

Behavioural Stability: Accounting for Proximal and Distal Constructs in the Theory of Trying

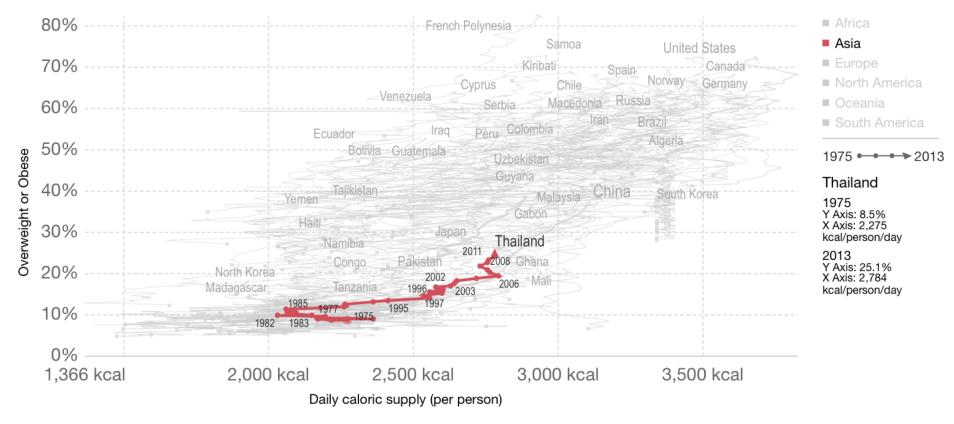
Presented by

Suwanna Sayruamyat

Present at

Puey Ungphakorn Institute for Economic Research

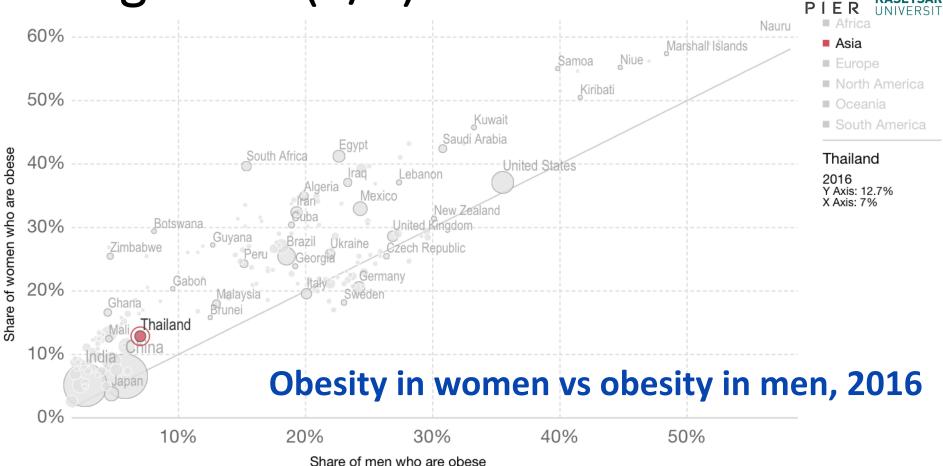
18 October 2018


Outline

- Background
- Objective and Research Questions
- Methodology
 - Conceptual Framework
 - Data Collection and Questionnaire
- Summary results
- Q&A

Background (1/5)

Share of adult men overweight or obese vs. daily supply of calories, 1975 to 2013

