Monetary Policy and Housing Bubbles: Some Evidence when House Price is Sticky

Vorada Limjaroenrat

August 17, 2017

Vorada Limjaroenrat

Monetary Policy and Housing Bubbles: Som

August 17, 2017 1 / 30

Motivation (I)

Asset Price Bubbles: House Price vs. Stock Price?

• Crisis generated by housing bubbles is arguably deeper and longer than those generated by other assets, e.g. stock.

(日) (四) (日) (日) (日)

Motivation (I)

Asset Price Bubbles: House Price vs. Stock Price?

- Crisis generated by housing bubbles is arguably deeper and longer than those generated by other assets, e.g. stock.
 - yet, the only explanation provided has to do with *credit* : credit growth, asset prices, leverage.
 - e.g. Mian and Sufi (2014), Jorda et al. (2012, 2015, 2016)
 - policy design: credit.

ヘロト 不得下 不足下 不足下

Motivation (II)

The role of Monetary Policy, more evidence?

- focus on output-inflation, unless threat to policy goal.
 - bubbles are hard to detect
 - e.g. Bernanke and Gertler (1999,2000), Kohn (2006)

(日) (四) (日) (日) (日)

Motivation (II)

The role of Monetary Policy, more evidence?

- focus on output-inflation, unless threat to policy goal.
 - bubbles are hard to detect
 - e.g. Bernanke and Gertler (1999,2000), Kohn (2006)
- post-crisis: bubbles increase the risk of financial crisis
 - this calls for the role of monetary policy.
 - e.g. Borio and Lowe (2001), Ceccheti (2000)

Motivation (II)

The role of Monetary Policy, more evidence?

- focus on output-inflation, unless threat to policy goal.
 - bubbles are hard to detect
 - e.g. Bernanke and Gertler (1999,2000), Kohn (2006)
- post-crisis: bubbles increase the risk of financial crisis
 - this calls for the role of monetary policy.
 - e.g. Borio and Lowe (2001), Ceccheti (2000)

Debate has been going on...and off... but empirical evidence has been surprisingly missing.

イロト 不得下 イヨト イヨト

• aggregate data, single market

・ロン ・四 ・ ・ ヨン ・ ヨン

- aggregate data, single market
- monetary policy shock SVAR : rent puzzle

$$\textbf{theory} : \frac{\partial q_{t+k}^F}{\partial \epsilon_t^m} < 0 \qquad \qquad \textbf{evidence} : \frac{\partial d_t}{\partial \epsilon_t^m} > 0$$

- aggregate data, single market
- monetary policy shock SVAR : rent puzzle

$$\begin{array}{l} { { { { theory}:} \; \frac{{\partial q_{t+k}^F}}{{\partial \epsilon _t^m}}} < 0 \qquad \qquad { { evidence:} \; \frac{{\partial d_t}}{{\partial \epsilon _t^m}}} > 0 \end{array} } \end{array}$$

 \Rightarrow this paper: more disaggregated data

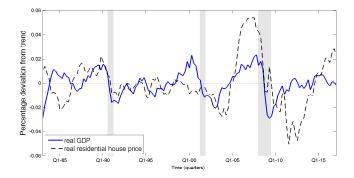
< 回 ト < 三 ト < 三 ト

- aggregate data, single market
- monetary policy shock SVAR : rent puzzle

$$\begin{array}{l} \text{theory}: \ \frac{\partial q_{t+k}^{F}}{\partial \epsilon_{t}^{m}} < 0 \qquad \qquad \text{evidence}: \ \frac{\partial d_{t}}{\partial \epsilon_{t}^{m}} > 0 \end{array}$$

 \Rightarrow this paper: more disaggregated data

monetary policy shock SVAR : house price is sticky


monetary model*evidence**fully flexible house pricesticky house price+ credit constraint

*e.g. Icaoviello (2005, 2006), Icaoviello and Neri (2005), Livio *et al.* (2013) **e.g. Livio *et al.* (2013), Duarte and Dias (2015)

(日) (同) (日) (日) (日)

Sticky House Price? (I)

• House price is always assumed to be fully flexible.

