodology cont.

First stage:

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

 $\begin{aligned} \textit{Pension}_{it} &= \alpha_0 + \mathbf{X}'_{it}\alpha_1 + \alpha_2\textit{PenAge}_{it} + \alpha_3\textit{PenAge70}_{it} \\ &+ \alpha_4\textit{PenAge80}_{it} + \alpha_5\textit{PenAge90}_{it} + D_t + u_t \end{aligned}$

- using *PenAge_{it}*, *PenAge*70_{*it*}, *PenAge*80_{*it*} and *PenAge*90_{*it*} as an instrument for Pension status (*Pension_{it}*)
- where *PenAge_{it}* is a dummy variable equal to 1 if child i stayed in a household with senior citizen(s), i.e. older than 60 after 2010
- *PenAge*70_{*it*}, *PenAge*80_{*it*} and *PenAge*90_{*it*} are dummy variables for child i in a household with senior citizen(s) aged 70-79, 80-89 and 90 and older in 2013 respectively

Reduced form:

 $\begin{aligned} y_{it} &= \delta_0 + \mathbf{X}'_{it} \delta_1 + \delta_2 \textit{PenAge}_{it} + \delta_3 \textit{PenAge70}_{it} \\ &+ \delta_4 \textit{PenAge80}_{it} + \delta_5 \textit{PenAge90}_{it} + D_t + \epsilon_{it} \end{aligned}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Methodology cont.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Α.Ι	Lecko	ivi	lize
	(LU	H)	

Background

Data

Methodology

Results

Robustness Checks

Conclusion

12/21

Methodology cont.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Effects by genders:

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Methodology cont.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Effects by genders:

 $y_{it} = \theta_0 + \mathbf{X}'_{it}\theta_1 + \theta_2 Pension_{it} + \theta_3 PenF_{it} + \theta_4 PenMF_{it} + D_t + \nu_{it}$

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Methodology cont.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Effects by genders:

 $y_{it} = \theta_0 + \mathbf{X}'_{it}\theta_1 + \theta_2 Pension_{it} + \theta_3 PenF_{it} + \theta_4 PenMF_{it} + D_t + \nu_{it}$

• y_{it} , X_{it} , D_t are the same as before

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Methodology cont.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Effects by genders:

 $y_{it} = \theta_0 + \mathbf{X}'_{it}\theta_1 + \theta_2 Pension_{it} + \theta_3 PenF_{it} + \theta_4 PenMF_{it} + D_t + \nu_{it}$

• y_{it} , X_{it} , D_t are the same as before

• *PenF* a dummy variable equal to one if the household has female pensioner(s)

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Methodology cont.

Effects by genders:

 $y_{it} = \theta_0 + \mathbf{X}'_{it}\theta_1 + \theta_2 Pension_{it} + \theta_3 PenF_{it} + \theta_4 PenMF_{it} + D_t + \nu_{it}$

• y_{it} , X_{it} , D_t are the same as before

- *PenF* a dummy variable equal to one if the household has female pensioner(s)
- *PenMF* for households with both female and male pensioners

A.Leckcivilize (LUH)

- Motivation
- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Methodology cont.

Effects by genders:

- y_{it}, X_{it}, D_t are the same as before
- *PenF* a dummy variable equal to one if the household has female pensioner(s)
- *PenMF* for households with both female and male pensioners
- Then estimate the model in separate regressions by gender of children in the household

A.Leckcivilize (LUH)

- Motivation
- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Methodology cont.

Effects by genders:

- y_{it}, X_{it}, D_t are the same as before
- *PenF* a dummy variable equal to one if the household has female pensioner(s)
- *PenMF* for households with both female and male pensioners
- Then estimate the model in separate regressions by gender of children in the household
- ν_{it} are the error terms

A.Leckcivilize (LUH)

- Motivation
- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Methodology cont.

Effects by genders:

- y_{it} , X_{it} , D_t are the same as before
- *PenF* a dummy variable equal to one if the household has female pensioner(s)
- *PenMF* for households with both female and male pensioners
- Then estimate the model in separate regressions by gender of children in the household
- ν_{it} are the error terms
- For the first stage, interacting *PenAge* with dummy variables for households with female and both male and female pensioners

A.Leckcivilize (LUH)

- Motivation
- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Methodology cont.