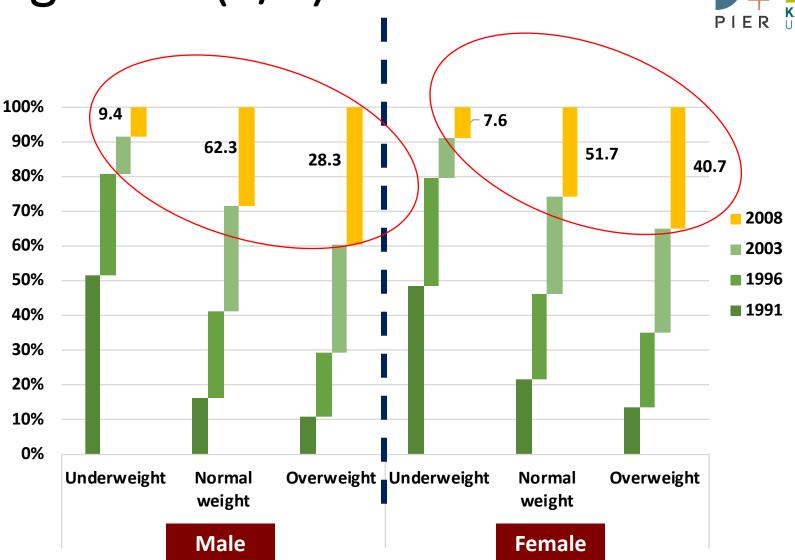

Source: NCDRisC and FAOstat

CC BY-SA

1975

2013

Background (2/5)


Source: WHO, Global Healh Observatory

CC BY-SA

▶ 1975

Source: https://ourworldindata.org/obesityanna Sayruamyat

Background (3/5)

The prevalence proportion of underweight, normal weight and overweight in Thailand (1991 - 2008)

Source: Thummarungsi (2014)

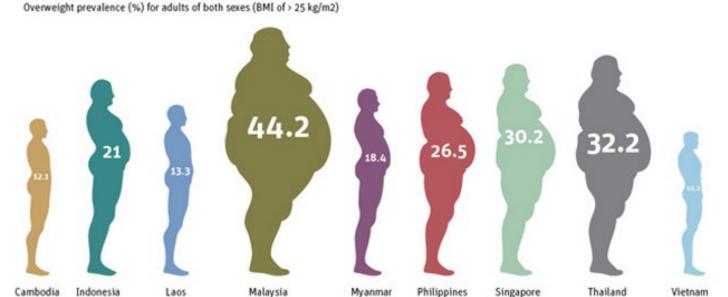
Background (4/5)

Obesity cost

B12,142 million

(0.13% of GDP)

Indirect cost \$6,558 million


Productivity loss

- Premature death = \$5,864 million

Direct cost: Health expenditure \$\B5,584\$ million

(2.2% of total health expenditure)

OVERWEIGHT POPULATIONS IN SOUTHEAST ASIA

Source: WHO Non-Communicable Diseases Country Profiles, 2011 http://wops.moph.go.th/ops/thp/thp/useffiles/file/issue%203_58.pdf

Background (5/5)

In an integrated weight-management approach, a part of the treatment could aim to support individuals in their efforts toward health behaviors changes by achieving a better psychological well-being.

