Motivation	Model and Data Specifications	Empirical Results	Forecasting	Conclusion and Ongoing Work
000000	000	000000	0000	000000

Extracting Trend Inflation from Disaggregated Data

Pym Manopimoke Vorada Limjaroenrat

Puey Ungphakorn Institute for Economic Research Bank of Thailand

28 June 2018

Motivation ••••••	Model and Data Specifications	Empirical Results	Forecasting 0000	Conclusion and Ongoing Work
Trend I	nflation			

- Inflation that is within the control of monetary policy is "trend inflation" which is a *p*ersistent and *g*eneral process
- The challenge towards estimating trend inflation is
 - Extracting common price movements across goods
 - Disentangling persistent from temporary price movements and outliers

Motivation	Model and Data Specifications	Empirical Results	Forecasting	Conclusion and Ongoing Work
00000	000	000000	0000	000000

Measures of Trend Inflation

Motivation 00000	Model and Data Specifications	Empirical Results	Forecasting	Conclusion and Ongoing Work
How to	Estimate Tren	d Inflation?		

Two main approaches:

- (1) Exclusion Approach
 - Core inflation measures eg. CPI excluding food and energy
 - Asymmetric Trimmed Mean
 - \rightarrow Ad hoc and rigid e.g. fixed weights
- (2) Univariate Smoothing Approaches
 - Moving average of past inflation (Atkeson and Ohanian, 2001)
 - Unobserved components models (Stock and Watson, 2007)

 \rightarrow Overlooks information in disaggregated data

Motivation 000000	Model and Data Specifications	Empirical Results	Forecasting 0000	Conclusion and Ongoing Work
This Pa	per			

 \rightarrow Extracts trend inflation based on the Multivariate Unobserved Components Stochastic Volatility Outlier-Adjusted (MUCSVO) model of Stock and Watson (2015)

Motivation ○○○○●○	Model and Data Specifications	Empirical Results	Forecasting 0000	Conclusion and Ongoing Work
Researc	h Questions			

- What is the role of permanent versus transitory shocks in driving inflation rate movements in Thailand? Has it changed over time?
- Can information in sectoral inflation series help measure trend inflation?
- Has the influence of each sector changed over time? How do the weights compare to expenditure share in the consumption basket?
- What is the 'best' trend inflation measure? Is it a good forecast of future headline inflation?

Motivation ○○○○○●	Model and Data Specifications	Empirical Results	Forecasting 0000	Conclusion and Ongoing Work
Roadma	ар			

- Model specification
- Data and estimation methodology
- Empirical results
- Forecasting exercise
- Conclusion
- Ongoing work

Motivation 000000	Model and Data Specifications	Empirical Results	Forecasting 0000	Conclusion and Ongoing Work

Models: (1) UCSVO

Univariate Unobserved Components with Stochastic Volatility Outlier-Adjusted

$$\pi_{t} = \tau_{t} + \epsilon_{t}$$
$$\tau_{t} = \tau_{t-1} + \sigma_{\Delta\tau,t} \times \eta_{\tau,t}$$
$$\epsilon_{t} = \sigma_{\epsilon,t} \times s_{t} \times \eta_{\epsilon,t}$$
$$\Delta \ln(\sigma_{\Delta\tau,t}^{2}) = \gamma_{\Delta\tau} v_{\Delta\tau,t}$$
$$\Delta \ln(\sigma_{\epsilon,t}^{2}) = \gamma_{\epsilon} v_{\epsilon,t}$$

The UCSV model is an IMA(1,1) model i.e. filtered trend estimates follow exponential smoothing:

$$\tau_t = (1 - \theta_t) \sum_{i=0}^{\infty} \theta_t^i \pi_{t-i}$$

 Motivation
 Model and Data Specifications
 Empirical Results
 Forecasting
 Conclusion and Ongoing Work