Effects by genders:

- y_{it} , X_{it} , D_t are the same as before
- *PenF* a dummy variable equal to one if the household has female pensioner(s)
- *PenMF* for households with both female and male pensioners
- Then estimate the model in separate regressions by gender of children in the household
- *v_{it}* are the error terms
- For the first stage, interacting *PenAge* with dummy variables for households with female and both male and female pensioners
- $\rightarrow\,$ Use them as instrumental variables for PenF and PenMF respectively

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Table 2 :The effect of the social pension onchild work:Reduced form and 2SLS

Results: All sample

	F	educed for	m		2515	
	6-18	6-11	12-18	6-18	6-11	12-18
Eligible HH	-0.062***	-0.024	-0.105***	-	-	
0	(0.023)	(0.022)	(0.035)			
Pension HH	-		-	-0.136***	-0.047	-0.226***
				(0.051)	(0.049)	(0.075)
Girl	-0.041***	-0.025**	-0.052*	-0.041***	-0.025**	-0.049*
	(0.016)	(0.012)	(0.027)	(0.015)	(0.012)	(0.027)
Age	-0.095***	-0.020	0.019	-0.095***	-0.019	0.012
_	(0.008)	(0.014)	(0.035)	(0.008)	(0.014)	(0.036)
Age ²	0.005***	0.001*	0.002**	0.005***	0.001*	0.003**
	(0.000)	(0.001)	(0.001)	(0.000)	(0.001)	(0.001)
Total HH income	-0.028***	-0.017***	-0.031**	-0.027***	-0.016***	-0.033***
	(0.008)	(0.006)	(0.012)	(0.008)	(0.006)	(0.012)
Land area 2008	-0.002	0.003*	-0.006**	-0.001	0.003*	-0.005*
	(0.002)	(0.002)	(0.003)	(0.002)	(0.002)	(0.003)
Edu of HH head	-0.005*	-0.002	-0.010*	-0.008**	-0.003	-0.013**
	(0.003)	(0.002)	(0.005)	(0.003)	(0.002)	(0.006)
F-stat 1 st stage	-	-	-	46.6	38.4	34.5
R ²	0.381	0.067	0.341	0.364	0.055	0.309
Observations	3,387	1,570	1,817	3,387	1,570	1,817
Control vars						
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes
HH composition	Yes	Yes	Yes	Yes	Yes	Yes

***, ** and * indicate significance at the 1%, 5% and 10% level respectively. Standard errors are in parentheses and clustered at the village level. All models control for Household composition.

SQC.

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Results: Education by genders Table 3 : The effect of the social pension on school enrollment by gender: 2SLS

	6-18		6-	11	12-18		
	Boys	Girls	Boys	Girls	Boys	Girls	
Male Recipient	0.178	-0.002	-0.066	-0.219	0.404**	0.174	
	(0.127)	(0.150)	(0.159)	(0.165)	(0.167)	(0.247)	
Δ FemaleReci	-0.153	0.035	0.017	0.226	-0.256	-0.047	
	(0.163)	(0.169)	(0.170)	(0.210)	(0.240)	(0.261)	
ΔM ale + FemaleReci	0.107	-0.105	0.004	-0.136	0.152	-0.091	
	(0.102)	(0.096)	(0.120)	(0.124)	(0.140)	(0.140)	
F-stat 1 st stage	36.7	21.5	8.9	11.4	20.1	10.0	
R^2	0.355	0.378	0.395	0.374	0.314	0.382	
Observations	1662	1723	793	775	869	948	
Child and HH vars	Yes	Yes	Yes	Yes	Yes	Yes	
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes	
HH composition	Yes	Yes	Yes	Yes	Yes	Yes	
Female Reci	0.023	0.033	-0.049	0.010	0.142	0.126	
	(0.103)	(0.068)	(0.099)	(0.087)	(0.162)	(0.096)	
Male + Female Reci	0.129	-0.072	-0.044	-0.125	0.295**	0.035	
	(0.104)	(0.089)	(0.136)	(0.103)	(0.142)	(0.135)	

Note: Δ Female(Male + Female)Recipient measures the additional effect if a women (men and women) receives the pension after becoming eligible due to the reform compared to a men (the individual effects of a men end end)

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Table 4 : The effect of the social pension on childWORK BY GENDER: 2SLS

Results: Child work by genders

	6	-18	6-	11	12-18	
	Boys	Girls	Boys	Girls	Boys	Girls
Male Recipient	-0.154	-0.069	-0.138	0.063	-0.219	-0.187
	(0.111)	(0.145)	(0.120)	(0.139)	(0.151)	(0.247)
Δ FemaleReci	0.015	-0.104	0.058	-0.140	0.002	-0.068
	(0.140)	(0.169)	(0.134)	(0.173)	(0.210)	(0.280)
ΔM ale + FemaleReci	-0.000	0.070	-0.097	0.015	0.037	0.107
	(0.093)	(0.085)	(0.095)	(0.085)	(0.134)	(0.138)
F-stat 1 st stage	36.7	21.5	8.9	11.4	20.1	10.0
R^2	0.388	0.345	0.077	0.060	0.333	0.303
Observations	1662	1723	793	775	869	948
Child and family vars	Yes	Yes	Yes	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes
HH composition	Yes	Yes	Yes	Yes	Yes	Yes
Female Reci	-0.137	-0.173**	-0.079	-0.078	-0.214	-0.255***
	(0.104)	(0.067)	(0.103)	(0.071)	(0.157)	(0.096)
Male + Female Reci	-0.136	-0.103	-0.174	-0.063	-0.178	-0.148
	(0.100)	(0.070)	(0.113)	(0.060)	(0.144)	(0.118)

