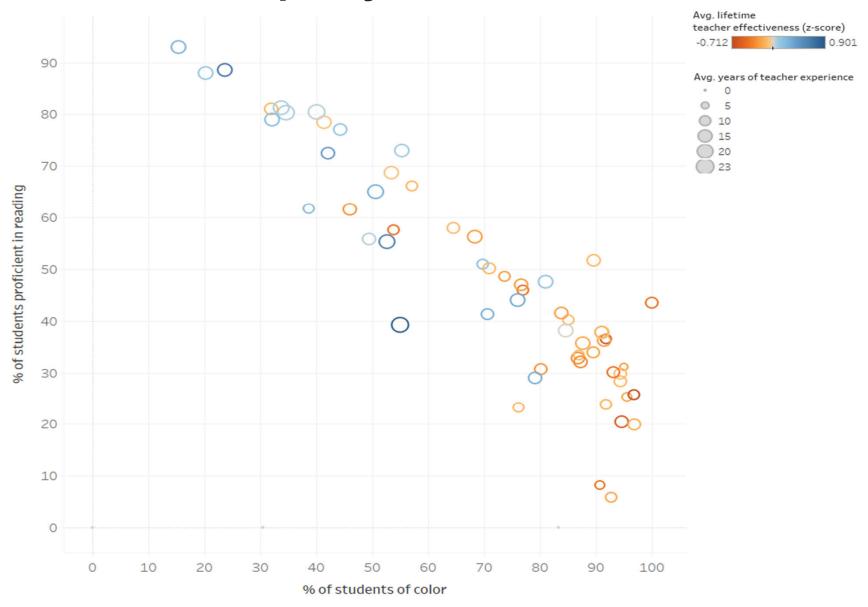
School & Teacher Preferences: Evidence from a Multi-stage Internal Labor Market

Napat Jatusripitak, Elton Mykerezi, Aaron Sojourner & Kristine West PIER November 2017

Research questions

How much do teachers value school characteristics? How much do schools value teacher characteristics? Implications for policy?

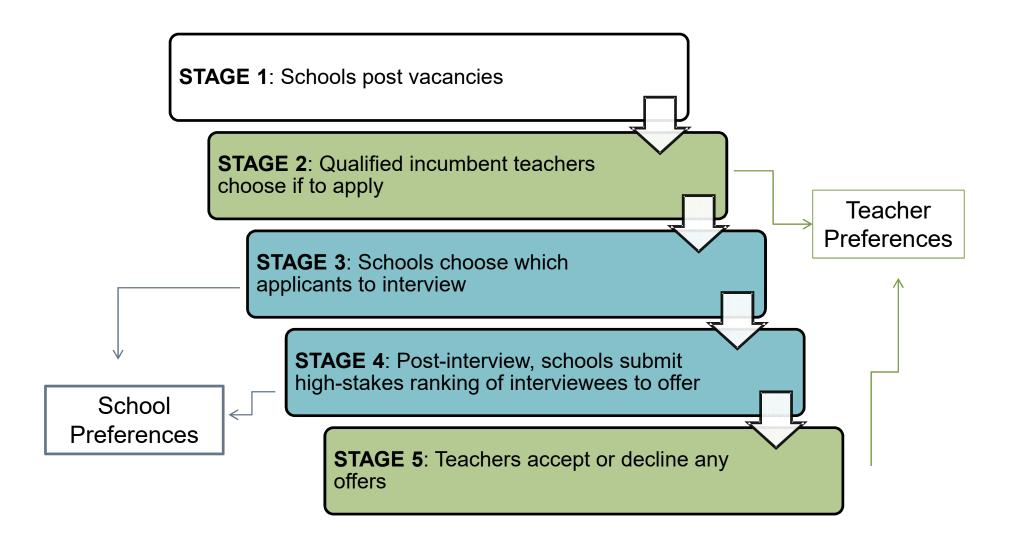

Approach

Analyze choices made in district internal labor market, ~2M teacher & ~12K school decisions.

Findings

Pay premium to make teachers indifferent is modest. Evidence of dmgr discrimination by schools.

Educational Inequality

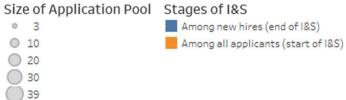


Motivation

This topic is economically relevant for four reasons:

- 1. School districts are giving schools more hiring autonomy and reducing the importance of seniority.
 - New York City (Boyd et al. 2011)
 - North Carolina (Ahn 2015)
 - Minneapolis (this study)
- 2. When given the opportunity, schools can actually identify and hire effective teachers (Boyd et al. 2011).
- 3. Effective teachers move away from hard-to-staff schools to schools with lower proportions of disadvantaged students and a higher level of achievement (Goldhaber et al. 2007).
- 4. There is evidence of better long-run outcomes for students taught by more effective teachers (Chetty et al. 2011; Hanushek's early works).