 000000
 000
 00000
 00000
 00000
 00000

Models: (2) MUCSVO

Multivariate Unobserved Components with Stochastic Volatility Outlier-Adjusted

$$\begin{aligned} \pi_{i,t} &= \alpha_{i,\tau,t} \tau_{c,t} + \alpha_{i,\epsilon,t} \epsilon_{c,t} + \tau_{i,t} + \epsilon_{i,t} \\ \tau_{c,t} &= \tau_{c,t-1} + \sigma_{\Delta\tau,c,t} \times \eta_{\tau,c,t} \\ \epsilon_{c,t} &= \sigma_{\epsilon,c,t} \times s_{c,t} \times \eta_{\epsilon,c,t} \\ \tau_{i,t} &= \tau_{i,t-1} + \sigma_{\Delta\tau,i,t} \times \eta_{\tau,i,t} \\ \epsilon_{i,t} &= \sigma_{\epsilon,i,t} \times s_{i,t} \times \eta_{\epsilon,i,t} \\ \alpha_{i,\tau,t} &= \alpha_{i,\tau,t-1} + \lambda_{i,\tau} \zeta_{i,\tau,t} \\ \alpha_{i,\epsilon,t} &= \alpha_{i,\epsilon,t-1} + \lambda_{i,\epsilon} \zeta_{i,\epsilon,t} \\ \Delta ln(\sigma_{\Delta\tau,c,t}^2) &= \gamma_{\Delta\tau,i} v_{\Delta\tau,i,t}, \Delta ln(\sigma_{\epsilon,i,t}^2) = \gamma_{\epsilon,i} v_{\epsilon,i,t} \end{aligned}$$

The overall trend is the sum of the common trend and the (share-weighted) individual trends ie. $\tau_t = \sum_{i=1}^{10} w_{it}(\alpha_{i,\tau,t}\tau_{c,t} + \tau_{i,t})$

Motivation 000000	Model and Data Specifications	Empirical Results	Forecasting 0000	Conclusion and Ongoing Work
Data a	nd Estimation			

- CPI and sectoral inflation data over 1995Q2 2018Q1.
- Sectoral series include: (i) raw food (ii) food in core (iii) clothing (iv) housing excl. gas & electricity (v) healthcare (vi) transport excl. fuel (vii) recreation & education (viii) tobacco & alcohol (ix) gas & electricity (x) fuel
- Estimate the models via Bayesian methods using MCMC methods

 \rightarrow Smoothed estimates are the posterior mean using information from the full data set

Motivation 000000	Model and Data Specifications	Empirical Results •00000	Forecasting 0000	Conclusion and Ongoing Work
Trand F	Ectimator			

Motivation	Model and Data Specifications	Empirical Results	Forecasting	Conclusion and Ongoing Work
000000	000	00000	0000	000000

UCSVO Component Volatilities

 Motivation
 Model and Data Specifications
 Empirical Results
 Forecasting
 Conclusion and Ongoing Work

 000000
 000
 0000
 0000
 00000
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 0000000
 0000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 00000000

MUCSVO Common Component Volatilities

MUCSVO Implied Weights

Motivation 000000	Model and Data Specifications	Empirical Results	Forecasting 0000	Conclusion and Ongoing Work
Three S	Sector Weights			

Motivation 000000	Model and Data Specifications	Empirical Results	Forecasting 0000	Conclusion and Ongoing Work

Accuracy of Trend Estimates

Table 3: Average width of 90 percent posterior intervals for trend inflation

Inflation Trend	1995Q2-1999Q4	2001Q1-2006Q4	2009Q1-2015Q2			
UCSVO						
CPI-all	3.91	4.92	3.98			
CPIxE	2.99	3.77	3.09			
CPIxFE	2.01	2.50	1.63			
MUCSVO (3 components)						
CPI-all	2.98	3.05	2.83			
CPIxE	1.55	1.72	2.16			
CPIxFE	1.07	1.29	1.60			
MUCSVO (10 components)						
CPI-all	1.98	1.73	1.93			
CPIxE	1.77	1.36	1.40			
CPI×FE	1.39	1.03	0.77			

Motivation 000000	Model and Data Specifications	Empirical Results	Forecasting ●000	Conclusion and Ongoing Work
Forecas	ting Exercise			

- One-sided posterior mean estimates of the trend $\tau_{t|t}$ are used to forecast the average value of inflation over the next h = 4, 8 and 12 quarters i.e. $h^{-1} \sum_{i=1}^{h} \pi_{t+i}$.
- Competing trend measures: UCSVO, MUCSVO with 3, 7, and 10 components, CPIxE, CPIxFE, principal components, asymmetric trimmed mean.
- Forecast evaluation is based on the average RMSEs over a five year horizon:

$$\sqrt{\frac{1}{20} \sum_{\tau=t}^{\tau+19} e_{\tau+h|\tau}^2},$$
$$e_{t+h|t} = \frac{1}{h} \sum_{t=1}^{h} \pi_{t+i} - \tau_t$$

t.

Motivation	Model and Data Specifications	Empirical Results	Forecasting	Conclusion and Ongoing Work
000000	000	000000	0000	000000

Forecasting Performance

Note: Reported are rolling five-year average RMSFEs associated with 8-quarter ahead in-sample inflation forecasts from various trend inflation measures starting in 1995Q2.