***, ** and * indicate significance at the 1%, 5% and 10% level respectively. Standard errors are in parentheses and clustered at the village level. \sim

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Results: Education expenditure

Table 5 :The effect of the socialPENSION ON EDUCATION EXPENDITURE

	Log	Share	Log	Share
	(All)	(All)	(Genders)	(Genders)
Pension HH	0.619	0.030*	-	-
	(0.396)	(0.017)		
Male Recipient	-	-	1.230*	0.049*
			(0.738)	(0.028)
HH income (lagged)	0.281***	0.001	0.267***	0.001
	(0.087)	(0.003)	(0.088)	(0.003)
Land area in 2008	0.050***	0.000	0.050***	0.000
	(0.012)	(0.001)	(0.012)	(0.001)
Education of HH head	0.082***	0.002**	0.082***	0.002**
	(0.031)	(0.001)	(0.031)	(0.001)
∆ <i>FemaleRecipient</i>	-	-	-1.029	-0.033
			(0.862)	(0.033)
$\Delta Male + FemaleRecipient$	-	-	0.168	0.011
			(0.519)	(0.019)
F-stat 1 st stage	56	56	28	28
R ²	0.165	0.082	0.164	0.081
Observations	2,121	2,121	2,120	2,120
Control vars	Yes	Yes	Yes	Yes
Female Recipient			0.193	0.016
-			(0.474)	(0.020)
Male + Female Recipient			0.354	0.026
			(0.527)	(0.022)
			. /	<u>, ,</u>

Note: Pension HH indicates whether a household member receives the pension after becoming eligible due to the reform).

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Results: Other expenditures

Table 6 : The effect of the social pension on other expenditures $\label{eq:constraint}$

	Total	Food	Food	Non food	Non food	Health	Health
	(Log)	(Log)	(Share)	(Log)	(Share)	(Log)	(Share)
Pension HH	-0.127	-0.106	0.001	-0.177	-0.032	-0.341	-0.004
	(0.101)	(0.098)	(0.028)	(0.139)	(0.028)	(0.375)	(0.005)
HH income (lagged)	0.194***	0.155***	-0.020***	0.253***	0.020***	0.075	-0.000
	(0.019)	(0.019)	(0.006)	(0.026)	(0.005)	(0.078)	(0.001)
Land area 2008	0.021***	0.018**	-0.001	0.025***	0.001	0.019	-0.000
	(0.007)	(0.007)	(0.001)	(0.007)	(0.001)	(0.014)	(0.000)
Edu of HH head	0.040***	0.025***	-0.006***	0.051***	0.004**	0.054**	0.000
	(0.006)	(0.006)	(0.002)	(0.009)	(0.002)	(0.024)	(0.000)
F-stat 1 st stage	56	56	56	56	56	56	56
R ²	0.252	0.261	0.153	0.179	0.086	0.040	0.034
Obs	2,121	2,121	2,121	2,121	2,121	2,121	2,121
Control vars	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: Pension HH indicates whether a household member receives the pension after becoming eligible due to the reform).

A.Leckcivilize (LUH)

Motivation

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Robustness Check 1

Table 7 :2SLS ESTIMATION OF THE EFFECT OF THE SOCIALPENSION ON CHILD OUTCOMES WITH ALTERNATIVE SAMPLE

	Alternative	cohort definition	HH with	ı oldest	member 50-70
Dependent variable	12-17	12-19	6-18	6-11	12-18
School enrollment	0.191**	0.144**	0.107	0.023	0.197*
	(0.082)	(0.070)	(0.070)	(0.081)	(0.105)
Child work	-0.234***	-0.186***	-0.120*	-0.071	-0.177*
	(0.083)	(0.072)	(0.068)	(0.073)	(0.103)
Observations	1584	2041	1923	979	944
Control variables	Yes	Yes	Yes	Yes	Yes

