

Ageing Population and Implications for Monetary Policy

By Sirawit Woramongkhon (Blink)

Age-dependency ratio and aging society

- Age-dependency ratio is a ratio of population in the labor force for to those not in thereof.
 - (model) it is the ratio of retired to working agents.
 - (interpretation) If its value is 60%, then there are 60 retirees for every 100 workers, on average.
- Aging societies are ones with high age-dependency ratio.

Literature Review

Kantur (2013): birth rate

- Developed two-period OLG and NK model.
- As people age, monetary policy will be less effective because retired agents

only consumes and are not much responsive to interest rate.

Wong (2015): working population

- Used mortgages data, and developed life-cycle model
- Young people are more responsive to interest rate shock

Acemoglu (2017): longer retirement period (suggestion)

- Used global empirical data and run OLS regression
- Age-dependency ratio is positively correlated with economic growth

Probable causes for these non-consensual results

- Age-dependency ratio rises as
 - average working time decreases, (W
 - fertility rate decreases,
 - average retirement period increases.

(Wong) (Kantur) (Acemoglu)

My model

- Incorporates working time, fertility rate, and retirement period.
- Overlapping Generation and New Keynesian model.
- Population in each generation is explained by life-cycle model.

Parameters and Preview of Results

Parameters (demographic)

Dependent variable

- α working period
- ω birth rate
- γ retirement period

- φ age-dependency ratio
- *r* reproductive to working agent ratio

$$\pi_t = \frac{\alpha\beta}{\alpha+r} E_t[\pi_{t+1}] + \frac{1 - (\alpha+r)\theta}{(\alpha+r)\theta} (1 - \alpha\beta\theta) \frac{1 - g}{1 - g + g\epsilon} \frac{4\sigma(1 - g) + 3\psi + 3g}{3(1 - g)} \tilde{y}_t$$

$$\tilde{y}_t = \frac{C^*}{1 + \varphi^*} \tilde{C}_t + \frac{G^* \varphi^*}{1 + \varphi^*} \tilde{G}_t + \left(\frac{\varphi^* (G^* - Y^*)}{1 + \varphi^*}\right) \tilde{\varphi}_t$$

Demography: Life-cycle model (person)

States of life

- 1. Worker (Normal).
- 2. Worker (Reproductive).
- 3. Retiree.

Assumptions

- 1. All newborns are workers.
- 2. Only workers are fertile.
- 3. Only retirees are subject to death.

Example of a life path

WN - WN - WR - WN - WR - R - R - R

Demography: Life-cycle model (society)

Law of motions

$$WN_{t+1} = \alpha(1-\omega)WN_t + \alpha(1-\omega)WR_t + WR_t$$
$$WR_{t+1} = \alpha\omega WN_t + \alpha\omega WR_t$$
$$RT_{t+1} = (1-\alpha)WN_t + (1-\alpha)WR_t + \gamma RT_t$$

Motions of age-dependency ratio

$$r_{t} = \frac{WR_{t}}{WN_{t} + WR_{t}} \qquad r_{t+1} = \frac{\alpha\omega}{\alpha + r_{t}}$$
$$\varphi_{t} = \frac{R_{t}}{WN_{t} + WR_{t}} \qquad \varphi_{t+1} = \frac{(1 - \alpha) + \gamma\varphi_{t}}{\alpha + r_{t}}$$

• Age-dependency ratio converges. In Thailand, it is about 39-40%.

Model

		γ		A D ratio		
α	ω		working	# kids	retired	A-D Tallo
$\frac{43}{44}$	$\frac{9}{215}$	$\frac{24}{25}$	45	1.8	25	39.54%

Basic New Keynesian Model

- Dynamic, stochastic, general equilibrium modeling.
 - Today's actions affect future environments. Hence, every agent behaves accordingly.
- Monopolistic Competition
 - Prices are adjustable. Firms set prices to maximize profit.
- Price rigidities (follow Calvo(1993))
 - Only a fraction of firms is able to readjust their prices in each period.
- Non-neutrality of monetary policy
 - Short-term change in interest rate is not matched by one-for-one change in expected inflation.