Provencher et al., 2008

Personalised Nutrition

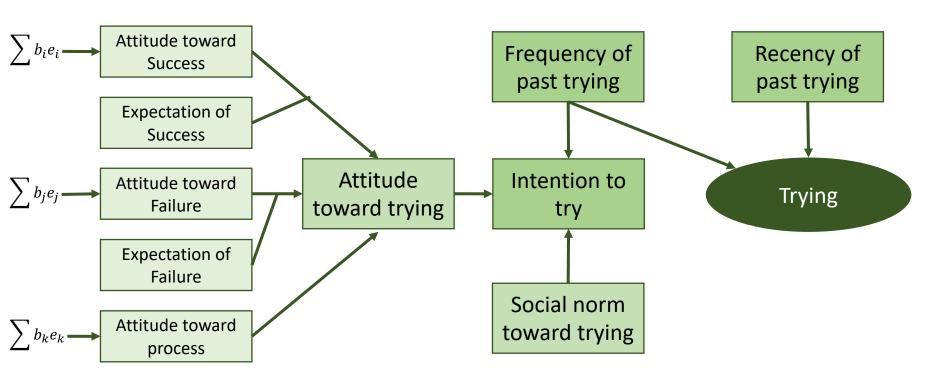
It's Time to Get Personal

Objective and Research Questions

Objective

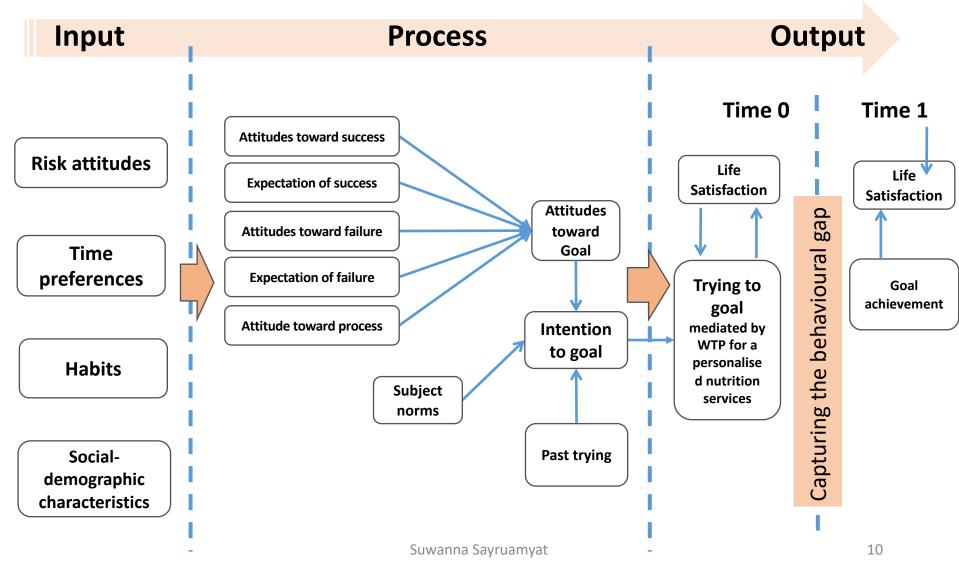
To examine the factors determining WTP for Personalised Nutrition Programme (PNP)

Research Questions:

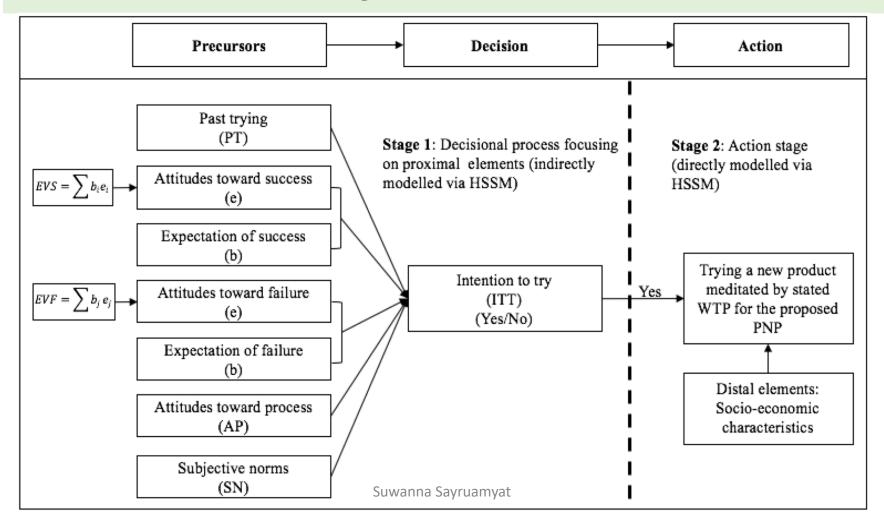

- 1. What econometric models can be used to analyse cross-sectional data collected employing a combination of expectancy value and contingent valuation models?
- 2. How well can attitudes, social norms, socio-demographic and economic characteristics predict intention to try and WTP for a PN programme?
- 3. How much are Thai citizens willing to pay for a PN programme helping them to achieve their weight goals?
- 4. Are purchasing intentions and WTP for a PN programme stable over time?

Methodology (1/6)