***, ** and * indicate significance at the 1%, 5% and 10% level respectively. Standard errors are in parentheses and clustered at the village level. All models control for individual and household characteristics as well as for year dummies and the number of male and female household members in separate age groups 0-4, 5-9 ... 65-69,70-79, 80-89 and 90+. Each cell reports estimates of *Pension HH* in separate regressions, where *Pension HH* indicates whether a household member receives the pension after becoming eligible due to the reform.

lil Leibniz iol2 Universität iool4 Hannover

Social pension

A.Leckcivilize (LUH)

Robusti Checks

UH)

Table 8 : PLACEBO ANALYSES: SCHOOLING AND CHILD WORK

Robustness Check 2

ion			Enrollment		W	/ork stat	us
ound		6-18	6-11	12-18	6-18	6-11	12-18
	Pension HH	-0.022	-0.017	-0.008	0.066	0.047*	0.112
		(0.065)	(0.073)	(0.098)	(0.055)	(0.026)	(0.107)
ology	Girl	0.016	-0.009	0.039	-0.017	-0.007	-0.024
		(0.023)	(0.022)	(0.040)	(0.017)	(0.007)	(0.035)
	Age	0.310***	0.529***	0.280***	-0.124***	0.005	-0.279***
iess		(0.023)	(0.108)	(0.085)	(0.015)	(0.008)	(0.090)
	Age ²	-0.014***	-0.025***	-0.012***	0.007***	-0.000	0.012***
		(0.001)	(0.006)	(0.003)	(0.001)	(0.000)	(0.003)
	Total HH income	0.035***	0.005	0.054***	-0.014	0.004	-0.025
		(0.013)	(0.012)	(0.020)	(0.011)	(0.004)	(0.020)
	Land area in 2007	-0.001	-0.001	-0.001	-0.001	-0.000	-0.002
		(0.002)	(0.002)	(0.004)	(0.002)	(0.000)	(0.003)
	Education of HH head	0.003	0.004	0.005	-0.002	-0.001	-0.007
		(0.004)	(0.004)	(0.006)	(0.003)	(0.001)	(0.006)
	F-statistic 1 st stage	93.8	58.7	71.8	92.0	59.2	71.0
	R^2	0.343	0.358	0.376	0.333	-0.005	0.311
	Observations	2085	1000	1085	2098	1020	1078

Robustness Check 3

Motivation

li l lo 2 Social pension

A.Leckcivilize (LUH)

Background

Data

Methodology

Results

Robustness Checks

Conclusion

Table 9 : PLACEBO ANALYSES: EXPENDITURE ITEMS

	Total	Educ.	Educ.	Food	Food	Non food	Non food	Health	Health
	(Log)	(Log)	(Share)	(Log)	(Share)	(Log)	(Share)	(Log)	(Share)
Pension HH	-0.032	0.201	0.015	-0.113	-0.035	-0.033	0.010	1.145**	0.016
	(0.130)	(0.576)	(0.019)	(0.136)	(0.038)	(0.184)	(0.039)	(0.571)	(0.010)
HH income	0.344***	0.345***	-0.001	0.243***	-0.037***	0.430***	0.040***	0.043	-0.005***
	(0.027)	(0.117)	(0.003)	(0.025)	(0.006)	(0.036)	(0.006)	(0.099)	(0.001)
Land area 2007	0.012*	0.011	0.000	0.012**	-0.000	0.014	0.000	0.024	0.000
	(0.007)	(0.023)	(0.001)	(0.006)	(0.001)	(0.010)	(0.001)	(0.022)	(0.000)
Educ. of HH head	0.036***	0.056*	0.002	0.019***	-0.006***	0.045***	0.004**	0.069**	0.001*
	(0.007)	(0.031)	(0.001)	(0.007)	(0.002)	(0.010)	(0.002)	(0.032)	(0.001)
F-stat 1 st stage	75.2	75.2	75.2	75.2	75.2	75.2	75.2	75.2	75.2
R ²	0.324	0.233	0.123	0.195	0.105	0.267	0.093	0.028	0.034
Obs	1,282	1,282	1,282	1,282	1,282	1,282	1,282	1,282	1,282
Control vars	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Pension HH indicates whether a household member receives the pension after becoming eligible due to the 'Placebo' reform in 2008.

A.Leckcivilize (LUH)

- Motivation
- Background
- Data
- Methodology
- Results
- Robustness Checks
- Conclusion

Conclusion & Policy Discussion

- Social pension raises school enrollment of older children in Thailand and reduces child work
- Increase in schooling (reduction of work) particularly due to male (female) pensioners
- Households with pensioners (esp. male) invest more money in the education of their children
- Policy discussion
- Given effects on children schooling and work and fiscal constraints, should Thai government move back to targeted programme?
 - If yes, what would be the 'New' criteria for poor elderly? Any Suggestions are more than welcome

Thank you