C1: Can see detailed choice process



C2: Observe new teacher & school char.

- Existing evidence [Boyd et al. 2011,2013, Bonhomme et al. 2015]
 - Teachers: demographics, pre-hire scores and experience
 - Schools: student demogr & achievement, teacher demogr, pupil:teacher ratio
- Our paper
 - Teachers: + multiple measures of effectiveness, residence address
 - Schools: + variation in pay within district across schools over time
- New leverage
 - Heterogeneity in teacher preferences by effectiveness
 - Monetize school characteristics (cost of time & variation in pay)
 - School preferences for effectiveness & teacher demogr | effectiveness

Average Applicant Effectiveness as a Function of Receiving-school Characteristics by Stage of I&S (2013-2015)

Teacher preferences

Y: teacher decides to 1(apply) or 1(accept)

X: schools' characteristics, k receiving & j sending

T: teacher characteristics

Year and round fixed effects.

AS3

T1 models: no interactions or teacher fixed effects

•
$$Pr(Y_{ijky} \mid X_{iky}, X_{ijy}, T_{iy},) = \frac{e^a}{1+e^a}$$

•
$$a = (X_{iky} - X_{ijy}) \propto_1 + T_{iy} \propto_2 + \delta_y + \delta_r + \epsilon_{ijky}$$

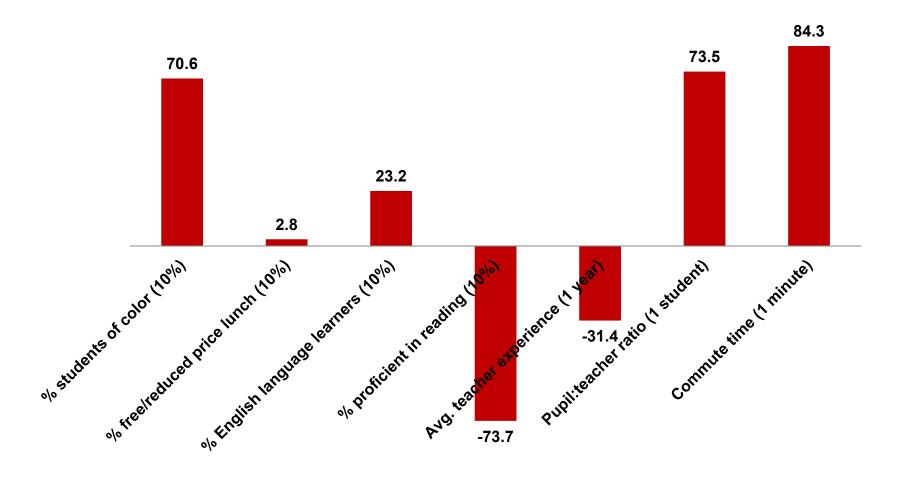
T2: T1 + interactions

T3: T1 + teacher-fixed effects

T4: + both

Slide 8

Be clear about the identifying conditions, unobservable determinants uncorrelated with observable ones. Aaron Sojourner, 10/25/2017AS3


Marginal Rates of Substitution

We can use the estimated preferences to do trade-off calculation among school characteristics

- MRS = the rate at which a teacher is ready to face a one unit increase in one school characteristic in exchange for another school characteristic while maintaining the same level of utility
- $U_i = \beta(X_{ky} X_{jy}) + \epsilon_{ijky}$
- $U_i = \beta D_{jky} + \epsilon_{ijky}$
- $MRS_{D1,D2} = \frac{\beta_1}{\beta_2}$

Changes in Pay Required to Cancel out Differences in School Characteristics

(Receiving School's minus Sending-School's)

AS5 Reorder these.

Start with all student chars together (of color, FRPL, ELL, achievement (is this average or % prof)... and limit use of acronyms).

Then, add school policy chars (avg tchr exp, pupil:teacher ratio).

Omit high-priority school, or move to near end.

Finish with commute time.

