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What is machine learning?

Wikipedia (Nov 2016)

• “Evolved from the study of pattern recognition and computational learning 
theory in artificial intelligence, machine learning explores the study and 
construction of algorithms that can learn from and make predictions on data”



Motivation (1)
• Why nowcast Thai exports?

– An important component of Thai GDP
– Gives us ideas about the prevailing state of the economy
– Test if machine learning might be useful in our context

• Varian, 2014 and Einav and Leven, 2013 advocate the application of 
machine learning in economics

• But of course: 
– Economics needs conherent interpretations (Most machine learning focus on 

predictive accuracy)
– Most machine learning techniques currently available are for cross-sectional 

data 



Motivation (2)
Why use global financial market data to forecast exports?

– Domain knowledge 
• Microeconomics (1st principles)

– Demand (e.g. income, substitution, & wealth effects) and supply

• Macroeconomics and Finance
– The yield curve is well documented to be a good predictor of the economy*  

(Use trading partners’ and Thai gov’t curves)

– Stock markets partly represents financial wealth and shown to affect 
consumption** 

– NEER can provide a measure of substitution effects

* For example, Estrella and Trubin (2006), Estrella and Hadouvelis (1991)
**Juster et al. (2005), Dynan and Maki (2000), Porteba (2000)



Motivation (3)
Why use global financial market data to forecast exports (cont’d)?

– Information content
• Prices reflect what people perceive about the future, with P&L 

actually taken into considerations
– Timeliness

• Available on a near real-time basis



Motivation (4)
• Why use machine learning?

– A large number of potential predictors relative to the 
number of observations
• In this analysis: 148 predictors, but 136 (monthly) observations

– Optimized for prediction accuracy
• Not for the single covariate causal effects

– Interpretability
• v. traditional benchmark (ARIMA)
• Of the particular technique used (Time-lag Lasso)



Global financial market data (1)
Monthly average, June 2005-Sep 2016
From Bloomberg

– The slope of the government bond yield curve 
(27 trading partners)*

– Stock market index (48 trading partners)
– Market conditions (Bcom, WTI)**

From BOT 
– NEER

Altogether: 74 variables

*2_10 slope, Except China, 2_7, Bloomberg Fair Value
** Bloomberg Commodity Index & West-Texas Index (Oil)



Figure 1: 
Thai Exports (June 2005 - Sep 2016)

Augmented Dickey-Fuller Test 
data: exportsx$Exports 

Dickey-Fuller = -4.1309, Lag order = 5, p-value = 0.01 
alternative hypothesis: stationary
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Thai exports: 
Training and Test sets



Figure 2.1: 
Slope of US yield curve (June 2005-Sep 2016)

Augmented Dickey-Fuller Test 
data: exportsx.new$UST2_10 
Dickey-Fuller = -1.079, Lag order = 5, p-value = 0.9226 
alternative hypothesis: stationary



Figure 2.2: 
Slope of German yield curve (June 2005-Sep 2016)

Augmented Dickey-Fuller 
Test data: exportsx.new$GDBR2_10 
Dickey-Fuller = -1.1909, Lag order = 5, p-value = 0.905 
alternative hypothesis: stationary



Figure 2.3: 
Slope of JGB yield curve (June 2005-Sep 2016)

Augmented Dickey-Fuller Test 
data: exportsx.new$JGB2_10 
Dickey-Fuller = -1.6664, Lag order = 5, p-value = 0.7152 
alternative hypothesis: stationary



Figure 2.4: 
Slope of China yield curve (June 2005-Sep 2016)

Augmented Dickey-Fuller Test 
data: exportsx.new$CNY2_7 
Dickey-Fuller = -3.2046, Lag order = 5, p-value = 0.09013 
alternative hypothesis: stationary



Figure 2.5: 
Slope of Indonesia yield curve (June 2005-Sep 2016)



Figure 2.6: 
Slope of Thailand yield curve (June 2005-Sep 2016)



Figure 2.7: 
Bloomberg Commodity Index

(June 2005-Sep 2016)



Figure 2.8: 
NEER

(June 2005-Sep 2016)



Figure 3.1: 
Dow Jones Industrial Average

(June 2005-Sep 2016)
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Model building 
The framework: The Lasso (Tibshirani, 1996)

(Least absolute shrinkage and selection operator) 

𝑦𝑖 =  𝛽0  +   𝑥𝑖𝑗𝛽𝑖𝑗
𝑝
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Model building 
The framework: The Lasso (Tibshirani 1996)

(Least absolute shrinkage and selection operator) 

{𝑅𝑆𝑆 +   𝜆   𝛽𝑗   }

𝑝

𝑗=1

  Or equivalently, minimize

s.t. Or, minimize
β

   𝛽𝑗    ≤ 𝑠

𝑝

𝑗=1

   (

𝑁

𝑖=1

𝑦𝑖 −  𝛽0  +   𝑥𝑖𝑗𝛽𝑖𝑗
𝑝

𝑗=1
 )2  

(4)

(5)



How does the Lasso perform variable selection?

