

Graduate School of Development Economics

PUEY UNGPHAKORN INSTITUTE FOR ECONOMIC RESEARCH

Dynamic Connectedness in Emerging Asian Equity Markets

Pym Manopimoke, Suthawan Prukumpai and Yuthana Sethapramote

PIER Research Exchange 17 January 2019

Topics of Presentation

1

Motivation

Motivation

Conventional features of International financial market

- Increasing degree of financial linkages, especially those between advanced and emerging markets.
- Even though, emerging countries are quickly integrated into global financial markets (especially, emerging Asian countries). The degree of financial integration are still lower than those of linkages between advanced markets.
- Spillovers of shocks are asymmetries (Spillover are usually found in one directional from advanced to emerging markets)

Testing & Measurements

5

- Econometrics tests & measurements of connectedness & spillover
- VAR results: Impulse response, causality tests (mean spillovers)
- GARCH results: Univariate GARCH with exogenous variables, Multivariate GARCH (variance spillover)
- Correlation coefficients

(degree of connectedness, no directional of linkages)

- Statics
- Dynamic (e.g. DCC-GARCH)
- Network measures
- Variance decomposition

Dynamic Connectedness in Asia

- In the last two decades, the rapid trade and financial integration makes emerging Asia an important part of world economy and financial system.
- Therefore, spillover measures provide important information for monitoring the risk of financial crisis over time & provide crucial information for explaining contagion mechanism.

Objectives of the study

- This paper examines dynamic connectedness for international equity market with a focus on emerging Asia.
- We not only investigate the pattern of spillovers but also examine the role of economic policy uncertainty on dynamic of market connectedness.

Literature Review

8

Measurement of dynamic connectedness

- 1. Multi Variate GARCH apporch
- BEKK GARCH (Karolyi, 1995; Kanas, 1998)

- Dynamic Conditional Correlation GARCH (Savva et al, 2009; Bilio & Coporin, 2010; Chiang et al 2007; Yiu et al, 2010)

2. VAR approach

- Dynamic connectedness index (spillover index), Diebold – Yilmaz (2009, 2012, 2014, 2018)

The risk factor in global market are usually found to be determinant of spillover,

- Min & Hwang (2012) VIX index, TED spread, Market Cap
- Chiang et al (2007) Country credit rating
- Hwang et al (2013) CDS spread TED spread, VIX

How to measure spillovers?

Diebold and Yilmaz (2009) proposed a quantitative measure of spillovers based on the information from Variance Decomposition (VD) of forecast error associated with the *N*-variables Vector AutoRegressive (VAR) model

Cholesky decomposition and the generalized VAR framework of Koop, Pesaran, and Potter (1996) and Pesaran and Shin (1998) (KPPS, henceforth) are used to calculate Variance Decomposition.

How to measure spillovers?

 The econometric methodology of Diebold and Yilmaz (2009, 2012) can be summarized as follows

Consider the simple case of the standard the p-lag N-variable stationary VAR model,

$$X_t = \Phi_1 X_{t-1} + \dots + \Phi_p X_{t-p} + Bc + \varepsilon_t$$

where $X_t = \{X_{1,t}, X_{2,t}, ..., X_{N,t}\}$ is a matrix of endogenous variables

11

- The VDs represent the contribution of a one-standard deviation shock of X_j to the variance of the *H*-step ahead forecast error of X_j .
- The total spillover index that measures the contribution of spillovers across N variables to total forecast error variances is then calculated as follow,

$$TS(H) = \frac{\sum_{i,j=1,i\neq j}^{N} \tilde{\theta}_{i,j}(H)}{\sum_{i,j=1}^{N} \tilde{\theta}_{i,j}(H)} \times 100 = \frac{\sum_{i,j=1,i\neq j}^{N} \tilde{\theta}_{i,j}(H)}{N} \times 100$$

■ where $\tilde{\theta}_{i,j}(H)$ represent variance decomposition the contribution of a onestandard deviation shock of X_j to the variance of the H-step ahead forecast error of X_j .