Sticky House Price? (II)

• AR(1) model: $dp_t = \xi dp_{t-1} + \epsilon_t$, ϵ_t is i.i.d. with sd. σ_ϵ

	real residential house price		real stock price	
Country	AR(1) coeff.	Std. of	AR(1) coeff.	Std. of
		innovations		innovations
	ξ	σ_ϵ	ξ	σ_ϵ
U.S.	0.69 (0.05)	0.88	0.31 (0.07)	1.67
Japan	0.76 (0.05)	1.07	0.36 (0.07)	1.70
Germany	0.63 (0.06)	0.63	0.37 (0.07)	1.81
France	0.60 (0.06)	2.20	0.35 (0.07)	2.14
Italy	0.83 (0.04)	0.80	0.37 (0.07)	2.22
UK	0.67 (0.06)	2.53	0.26 (0.07)	2.07
Canada	0.77 (0.05)	1.86	0.28 (0.07)	1.75
Spain	0.42 (0.07)	2.12	0.29 (0.09)	2.26
Finland	0.71 (0.05)	2.01	0.38 (0.07)	2.96
Ireland	0.64 (0.06)	2.03	0.38 (0.07)	2.26
Norway	0.65 (0.06)	1.90	0.25 (0.09)	2.66
NZ	0.52 (0.06)	2.04	0.19 (0.07)	1.75
Sweden	0.83 (0.04)	1.46	0.37 (0.07)	2.71
Switzerland	0.75 (0.05)	1.35	0.29 (0.07)	1.89

Table: Fit first difference of log real asset price to the AR(1) model $\overrightarrow{AR}(1)$

Vorada Limjaroenrat

3.5 3

Sticky House Price? (III)

- sticky house price is widely accepted, but in monetary economics.
- potential explanation for deep and long-recovery bust.
- there are frictions in housing markets

イロト 不得下 イヨト イヨト

Sticky House Price? (III)

- sticky house price is widely accepted, but in monetary economics.
- potential explanation for deep and long-recovery bust.
- there are frictions in housing markets

Friction in housing markets:

Handbook of Macroeconomics (new chapter on housing; 2016) (I) collateral constraint (II) incomplete markets \rightarrow dual role of housing (own vs. rent) (III) transaction costs

イロト 不得下 イヨト イヨト

Sticky House Price? (III)

- sticky house price is widely accepted, but in monetary economics.
- potential explanation for deep and long-recovery bust.
- there are frictions in housing markets

Friction in housing markets:

Handbook of Macroeconomics (new chapter on housing; 2016) (I) collateral constraint (II) incomplete markets \rightarrow dual role of housing (own vs. rent) (III) transaction costs

⇒ this paper : model explicitly duality in housing markets.
 (1) use more disaggregated data.
 (11) consistent with theoretical work, but unchallenged empirically.

イロト 不得下 イヨト イヨト 三日

Theoretical Works: Duality in Housing Markets

• literature: preference for housing services, housing tenure choice.

• Henderson and Ioannides (1983)

- high preference for housing services: consume (rent)
- low preference for housing services: invest (owner-occupied).

• Huber (2017a, 2017b)

- OLG model + duality in housing markets.
- study the relationship of "preference for housing services" and "housing bubbles"
- lower preference for housing services \rightarrow more vulnerable to bubbles.

・ロト ・ 一 ・ ・ ヨト ・ ヨト

Research Questions

- Is there heterogeneity in homeowners' vs. renters' residential housing market?
- Are both market similarly vulnerable to housing bubbles, or one is more bubble-prone than the other?
- Can we better understand rent puzzle from duality in housing markets?
- Can monetary policy influence housing bubbles dynamics? in which direction?