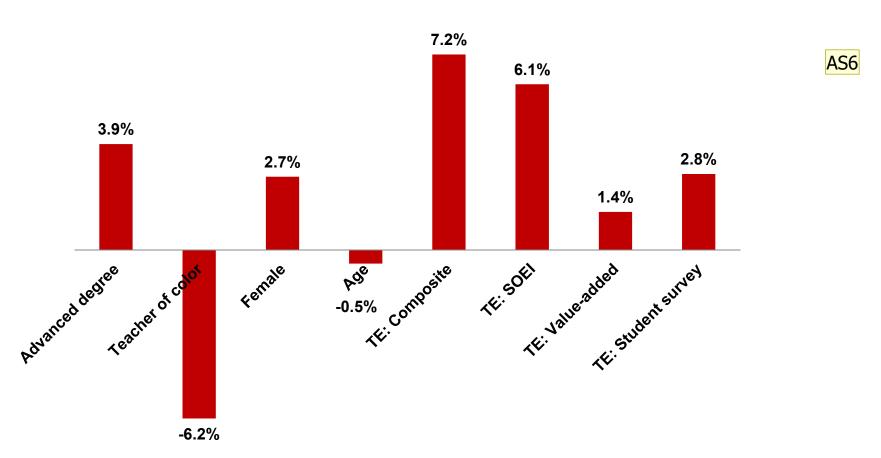
Aaron Sojourner, 10/25/2017

Attracting Different Types of Teachers from Top to Bottom Quintile Schools

Type of Teacher	Change Required at Bottom Quintile School			
	Pay (method 1)	Pay (method 2)	Pupil-Teacher Ratio	
Average	\$746	\$658	-17.4	
teacher	(354,1264)	(387,880)	(-19.9,-14.0)	
Effectiveness 1SD above average	\$1,424	\$1,269	-25.4	
	(1203,1717)	(1199,1354)	(-27.2,-24.0)	

School-Preferences Estimation

Rank-ordered logistic regression


•
$$Pr(R_{isjy}|T_{iy},\eta_{sjy}) = \frac{e^b}{1+e^b}$$

•
$$b = T_{iy}\beta_1 + \eta_{sjy} + \epsilon_{ijsy}$$

- Rank = 1 is the highest rank. Censored at 0.
- Choice set is clearly defined.
- Standard errors clustered at the hiring-school level

School Preferences Results (pooled)

(% change in the probability that the average teacher receives a higher ranking)

*TE → Teacher Evaluations

Can you make a bar chart for this like you did for the other? Do one with the 3 measures of effectiveness separately.

Aaron Sojourner, 10/25/2017

School Preferences Results (Separate)

- Age, gender, and effectiveness ratings matter <u>more</u> in the interview stage
- Race equally matters in the two stages
- Advanced degree, experience, and history of school hopping matter <u>less</u> in the interview stage
- Schools exhibit strong distaste for automatic interview candidates

Slide 14

AS7

Is this still true? Aaron Sojourner, 10/25/2017

School Preferences Results

	(S1A)	(S1B)	(S2A)	(S2B)
Ago	-0.020693***	-0.020704***	-0.020690***	-0.020700***
Age	(0.002759)	(0.002747)	(0.002755)	(0.002744)
Female	0.104905**	0.109752**	0.104691**	0.109528**
	(0.051508)	(0.050946)	(0.051576)	(0.051025)
Teacher of color	-0.247915***	-0.246061***	-0.219973	-0.215099
reacties of color	(0.059363)	(0.059392)	(0.154204)	(0.156329)
Holding on odygogod dogge	0.158620***	0.154168***	0.158630***	0.154174***
Holding an advanced degree	(0.057105)	(0.056724)	(0.057103)	(0.056726)
Mid-career (4-10 years)	0.053051	0.060893	0.053122	0.060966
wid-career (4-10 years)	(0.069116)	(0.069605)	(0.068973)	(0.069457)
Late-career (over 10 years)	0.148065*	0.149136*	0.148398*	0.149485*
	(0.081075)	(0.081153)	(0.081000)	(0.081056)
Early offers candidate	0.091804	0.081764	0.091978	0.081960
	(0.149591)	(0.151511)	(0.149747)	(0.151662)
Automotically intensions	1.296517***	1.296620***	1.296495***	1.296598***
Automatically interview	(0.053095)	(0.053104)	(0.053090)	(0.053101)
Average number of years at all	0.072413***	0.078991***	0.072336***	0.078901***
previous schools	(0.018389)	(0.017728)	(0.018357)	(0.017689)
TE: SOE! (= 20072)	0.243779***		0.243753***	
TE: SOEI (z-score)	(0.058059)		(0.058038)	
TE: Student curvey (7 coore)	0.110648*		0.110824*	
TE: Student survey (z-score)	(0.057088)		(0.056895)	
TE: Value added (= acces)	0.053806		0.053626	
TE: Value-added (z-score)	(0.066413)		(0.066179)	
TE: Composito (7 score)		0.289941***		0.289990***
TE: Composite (z-score)		(0.055820)		(0.055839)
Teacher of color X				
% student of color at receiving school			-0.000386	-0.000428
Observations	12,427	12,427	12,427	12,427

Conclusions

- Sorting patterns stem from teacher preferences and not counteracted by school preferences
- Possible ways forward
 - Modest pay increase would induce indifference and is more cost-effective than using pupil:teacher ratio reductions
 - Supplying information about applicants at the resumescreening stage so hard-to-staff schools don't miss out on quality candidates
 - Modify the interview rule that currently favors senior teachers
 - Change student demographics