12

□ The directional spillovers gauge the direction spillovers GIVEN by country i to all other countries j $(DS_{i\rightarrow}.(H))$

$$DS_{i \to \cdot}(H) = \frac{\sum_{j=1, j \neq i}^{N} \tilde{\theta}_{j,i}(H)}{\sum_{i,j=1}^{N} \tilde{\theta}_{j,i}(H)} \times 100 = \frac{\sum_{j=1, j \neq i}^{N} \tilde{\theta}_{j,i}(H)}{N} \times 100$$

□ The amounts of spillovers RECEIVED by country i from all other countries j $(DS_{.\rightarrow i}(H))$ can be measured by

$$DS_{\to i}(H) = \frac{\sum_{j=1, j\neq i}^{N} \tilde{\theta}_{i,j}(H)}{\sum_{i,j=1}^{N} \tilde{\theta}_{i,j}(H)} \times 100 = \frac{\sum_{j=1, j\neq i}^{N} \tilde{\theta}_{i,j}(H)}{N} \times 100$$

13

- Specifically, the directional spillover indices separate the total spillover into those coming from (or to) a particular source.
- Diebold and Yilmaz (2012) also introduce the net spillovers and net pairwise spillovers indices. However, our paper will focus on the total spillovers as the indicators of global financial conditions and the directional spillovers for investigating the determinants of spillovers in both directions.

								Ta	ble 9											
		C 1		T 1			Ci 1	10			10	/1 /1	000	09 /1	1 /0/	10 7				
		Sp	uover		ne, Gl	obai	Stock	Mar	ret K	eturn	s, 10	/1/1	992-	-23/ .	1/20	007				
											From	n								
То	US	ШК	FRA	GER	HKG	IPN	AUS	IDN	KOR	MVS	PHL	SGP	TAI	тна	ARG	BRA	CHL	MEX	TUR	Contribution From Others
10	00	on		on	mo	J,		110.1	non			001				inci	Carn.		TOR	from outers
US	93.6	1.6	1.5	0.0	0.3	0.2	0.1	0.1	0.2	0.3	0.2	0.2	0.3	0.2	0.1	0.1	0.0	0.5	0.3	6
UK	40.3	55.7	0.7	0.4	0.1	0.5	0.1	0.2	0.2	0.3	0.2	0.0	0.1	0.1	0.1	0.1	0.0	0.4	0.5	44
FRA	38.3	21.7	37.2	0.1	0.0	0.2	0.3	0.3	0.3	0.2	0.2	0.1	0.1	0.3	0.1	0.1	0.1	0.1	0.3	63
GER	40.8	15.9	13.0	27.6	0.1	0.1	0.3	0.4	0.6	0.1	0.3	0.3	0.0	0.2	0.0	0.1	0.0	0.1	0.1	72
HKG	15.3	8.7	1.7	1.4	69.9	0.3	0.0	0.1	0.0	0.3	0.1	0.0	0.2	0.9	0.3	0.0	0.1	0.3	0.4	30
JPN	12.1	3.1	1.8	0.9	2.3	77.7	0.2	0.3	0.3	0.1	0.2	0.3	0.3	0.1	0.1	0.0	0.0	0.1	0.1	22
AUS	23.2	6.0	1.3	0.2	6.4	2.3	56.8	0.1	0.4	0.2	0.2	0.2	0.4	0.5	0.1	0.3	0.1	0.6	0.7	43
IDN	6.0	1.6	1.2	0.7	6.4	1.6	0.4	77.0	0.7	0.4	0.1	0.9	0.2	1.0	0.7	0.1	0.3	0.1	0.4	23
KOR	8.3	2.6	1.3	0.7	5.6	3.7	1.0	1.2	72.8	0.0	0.0	0.1	0.1	1.3	0.2	0.2	0.1	0.1	0.7	27
MYS	4.1	2.2	0.6	1.3	10.5	1.5	0.4	6.6	0.5	69.2	0.1	0.1	0.2	1.1	0.1	0.6	0.4	0.2	0.3	31
PHL	11.1	1.6	0.3	0.2	8.1	0.4	0.9	7.2	0.1	2.9	62.9	0.3	0.4	1.5	1.6	0.1	0.0	0.1	0.2	37
SGP	16.8	4.8	0.6	0.9	18.5	1.3	0.4	3.2	1.6	3.6	1.7	43.1	0.3	1.1	0.8	0.5	0.1	0.3	0.4	57
TAI	6.4	1.3	1.2	1.8	5.3	2.8	0.4	0.4	2.0	1.0	1.0	0.9	73.6	0.4	0.8	0.3	0.1	0.3	0.0	26
THA	6.3	2.4	1.0	0.7	7.8	0.2	0.8	7.6	4.6	4.0	2.3	2.2	0.3	58.2	0.5	0.2	0.1	0.4	0.3	42
ARG	11.9	2.1	1.6	0.1	1.3	0.8	1.3	0.4	0.4	0.6	0.4	0.6	1.1	0.2	75.3	0.1	0.1	1.4	0.3	25
BRA	14.1	1.3	1.0	0.7	1.3	1.4	1.6	0.5	0.5	0.7	1.0	0.8	0.1	0.7	7.1	65.8	0.1	0.6	0.7	34
CHL	11.8	1.1	1.0	0.0	3.2	0.6	1.4	2.3	0.3	0.3	0.1	0.9	0.3	0.8	2.9	4.0	65.8	2.7	0.4	34
MEX	22.2	3.5	1.2	0.4	3.0	0.3	1.2	0.2	0.3	0.9	1.0	0.1	0.3	0.5	5.4	1.6	0.3	56.9	0.6	43
TUR	3.0	2.5	0.2	0.7	0.6	0.9	0.6	0.1	0.6	0.3	0.6	0.1	0.9	0.8	0.5	1.1	0.6	0.2	85.8	14
Contribution to others	292	84	31	11	81	19	11	31	14	16	10	8	6	12	21	9	3	8	7	675.0
Contribution including own	386	140	68	39	151	97	68	108	86	85	73	51	79	70	97	75	68	65	92	Spillover index = 35.5%