𝛽1

𝛽2

𝛽𝑗

The Lasso is the posterior mode for 𝛽 under a 
double-exponential (Laplace) prior. 
The solid line respresents a Laplace distribution.  
The dotted line represents a normal distribution 

The ellipses are the contours of the RSS.
The solid triangle are the constraint regions 𝛽1 + 𝛽1 ≤ 𝑠

Source: Tibshirani (1996)
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Time-Lag Lasso (1)
(Suo and Tibshirani, 2015)

Subject to 𝛽1 ≥ 𝛽2 ≥ … ≥ 𝛽𝑝

(6) 
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Ordered Lasso:

This makes sense in problems where some natural order exists among the 
predictors.  But this problem is not convex, so modify the approach.

Write each 𝛽𝑗 = 𝛽𝑗
+ − 𝛽𝑗

−,

with 𝛽𝑗
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−≥ 0.

This could be solved by Pool Adjacent Violators Algorithm (PAVA).



PAVA is often used to solve isotonic regression problem

Isotonic regression: Fitting a free-form line of regression, whereby the fitted 
line has to be non-decreasing everywhere, and lie as close to the 
observations as possible.



Time-Lag Lasso (2)
(Suo and Tibshirani, 2015)

𝑦𝑡 =  𝛽0  +   𝑥𝑡−𝑘,𝑗

𝐾
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 𝛽𝑘𝑗 +  𝜖𝑖 

with 𝐸 𝜖𝑖 = 0 and 𝑉𝑎𝑟 𝜖𝑖 = 𝜎2,
𝑦𝑡, being the value of the outcome variable we want to predict at time t.
The value 𝑥𝑡−𝑘,𝑗 is the measurement of predictor j at time-lag 𝑘 from the current time t.

(7)

 𝑦𝑡,𝑥𝑡1, … , 𝑥𝑡𝑝   The data has the form for t = 1,2,…N observations

The model has the form

Time-Lag Lasso (rolling prediction)



Time-Lag Lasso (3)
Suo and Tibshirani (2015)

minimize
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𝛽𝑘𝑗  =  𝛽𝑘𝑗
+ − 𝛽𝑘𝑗

−  Write each and propose the ff. problem

 𝑥𝑡−1,1, 𝑥𝑡−2,1, … , 𝑥𝑡−𝐾,1|𝑥𝑡−1,2, 𝑥𝑡−2,2, … , 𝑥𝑡−𝐾,2|  … | 𝑥𝑡−1,𝑝 , 𝑥𝑡−2,𝑝 , 𝑥𝑡−𝐾,𝑝 . 

And solve by building a matrix Z of size 𝑁 ×  𝐾𝑝  , with K columns 
for each predictor.  Each row of matrix Z has the form

Each block corresponds to a predictor, lagged 1,2,..,K time units.  
There are N such rows.  Augment each predictor 𝑥𝑡−𝑘,𝑗 with  

𝑥𝑡−𝑘,𝑗
∗ = −𝑥𝑡−𝑘,𝑗.  Then apply block coordinate descent.  

(8)



Model Selection:
The tradeoff between bias and variance

Cross-Validation



Cross-validation and model selection

• Two hyper-parameters to tune: λ and k (no. of lags)
• Select the values of λ and k that yield the lowest cross validation error,
• Here cross-validation suggests a model with 8e+05, k = 2.



Coefficients of the selected model
• (+) for advanced economies: US, NZ
• (-) for emerging market economies: CN, INR

-> Reflecting “Risk-on” & “Risk-off” conditions?



Figure 3.2: 
Slope of India yield curve (June 2005-Sep 2016)



Figure 3.3: 
Slope of New Zealand yield curve (June 2005-Sep 2016)



Out-of-sample (Test set)
Time-Lag Lasso v. Actual Thai Exports

(Jun 2015 to Sep 2016)

Time-Lag Lasso
Coefficient of variation of RMSE = 0.077

+
Actual Exports

Time-Lag Lasso
𝑅𝑀𝑆𝐸 =   
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Out-of-sample (Test set)
ARIMA v. Actual Thai Exports

(Jun 2015 to Sep 2016)

ARIMA (2,1,1)
Coefficient of variation of RMSE = 0.097

Actual Exports

ARIMA
𝑅𝑀𝑆𝐸 =   
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Key takeaways (1)
• There are strong theoretical and empirical grounds for 

the use of global financial market data as predictors of 
Thai exports

• Time-Lag Lasso enables us to deal with time-series data 
and a large number of predictors

• The results seem to be make economic sense, while 
predictive accuracy is competitive with the traditional 
benchmark (ARIMA) 



Key takeaways (2)
• Key machine learning ingredients have a good potential for 

policy applications
– Regularization
– Cross-Validation

• Caveats 
– This is quite different from traditional statistics with focuses on hypothesis testing

– Coherent economic interpretations remain the most essential, choose your technique 
wisely

– Also, relationships can change 

– And, as with all models, Lucas critique applies (esp. if we base our policy decisions on 
the models) 