イロト 不得下 イヨト イヨト

Theoretal Issue: Rational Bubbles

Observed house price

$$Q_t = Q_t^F + Q_t^B$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theoretal Issue: Rational Bubbles

Observed house price

$$Q_t = Q_t^F + Q_t^B$$

• Dynamic response of house price to interest rate shock

1

$$\frac{\partial q_{t+k}}{\partial \epsilon_t^m} = (1 - \gamma_{t-1}) \frac{\partial q_{t+k}^F}{\partial \epsilon_t^m} + \gamma_{t-1} \frac{\partial q_{t+k}^B}{\partial \epsilon_t^m}$$
where $\gamma_t \equiv Q_t^B / Q_t$

Theoretal Issue: Rational Bubbles

Observed house price

$$Q_t = Q_t^F + Q_t^B$$

• Dynamic response of house price to interest rate shock

$$\frac{\partial q_{t+k}}{\partial \epsilon_t^m} = (1 - \gamma_{t-1}) \frac{\partial q_{t+k}^F}{\partial \epsilon_t^m} + \gamma_{t-1} \frac{\partial q_{t+k}^B}{\partial \epsilon_t^m}$$

where $\gamma_t \equiv Q_t^B/Q_t$

• Theory suggests :

$$\frac{\partial q_{t+k}^{F}}{\partial \epsilon_{t}^{m}} < 0$$

• Conventional view :

$$rac{\partial q^{\mathcal{B}}_{t+k}}{\partial \epsilon^{m}_{t}} < 0
ightarrow rac{\partial q_{t+k}}{\partial \epsilon^{m}_{t}} < 0$$

Vorada Limjaroenrat

Monetary Policy and Housing Bubbles: Som

10 / 30

・ 同 ト ・ ヨ ト ・ ヨ ト

Empirical Setup

$$rac{\partial q_{t+k}}{\partial \epsilon_t^m} = (1 - \gamma_{t-1}) rac{\partial q_{t+k}^F}{\partial \epsilon_t^m} + \gamma_{t-1} rac{\partial q_{t+k}^B}{\partial \epsilon_t^m}$$

where $\gamma_t \equiv Q_t^B / Q_t$

Monetary Policy and Housing Bubbles: Som

3

<ロ> (日) (日) (日) (日) (日)

11 / 30

Empirical Setup

$$\frac{\partial q_{t+k}}{\partial \epsilon_t^m} = (1 - \gamma_{t-1}) \frac{\partial q_{t+k}^F}{\partial \epsilon_t^m} + \gamma_{t-1} \frac{\partial q_{t+k}^B}{\partial \epsilon_t^m}$$
where $\gamma_t \equiv Q_t^B / Q_t$

• baseline \rightarrow simple SVAR.

3

Empirical Setup

$$\frac{\partial q_{t+k}}{\partial \epsilon_t^m} = (1 - \gamma_{t-1}) \frac{\partial q_{t+k}^F}{\partial \epsilon_t^m} + \gamma_{t-1} \frac{\partial q_{t+k}^B}{\partial \epsilon_t^m}$$

where $\gamma_t \equiv Q_t^B/Q_t$

- baseline \rightarrow simple SVAR.
- γ_t is time-varying \rightarrow **time-varying SVAR**.

- 3

イロト 不得下 イヨト イヨト

Empirical Model (I)

 x_t is a vector of $[\triangle y_t, \triangle p_t, \triangle d_t, \triangle p_t^c, i_t, \triangle p_t^h]$

• simple SVAR:

$$x_{t} = A_{0} + A_{1}x_{t-1} + A_{2}x_{t-2} + \dots + A_{p}x_{t-p} + u_{t}$$
$$E_{t}\{u_{t}u_{t-k}'\} = \Sigma, \ u_{t} = S\epsilon_{t}$$

3

(日) (周) (三) (三)

Empirical Model (I)

 x_t is a vector of $[\triangle y_t, \triangle p_t, \triangle d_t, \triangle p_t^c, i_t, \triangle p_t^h]$