Source: Diebold-Yilmaz (2009)

WISDOM for Change

15

Source: Diebold-Yilmaz (2009)

Data

16

- Weekly data of the main equity market from D 3 groups of countries (15 countries altogether) are used in this study.
- 1. Emerging Asia
- China (CHN), India (IND), Indonesia (IDN), Malaysia (MYS), the Philippines (PHL), and Thailand (THA)

2. Advanced Asia

- Australia (AUS), Hong Kong (HKG), Japan (JPN), South Korea (KOR), Taiwan (TAI)
- 3. Other advanced economies
- France (FRA), Germany (GER), the United States (US), the United Kingdom (UK)

Return Spillover Table

17

Spillover Table, International Equity Market Returns:

	From															
To		•			•	•								•		Contribution
	THA	MYS	IDN	PHL	HKG	KOR	IND	JPN	CHN	TAI	AUS	GER	UK	FRA	US	from others
THA	33.9	6.0	7.9	7.8	6.7	6.4	2.7	3.1	0.2	3.7	4.6	4.4	4.7	4.3	3.8	66
MYS	7.7	40.1	8.2	6.7	7.4	3.7	2.3	2.9	0.1	4.0	3.9	3.7	3.4	3.1	2.9	60
IDN	8.3	7.0	34.4	8.2	6.3	4.8	3.7	3.7	0.4	3.0	4.9	4.0	3.8	4.0	3.3	66
PHL	8.5	5.9	8.4	34.3	7.4	3.5	2.4	3.0	0.1	4.1	5.7	4.0	4.6	4.1	4.0	66
HKG	4.9	4.5	4.4	5.0	25.0	5.7	3.4	5.1	0.2	4.9	7.7	7.1	8.1	7.3	6.7	75
KOR	6.3	2.9	4.0	2.8	7.4	33.0	4.1	6.0	0.2	5.3	5.6	5.8	5.6	5.6	5.1	67
IND	3.3	2.3	4.0	2.9	5.8	5.1	39.1	4.8	0.9	3.7	5.2	6.2	5.8	6.2	4.8	61
JPN	2.7	2.1	3.1	2.7	6.1	5.5	3.6	29.7	0.3	4.0	8.4	7.6	7.7	8.4	8.0	70
CHN	0.6	0.7	1.2	0.5	1.4	0.5	1.9	0.9	84.8	1.4	1.4	1.4	1.0	1.2	1.0	15
TAI	4.1	3.8	3.0	4.3	7.5	5.9	3.3	5.0	0.4	37.7	4.8	5.7	4.6	5.4	4.6	62
AUS	3.3	2.4	3.3	3.8	7.5	4.3	3.2	6.9	0.2	3.2	24.5	8.2	10.1	9.5	9.6	75
GER	2.6	1.7	2.4	2.3	5.9	3.8	3.2	5.3	0.1	3.0	6.9	21.2	13.4	16.4	11.9	79
UK	2.8	1.6	2.2	2.7	6.6	3.5	2.9	5.4	0.1	2.4	8.5	13.2	20.9	14.9	12.4	79
FRA	2.5	1.4	2.3	2.4	5.8	3.5	3.1	5.7	0.1	2.6	7.8	15.8	14.6	20.5	11.7	80
US	2.3	1.4	2.1	2.5	5.8	3.6	2.6	5.9	0.1	2.5	8.6	12.8	13.6	13.1	23.0	77
Contribution																
to others	60	44	56	54	88	60	43	64	4	48	84	100	101	104	90	998
																Spillover
Contribution including																index
own	94	84	91	89	113	93	82	93	88	86	109	121	122	124	113	66.5%