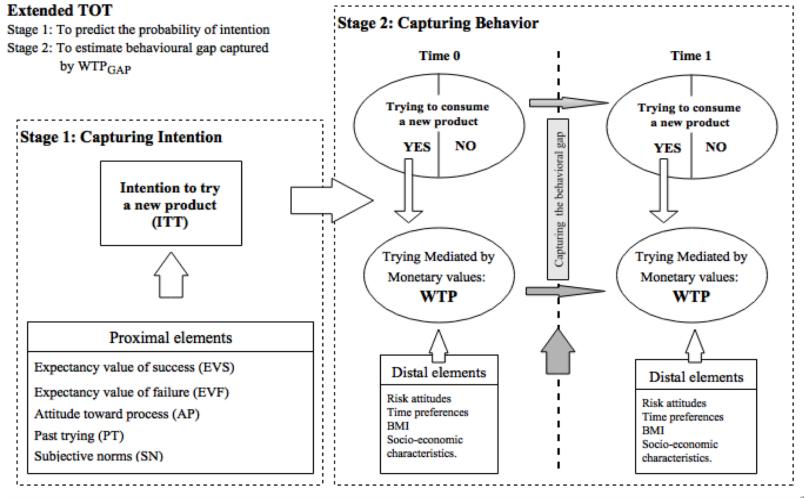
Theoretical frameworks and measurement


Bagozzi, R. P. & Warshaw, P. R. (1990). Trying to Consume. Journal of Consumer Research, 17, 127-140.

Methodology (2/6)


Conceptual Framework

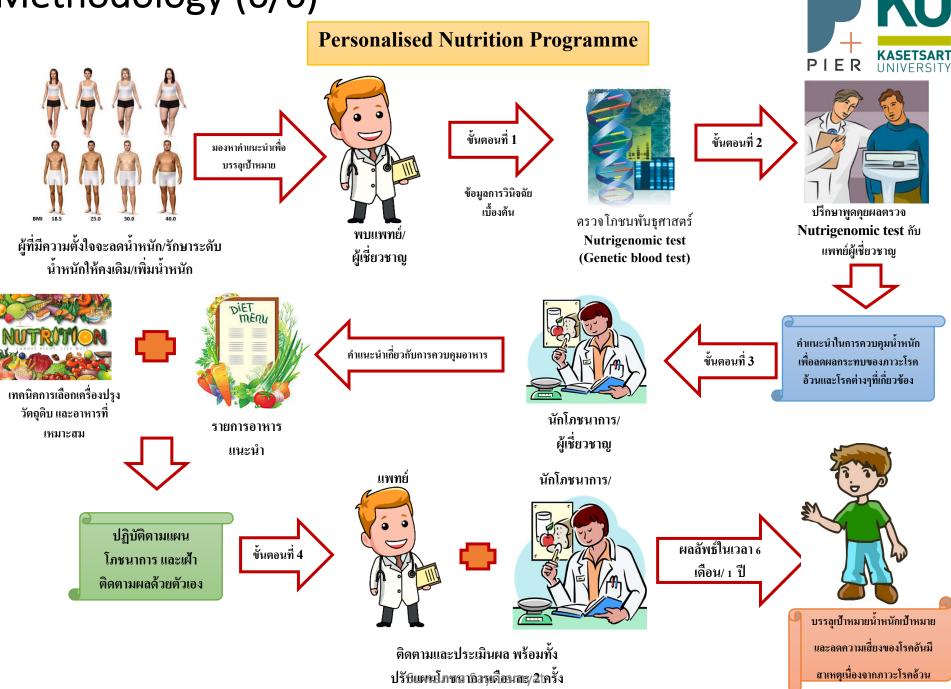
Methodology (3/6)


Stage 1: Exploring the impact of proximal and distal elements of TOT on consumer behaviour by Heckman sample selection model, Tobit model and Interval regression model

Methodology (4/6)

Stage 2-Capturing behaviour gap by Heckman selection model

Methodology (5/6)



Data Collection and Questionnaire

- Data collection
 - Primary data
 - Two rounds of survey (in 2015 and in 2016)
 - Face to face interviewing
 - Follow-up: 6-month period
- Participants
 - 508 respondents who worked in Bangkok
 - were recruited in Bangkok advertising the study in several small businesses and governmental offices.
 - Concerned about weight and willing to set weight goal in 6 months later

- Questionnaire
 - The theory of trying
 - WTP for Personalised Nutrition Programme elicited by payment card format via contingent valuation survey
 - Risk attitudes
 - Time preference
 - Socio-economics

Methodology (6/6)

Summary Results (1/9)