• simple SVAR:

$$x_t = A_0 + A_1 x_{t-1} + A_2 x_{t-2} + \dots + A_p x_{t-p} + u_t$$

$$E_t\{u_tu'_{t-k}\}=\Sigma, \ u_t=S\epsilon_t$$

• time-varying SVAR:

$$x_{t} = A_{0,t} + A_{1,t}x_{t-1} + A_{2,t}x_{t-2} + \dots + A_{p,t}x_{t-p} + u_{t}$$
$$E_{t}\{u_{t}u_{t-k}'\} = \sum_{t}, \ u_{t} = S_{t}\epsilon_{t}$$

3

(日) (周) (三) (三)

Empirical Model (II): TVC-SVAR Law of Motions

• time-varying coefficient $\rightarrow \text{Let } \theta_t = vec(A'_t)$

$$\theta_t = \theta_{t-1} + \omega_t, \omega_t \sim N(0, \Omega)$$

 \rightarrow coeff. to be estimated: $\{\theta^T, \Omega\}$

3

▲ 同 ▶ → 三 ▶

Empirical Model (II): TVC-SVAR Law of Motions

• time-varying variance-covariance matrix

$$ightarrow$$
 Let $\Sigma_t \equiv F_t D_t F_t'$

 F_t is lower triangular matrix with ones on the main diagonal D_t is a diagonal matrix.

Define $\sigma_t = vec(D_t^{1/2})$ and $\phi_{i,t} = vec(F_t^{-1})$

$$\begin{aligned} \log \sigma_t &= \log \sigma_{t-1} + \zeta_t, \zeta_t \sim \mathcal{N}(0, \Psi) \\ \phi_{i,t} &= \phi_{i,t-1} + \nu_{i,t}, \nu_t \sim \mathcal{N}(0, \Xi) \end{aligned}$$

 \rightarrow coeff. to be estimated: $\{\sigma^T, \phi^T, \Psi_i, \Xi\}$

• special case: $\Omega = 0$, $\Xi_i = 0$, $\Psi = 0 \rightarrow$ simple SVAR

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Empirical Model (III): Data and Estimation Method

• Data: U.S. data over the sample 1983Q1-2017Q1.

3

Empirical Model (III): Data and Estimation Method

- Data: U.S. data over the sample 1983Q1-2017Q1.
- Identification: monetary policy shock (CEE; 2005):
 - i_t monetary policy instrument
 - S and S_t are lower-triangular, for all t.

 x_t is a vector of $[\triangle y_t, \triangle p_t, \triangle d_t, \triangle p_t^c, i_t, \triangle p_t^h]$

- $(riangle y_t, riangle p_t, riangle d_t, riangle p_t^c)$ are predetermined with respect to i_t
- monetary policy do not response contemporaneously to house price.

イロト イポト イヨト イヨト 二日

Empirical Model (III): Data and Estimation Method

- Data: U.S. data over the sample 1983Q1-2017Q1.
- Identification: monetary policy shock (CEE; 2005):
 - i_t monetary policy instrument
 - S and S_t are lower-triangular, for all t.

 x_t is a vector of $[\triangle y_t, \triangle p_t, \triangle d_t, \triangle p_t^c, i_t, \triangle p_t^h]$

- $(riangle y_t, riangle p_t, riangle d_t, riangle p_t^c)$ are predetermined with respect to i_t
- monetary policy do not response contemporaneously to house price.
- Estimation of TVC-SVAR: Bayesian, Gibbs sampling. e.g. Primiceri (2005), Gali and Gambetti (2015).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Duality in Housing Dividends (I): Setup

• compare SVAR (TVC-SVAR) for homeowners vs. renters

 x_t is a vector of $[\triangle y_t, \triangle p_t, \triangle d_t, \triangle p_t^c, i_t, \triangle p_t^h]$

- 3

イロト 不得下 イヨト イヨト

Duality in Housing Dividends (I): Setup

• compare SVAR (TVC-SVAR) for homeowners vs. renters

 x_t is a vector of $[\triangle y_t, \triangle p_t, \triangle d_t, \triangle p_t^c, i_t, \triangle p_t^h]$

• aggregate housing dividend:

$$d_t = \omega p_t^{oer} + (1 - \omega) p_t^{rent}$$

 $\omega =$ share of household with low preference for housing services.