Motivation 000000	Model and Data Specifications	Empirical Results	Forecasting 00●0	Conclusion and Ongoing Work

-		
Forocacting	EV/2	luntion
	I V A	manon
	- • •	aation

Inflation Trend	1995Q2-2015Q2	2000Q1-2015Q2	2005Q1-2015Q2
MUCSVO (10 components)	-2.162 (0.017)	-1.401 (0.083)	-3.542 (0.001)
MCUSVO (7 components)	-1.450 (0.075)	-1.074 (0.144)	-2.541 (0.079)
MUCSVO (3 components)	-2.428 (0.009)	-1.365 (0.089)	-2.701 (0.005)
Principal Components	-0.178 (0.429)	0.748 (0.229)	-0.200 (0.421)
Trimmed Mean	0.552 (0.291)	1.248 (0.109)	1.419 (0.082)
CPI×E	2.357 (0.011)	3.061 (0.002)	2.632 (0.001)
CPI×FE	1.094 (0.139)	2.227 (0.015)	1.906 (0.033)

Note: Reported are the modified Diebold Mariano tests statistic and corresponding p-values in parenthesis for the null of equal predictive accuracy between various trend inflation measures compared against the UCSVO trend.

Motivation M	Model and Data Specifications	Empirical Results	Forecasting	Conclusion and Ongoing Work
000000 0	000	000000	0000	000000

Forecasting Performance

Note: The results are average RMSFEs for various in-sample inflation forecasts generated over the post inflation targeting regime.

Motivation 000000	Model and Data Specifications	Empirical Results	Forecasting 0000	Conclusion and Ongoing Work
Takeaw	ays			

• Trend inflation has become well anchored since 2000

• Clear communication about the inflation target is important

• Core is an imperfect measure of trend inflation

- Throws away useful information embodied in food and energy prices
- Fixed weights are restrictive
- Disaggregated prices help us better understand inflation dynamics
 - \rightarrow Disaggregate further!

 Motivation
 Model and Data Specifications
 Empirical Results
 Forecasting
 Conclusion and Ongoing Work

 000000
 00000
 00000
 00000
 00000
 00000

Ongoing Research - Disaggregating further ...

• Using 197 (cleaned) consumption goods and service price series over 2002Q1-2017Q3, we decompose prices at the broad product level into pure, relative and idiosyncratic components:

$$\Pi_t = \mathbf{1}\mathbf{v}_t + \Theta\rho_t + u_t$$

- This helps us better understand the role of:
 - Aggregate versus sectoral shocks
 - Anticipated versus unanticipated shocks
 - The (dead) Phillips curve relation
- Following Reis and Watson (2010) the model is estimated as a dynamic factor model using an EM algorithm to maximize the likelihood function.

Motivation 000000	Model and Data Specifications	Empirical Results	Forecasting 0000	Conclusion and Ongoing Work
	6 –			

Number of Factors

Note: Plotted is the fraction of sample variance of inflation explained by k factors. The horizontal axis orders the series by the fraction of variance explained by the first factor.

Motivation 000000	Model and Data Specifications	Empirical Results	Forecasting 0000	Conclusion and Ongoing Work
1 (1	D 1.1			

Inflation Decomposition

 Motivation
 Model and Data Specifications
 Empirical Results
 Forecasting
 Conclusion and Ongoing Work

 00000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Fraction of Variability Explained

	All fre	All frequencies		ss cycle
Inflation Measure	ρ_t	Vt	ρ_t	Vt
Aggregate Inflation Rates				
Headline CPI	0.78	0.18	0.87	0.08
197 Sectoral Inflation Rates				
25th Percentile	0.28	0.08	0.26	0.02
50th Percentile	0.34	0.11	0.36	0.06
75th Percentile	0.39	0.15	0.48	0.10

Note: Reported are the average squared canonical coherence over frequencies where business cycle frequencies are defined over $\pi/32 \le \omega \le \pi/6$.

Motivation 000000	Model and Data Specifications	Empirical Results	Forecasting 0000	Conclusion and Ongoing Work
_				

Correlations with Macro Observables

	All frequencies	Business Cycle
Relative-price index ρ_t		
Food	0.20	0.12
Energy	0.72	0.82
Export prices	0.33	0.46
Import prices	0.58	0.64
NEER	0.67	0.70
Tradables	0.37	0.77
Pure inflation v_t		
Broad money	0.33	0.16
Policy rate	0.24	0.25
Term spread (10Y-3m)	0.27	0.15
NEER	0.24	0.54

Note: Reported are the average squared canonical coherence over over frequencies where business cycle frequencies are defined over $\pi/32 \le \omega \le \pi/6$.