Participants

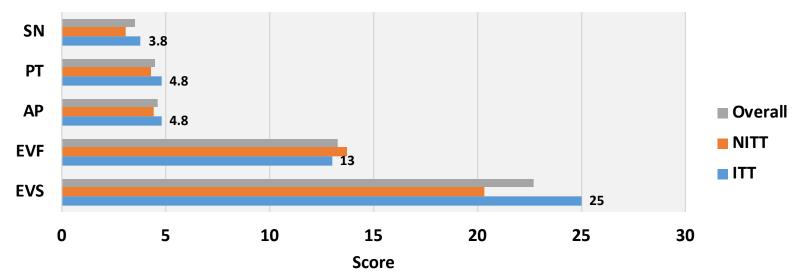
First survey

- 597 participants (89% of participants was willing to participate in the second survey)
- 60.8% of participants was female
- 64.7% of participants earned a gross monthly income between THB 10,000 and THB 30,000
- BMI:
 - Normal weight: 46.4%
 - Overweight: 29.1%
 - Obese: 17.25%
- Weight goals
 - Losing weight: 68.6%
 - Gaining weight: 10.0%
 - Maintaining weight: 21.2%

Follow-up survey

508 participants (85% of first survey)

Summary Results (2/9)



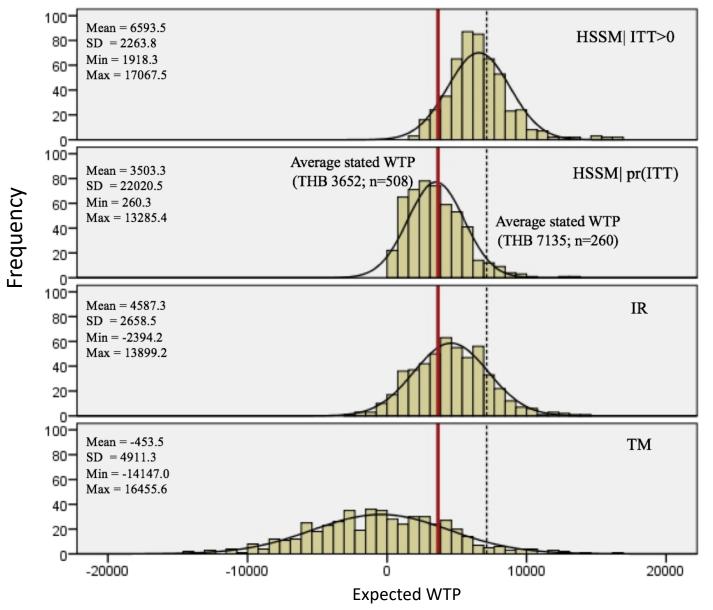
Summary statistics of proximal elements for intenders, non-intenders and total sample

Variables	ITT n = 260	NITT n=248	Total sample n = 508	t-test
EVS	25.0 (7.19)	20.3 (6.76)	22.7 (7.36)	-5.09ª
EVF	13.0 (5.62)	13.7 (4.99)	13.3 (5.33)	0.027
AP	4.8 (.91)	4.4 (.82)	4.6 (.89)	-3.86a
PT	4.8 (1.08)	4.3 (1.01)	4.5 (1.07)	-4.36a
SN	3.8 (1.19)	3.1 (1.39)	3.5 (1.33)	-3.64ª

Note: Standard deviations are in parenthesis. ^a Significant level at 1%, ^b Significant level at 5%, ^c Significant level at 10%.

Average score of each proximal elements

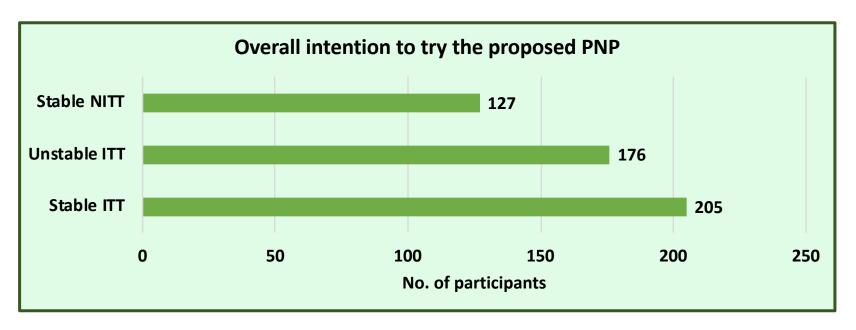
Summary Results (3/9)


Impact of proximal and distal elements of TOT on WTP for PNP: comparing results obtained with HSS, TOB and IR models.