イロト 不得下 イヨト イヨト

Duality in Housing Dividends (I): Setup

• compare SVAR (TVC-SVAR) for homeowners vs. renters

 x_t is a vector of $[\triangle y_t, \triangle p_t, \triangle d_t, \triangle p_t^c, i_t, \triangle p_t^h]$

• aggregate housing dividend:

$$d_t = \omega p_t^{oer} + (1 - \omega) p_t^{rent}$$

 ω = share of household with low preference for housing services. **model for homeowners**: low preference for housing services $\omega = 1, d_t = p_t^{oer}$ **model for renters**: high preference for housing services $\omega = 0, d_t = p_t^{rent}$

3. Empirical Setup

Duality in Housing Dividends (II): Data

Monetary Policy and Housing Bubbles: Som

(日) (四) (王) (王) (王)

Duality in Housing Dividends (II): Data

- composition of U.S. rent inflation (*sources: BLS*):
 - 1. owners' equivalent rent (OER; p_t^{oer}):

24% of CPI basket

2. **tenant rent** (p_t^{rent}) : 6% of CPI basket

3. others:

3% of CPI basket

イロト イポト イヨト イヨト

Result for Homeowners

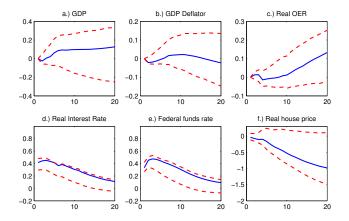


Figure: SVAR cumulated IRF from monetary policy shock for **homeowners** (low preference for housing services)

Result for Renters

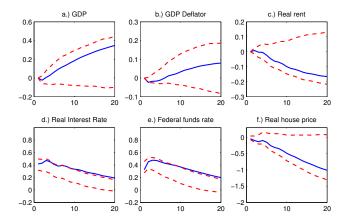
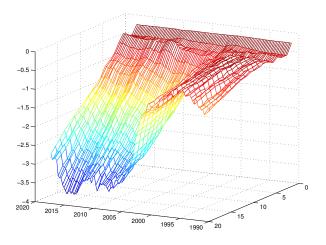



Figure: SVAR cumulated IRF from monetary policy shock for **homeowners** (low preference for housing services)

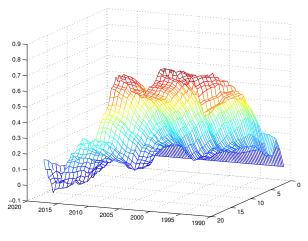
5. Results: TVC-SVAR

Result for Homeowners (I)

(a) Real house price

Vorada Limjaroenrat

Monetary Policy and Housing Bubbles: Som

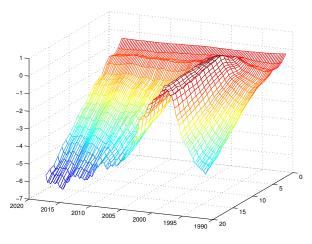

August 17, 2017

э

___ ▶

5. Results: TVC-SVAR

Result for Homeowners (II)

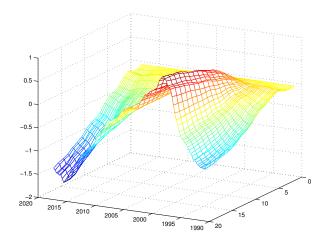

(b) Real OER

Vorada Limjaroenrat

Monetary Policy and Housing Bubbles: Som

August 17, 2017

Result for Renters (I)


(a) Real house price

Vorada Limjaroenrat

Monetary Policy and Housing Bubbles: Som

August 17, 2017

Result for Renters (II)

(b) Real tenant rent

Vorada Limjaroenrat

Monetary Policy and Housing Bubbles: Som

August 17, 2017

A (10) F (10)

Preference for Housing Service and Bubbles (I)

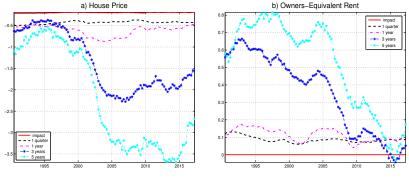


Figure: Homeowners' market.