Economy: Household

Household

- Worker (consume, labor)
 - maximizes expected lifetime utility, considering that they will retire.
 - owns a firm and provides labor to the other firms
- Retiree (consume)
 - maximizes expected retirement-time utility.
 - does not provide labor
- Common economic activity among workers and retirees
 - Bond purchase
 - Bequest

Utility Maximization problems for household

- Worker's
 - Maximize the expected lifetime utility by choosing optimal C_k, N_k, D_k

$$\left[\sum_{k=0}^{\infty} \alpha^k \beta^k E_0 \left(\frac{C_k^{1-\sigma}}{1-\sigma} - \frac{N_k^{1+\psi}}{1+\psi}\right)\right] + \left[\sum_{k=1}^{\infty} \sum_{j=0}^{k-1} \alpha^j (1-\alpha) \gamma^{k-1-j} \beta^k E_0 \left(\frac{D_k^{1-\sigma}}{1-\sigma}\right)\right]$$

- This is subject to potential/possible period budget constraints

$$\int_{0}^{\Phi_{t}} P_{t}(j)C_{t}(j)dj + Q_{t}B_{t} = B_{t-1} + W_{t}N_{t} + AW_{t}$$
$$\int_{0}^{\Phi_{t}} P_{t}(j)D_{t}(j)dj + Q_{t}B_{t} = B_{t-1}$$

Utility Maximization problems for household

- Retiree's
 - Maximize the expected retired time utility by choosing optimal G_k

$$\sum_{k=0}^{\infty} \beta^k \gamma^k E_0\left(\frac{G_k^{1-\sigma}}{1-\sigma}\right)$$

- This is subject to period budget constraints.

$$\int_0^{\Phi_t} P_t(j)G_t(j)dj + Q_t B_t = B_{t-1}$$

Main results

- 1. Steady state values
- 2. Impulse response function

1. Equilibrium Interest Rate r*

Source	Work	Child	Retired	A-D ratio	r*	Change
Baseline	45	1.8	25	0.3954	0.339	-
Working	31.293	1.226	25		0.367	Rise
Fertility	45	0.664	25	0.7	0.374	Rise
Retired	45	1.8	66.713		0.329	Drop

<u>Warning!</u> The result should be interpreted *qualitatively*.

Intuition for the change in r* (in the model)

• Decrease in working period and birth rate (r* rises)

Source	Work	Child	Retired	A-D ratio	r*	Change
Baseline	45	1.8	25	0.3954	0.339	-
Working	31.293	1.226	25	0.7	0.367	Rise
Fertility	45	0.664	25	0.7	0.374	Rise

Less labor

- -> Less output
- -> Less income
- -> Less consumption

Intuition for the change in r* (in the model) (2)

Increase in retirement period (r* drops)

Source	Work	Child	Retired	A-D ratio	r *	Change
Baseline	45	1.8	25	0.3954	0.339	-
Retired	45	1.8	66.713	0.7	0.329	Drop

Workers save more to smooth their consumption

2. Monetary Policy Shock (Contractionary policy)

Baseline: age-dependency ratio = 39.54%

Alternative: age-dependency ratio = 70%

- 1. Decrease in working period
- 2. Decrease in birth rate
- 3. Increase in retirement period

Cumulative shock size: 100 basis points

Decrease in working time (blue=baseline, orange=alternative)

Decrease in birth rate (blue=baseline, orange=alternative)

Increase in retirement time (blue=baseline, orange=alternative)

Summary of results

The effect of population aging differs according to its source.

Source	r*	Responsiveness in the Inflation Dynamics	Effectiveness of monetary policy
Working time	Rise	Less	Less
Birth rate	Rise	None	Less*
Retirement time	Drop	More*	More*

* Indicates that it is not much

This explains why Wong, Kantur, and Acemoglu arrived at different conclusions.

Policy implications

To boost interest sensitivity, structural policies are required

- Increase working time and decrease retirement period
 - Increase retirement age
 - -65 years
 - Create more jobs for the elderly
 - -Japan's case

Caveats and further research

- Model
 - Constant probabilities of working, being reproductive, and remain retired.
 - Newborns are not calculated in the age-dependency ratio.
 - Equilibrium determinancy
- Further research
 - Asset bubbles (Gali)
 - Money transaction mechanism
 - Government's intervention
 - (Thailand's) potential source of population aging