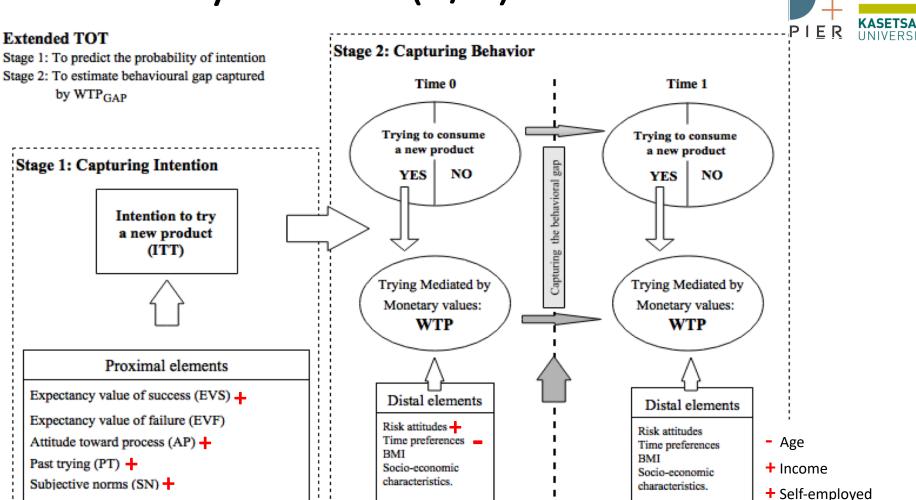
	Two-stage model	One-sta	ge models	One-stage models	when replacing	
				the missing value of W	TP for PNP with zero	
Elements	HSS	TOB	IR	TOB	IR	
Model's constants	7239.3a (2782.5)	3051.5 (4102.0)	5266.0 (3417.9)	-17526.2a (5293.9)	-18865.9a (5766.8)	
Proximal ^A						
1st stage's constant	-2.84a (.414)	-	-	-	-	
EVS	.043a (.009)	100.9 (65.6)	76.3 (56.1)	273.8a (71.3)	3.1.2a (75.1)	
EVF	003 (.011)	-65.1 (58.8)	-51.5 (48.2)	-40.9 (75.4)	-29.3 (81.8)	
AP	.153b (.076)	594.7 (441.6)	522.1 (378.5)	1136.8° (580.8)	1210.5° (622.7)	
PT	.159a (.045)	-170.6 (274.0)	-121.9 (230.5)	824.2b (333.8)	1010.4a (362.4)	
SN	.150b (.060)	309.5 (304.5)	261.3 (247.5)	1194.0a (393.3)	1342.0a (436.6)	
Distal ^B						
FEMALE	669.6 (557.8)	749.6 (604.2)	684.0 (487.9)	-555.9 (812.9)	-812.9 (893.3)	
AGE	-76.2 ^b (34.8)	-113.2a (41.05)	-84.3b (33.5)	-204.1a (50.3)	-219.4a (55.1)	
INCOME	1057.1a (181.7)	1234.7a (188.5)	978.2a (155.9)	1163.2a (300.8)	1102.2a (319.1)	
EDU	110.2 (146.9)	-19.6 (169.3)	15.4 (136.1)	217.9 (236.8)	247.9 (263.7)	
EMP _{GOV}	-2571.0a (815.9)	-2962.0a (875.8)	-2442.0a (709.2)	-3166.7a (115.3)	-3077.8b (1247.8)	
EMP _{PRI}	-1854.8b (732.8)	-1928.7b (759.8)	-1658.1a (631.6)	-1942.9b (1058.3)	-1895.7 (631.6)	
λ	-2058.4a (575.3)	-	-	-	-	
ρ	434a (.104)	-	-	-	-	
σ	4742.5a (297.8)	4797.9 a (287.6)	3788.0a (241.8)	7926.3a (403.9)	8664.1a (403.2)	
Observations	508	260	260	508	508	
Censored obs.	248	27	27	275	275	
Uncensored obs.	260	233	233	233	233	
LL	-2863.7	-2335.8	-408.1	-2582.9	-736.2	
Statistics	Wald(6) = 64.94	F(11, 249) = 8.17	Wald(11) = 91.4	F(11, 497) = 12.4	Wald(11) = 151.7	