August 17, 2017

3

24 / 30

(日) (同) (三) (三)

5. Results: TVC-SVAR

Preference for Housing Service and Bubbles (II)

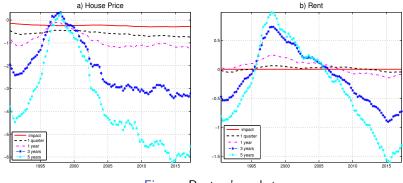


Figure: Renters' market.

Vorada Limjaroenrat

Monetary Policy and Housing Bubbles: Som

August 17, 2017

(日) (周) (三) (三)

25 / 30

3

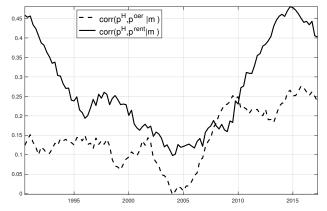
Preference for Housing Service and Bubbles

$$\frac{\partial q_{t+k}}{\partial \epsilon_t^m} = (1 - \gamma_{t-1}) \frac{\partial q_{t+k}^F}{\partial \epsilon_t^m} + \gamma_{t-1} \frac{\partial q_{t+k}^B}{\partial \epsilon_t^m}$$

where $\gamma_t \equiv Q_t^B/Q_t$

• Homeowners' markets are more bubble-prone.

Vorada Limjaroenrat


Monetary Policy and Housing Bubbles: Som

3

26 / 30

A (1) > A (2) > A

Conditional Correlation

Time-varying correlation conditional on monetary policy shock

Rent Puzzle?

• Definition of fundamental

$$Q_t^F \equiv E_t \Big\{ \Big(\prod_{j=0}^{k-1} (1/R_{t+j}) \Big) D_{t+k} \Big\}.$$

log linearizing this equation would become:

$$q_t^F = const + \sum_{k=1}^{\infty} \Lambda^k [(1 - \Lambda) E_t \{ d_{t+k+1} \} - E_t \{ r_{t+k} \}]$$

thus,

$$\frac{\partial q_{t+k}^{F}}{\partial \epsilon_{t}^{m}} = \sum_{j=0}^{\infty} \Lambda^{j} \Big((1-\Lambda) \frac{\partial d_{t+k+j+1}}{\partial \epsilon_{t}^{m}} - \frac{\partial r_{t+k+j}}{\partial \epsilon_{t}^{m}} \Big)$$

э

(日) (同) (日) (日) (日)

(1) significant heterogeneity between market for homeowners and renters.

- especially when considering bubbles.

3

(日) (同) (日) (日) (日)

(1) significant heterogeneity between market for homeowners and renters.

- especially when considering bubbles.

(2) renters' market is less vulnerable to bubbles.

- high preference for housing services \rightarrow less vulnerable to housing bubbles
- policy design: influence preference for housing service?

< 回 ト < 三 ト < 三 ト

(1) significant heterogeneity between market for homeowners and renters.

- especially when considering bubbles.

(2) renters' market is less vulnerable to bubbles.

- high preference for housing services \rightarrow less vulnerable to housing bubbles

- policy design: influence preference for housing service?

(3) rent puzzle occurs mainly in homeowners' market.

< 回 ト < 三 ト < 三 ト

(1) significant heterogeneity between market for homeowners and renters.

- especially when considering bubbles.

(2) renters' market is less vulnerable to bubbles.

- high preference for housing services \rightarrow less vulnerable to housing bubbles
- policy design: influence preference for housing service?
- (3) rent puzzle occurs mainly in homeowners' market.
- (4) monetary policy can influence bubbles dynamics.
- tightening monetary policy bridge the gap of price-rent ratio in homeowners' market.
- loosening monetary policy could pose a risk to housing market.

イロッ イボッ イヨッ イヨッ 二日

Extensions

- counterfactual: allowing for alternative calibrations of endogenous policy response.
 - alternative level of house price coefficients in interest rate rule.