Note: Standard errors are in parentheses. A Proximal predictors in stage 1 of two-stage models; B Distal predictors in stage 2 of two-stage models. LL=the log pseudo

Summary Results (4/9)



Summary Results (5/9)



Matrix of Intention Stability

		Time 0				
		Non-intended Intended		Total		
Н	Non-intended	127	121	248		
Time	Intended	55	205	260		
F	Total	182	326	508		

Summary Results (6/9)

- The first stage of Heckman selection model is consistent with the findings of Bagozzi and Warshaw (1990).
- The more people are risk-averse, the more they pay for PNP.
- The more people are impatient, the less they pay for PNP.
- The more people are stable ITT, the more likely they pay for PNP.

Summary Results (7/9)

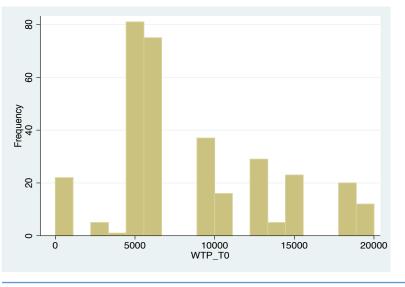
Table 3.2 Marginal effects of proximal and distal elements of TOT on WTP for PNP

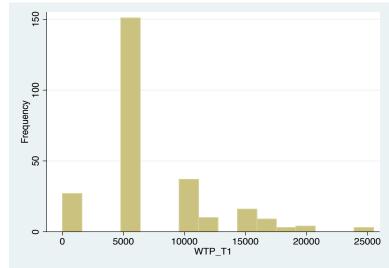
Table 5.2 Marginal effects of proximal and distal elements of TOT on with for the								
	Model 1: Predic		Model 2: Prediction at time 1		Model 3: Average between		Model 4: Difference between	
	<< eq.		<< eq.7 >>		time 0 and time1 << eq.9 >>		time 0 and time1 << eq.11 >>	
Dependent variable	WT	P_{T_0}	WTP_{T_1}		WTP_{MID}		ΔWTP	
Proximal variables	WTP ITT>0	WTP p(ITT)	WTP ITT>0	WTP p(ITT)	WTP ITT>0	WTP p(ITT)	WTP ITT>0	WTP p(ITT)
EVS	15.3***	79.3***	53.5***	129.5***	15.8***	72.2***	31.0	15.5
EVF	-2.0	-10.4	-6.3	-15.4	6.5	29.5	-55.2*	-27.7*
AP	164.9***	851.6***	173.6*	419.7*	114.9***	522.7***	257.4	129.3
PT	26.35	136.0	164.5***	397.6***	48.1*	218.9*	35.5	17.8
SN	125.1***	645.8***	188.7***	456.1***	85.2***	387.7***	136.9	68.7
Distal variables	Beta / WTP ITT>0	$WTP \ p(ITT)$	Beta / WTP ITT>0	WTP p(ITT)	Beta / WTP ITT>0	WTP p(ITT)	Beta / WTP ITT>0	WTP p(ITT)
RISK	11.6	7.4	22.6**	11.5***	15.3**	11.8**	17.4	12.9
TIME	.37	.23	- 4.1	-2.1	.132	.102	-5.0**	-3.7**
FEMALE	232.9	149.2	620.6	315.8	459.2	355.8	-436.8	-324.6
AGE	-84.5**	-54.1**	-68.0**	-34.6**	-51.9***	-40.2***	-21.7	-16.1
INCOME	486.2***	311.5***	1096.5***	558.0***	604.4***	468.3***	1179.3***	876.4***
EDU	-189.9	-121.6	86.3	43.9	-54.5	-42.2	227.4	169.0
BMI	5.12	3.2	-5.9	-3.0	-7.5	-5.8	163.0	121.2
EMP_{GOV}	-843.0	-540.1	-2552.7***	-1299.1***	-1217.4**	-943.2**	-1964.4*	-1459.8*
EMP _{PRI}	-711.6	-456.0	-1771.4**	-901.5**	-920.4**	-713.1**	-1497.9	-1113.3
ITT _{STABLE}	-	-	-	-	3872.1***	3000.0***	2080.0**	1545.7**
Constant	13040.3***		6440.6*		8906.8***		-5018.9	
Rho (x ²)	232* (2.96)		439*** (10.68)		314** (4.35)		850*** (23.11)	
sigma	5010.6***		4674.0***		3151.0***		8725.7	
lambda	-1166.6		-1933.2		-989.9		-7421.1	
Log pseudo likelihood	-3537.2		-2862.9		-3860.2		-4200.1	
Wald chi2	14.9*		73.9***		208.1***		56.1***	
Censored obs.	182		248		127		127	
Uncensored obs.	326		260		381		381	

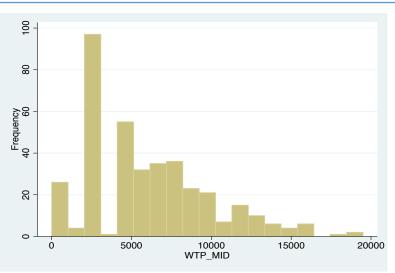
Note: Total number of observations is 508. Marginal effects for categorical variables represent the discrete change from the base group. ***p < .01, **p < .05, *p < .1. (Exchange rate: 53 THB equal 1 GBP on 31st December 2015).

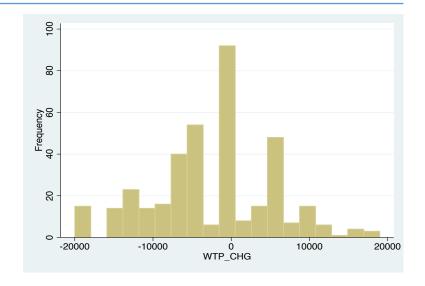
Summary Results (8/9)

Table 3.4 Probability of intention and means of expected WTP for PNP


	Model 1: Prediction at time 0	Model 2: Prediction at time 1	Model 3: Average between Time 0 and time1	Model 4: Difference between Time 0 and time1 (T ₁ -T ₀)
Probability of intention	.640	.508	.774	.743
WTP ITT>0	8377.2	6626.3	6046.2	-2459.7
$WTP \mid p(ITT)$	5409.4	3511.2	4786.3	-1776.8
WTP*	9066.2	8195.5	6426.4	756.7


Note: *Expected WTP for PNP was predicted by linear prediction for ITT group. (Exchange rate: 53 THB equal 1 GBP on 31st December 2015).


Summary Results (9/9)



Distribution of WTP for PNP

References

- Bagozzi, R. P., Moore, D. J. & Leone, L. (2004). Self-Control and the Self-Regulation of Dieting Decisions: The Role of Prefactual Attitudes, Subjective Norms, and Resistance to Temptation. *Basic & Applied Social Psychology*, 26, 199-213.
- Bagozzi, R. P. & Warshaw, P. R. (1990). Trying to Consume. Journal of Consumer Research, 17, 127-140.
- Davis, C., Patte, K., Levitan, R., Reid, C., Tweed, S. & Curtis, C. (2007). From Motivation to Behaviour: A
 Model of Reward Sensitivity, Overeating, and Food Preferences in the Risk Profile for Obesity. Appetite,
 48, 12-19.
- Heshmat, S. (2011). Eating Behavior and Obesity: Behavioral Economics Strategies for Health Professionals. Springer Publishing Company.
- Provencher, V., Bégin, C., Gagnon-Girouard, M.-P., Tremblay, A., Boivin, S. & Lemieux, S. (2008).
 Personality Traits in Overweight and Obese Women: Associations with Bmi and Eating Behaviors. *Eating Behaviors*, 9, 294-302.
- Sabater-Grande, G. & Georgantzis, N. (2002). Accounting for Risk Aversion in Repeated Prisoners' Dilemma Games: An Experimental Test. *Journal of economic behavior & organization*, 48, 37-50.
- Sayruamyat, S. (2018). Impacts of Attitudes and Personality Traits on Weight Goals and Willingness to Pay for a Personalised Nutrition Programme in Thailand. University of Reading: PhD thesis.
- Thummarungsi, T. et. al. (2014). *The Report of Ncds Situation, Health and Social Crisis.* 1 ed. Bangkok: Thai NCD Network.