Volatility Spillover Table

18

Spillover Table, International Equity Market Volatility:

· · · ·										From	m					
То		•				•				•					•	Contribution
	THA	MYS	IDN	PHL	HKG	KOR	IND	JPN	CHN	TAI	AUS	GER	UK	FRA	US	from others
THA	34.2	4.3	5.6	3.9	7.1	6.4	6.6	4.1	0.6	5.0	2.7	4.1	5.3	4.4	5.6	66
MYS	3.8	29.7	4.1	2.9	8.4	5.9	6.1	3.7	1.3	6.9	3.1	5.1	7.2	5.7	6.2	70
IDN	3.6	3.7	36.7	2.5	7.3	6.0	5.8	3.6	1.4	5.0	3.6	3.8	5.7	3.8	7.5	63
PHL	4.5	4.1	3.9	44.6	5.2	3.9	2.8	3.1	2.5	4.5	4.3	2.6	4.4	3.8	5.7	55
HKG	3.3	4.4	4.5	2.0	19.5	7.9	6.0	5.6	1.6	7.4	6.8	6.2	9.2	6.8	8.9	80
KOR	3.0	3.3	3.6	1.7	9.1	23.1	4.9	5.1	0.8	8.9	3.7	7.8	8.0	7.3	9.8	77
IND	3.2	4.1	6.4	2.2	10.4	7.9	31.6	4.9	0.5	6.7	3.9	3.6	5.0	3.5	6.0	68
JPN	2.8	2.4	3.1	1.6	8.5	6.5	4.1	24.2	0.6	4.3	5.7	8.4	9.4	8.3	10.1	76
CHN	1.5	2.6	5.3	3.3	7.1	2.0	1.7	1.3	57.6	3.4	5.5	1.8	2.2	1.6	3.2	42
TAI	2.4	4.7	3.6	2.1	9.3	12.2	4.9	3.8	1.1	26.0	3.5	6.2	6.4	6.0	7.9	74
AUS	1.9	2.7	3.6	2.3	8.4	4.2	3.4	4.5	1.7	4.0	24.3	7.0	11.4	9.2	11.4	76
GER	1.8	1.6	1.9	1.0	4.9	5.3	1.6	4.6	0.7	4.2	5.2	20.8	16.0	18.2	12.2	79
UK	1.9	2.3	2.5	1.4	6.2	5.2	2.3	4.5	0.7	4.4	6.7	13.4	20.0	15.9	12.5	80
FRA	2.1	1.8	1.9	1.3	4.8	4.6	1.5	4.1	0.7	4.0	6.2	16.4	16.9	20.7	13.1	79
US	2.5	2.0	3.1	2.0	6.5	6.8	2.3	4.8	0.9	5.5	6.8	10.7	13.2	12.7	20.4	80
Contribution																
to others	38	44	53	30	103	85	54	58	15	74	68	97	120	107	120	1067
Contribution including																Spillover index
own	73	74	90	75	123	108	86	82	73	100	92	118	141	128	140	71.1%

19

Spillover Plot, International Equity Market Returns and Volatility:

Note: Plotted are total return and volatility spillover indices based on a 200-week rolling estimation window. The corresponding date in the plot denotes the end of the rolling estimation window.

Return and Volatility Spillover Indices

Return

Volatilities

Figure 1A. Net Return Spillovers By Country

Figure 1B. Net Volatility Spillovers By Country

Figure 4. Contributions of Return Spillover Shocks by Country Group.

Note: Plotted is the sum of directional shocks received by each country, classified by country group.

Uncertainty and Connectedness

Past studies tend to focus on the effect of economic fundamentals and the implications for stock market *returns*

(Connolly et al., 2005; Giot, 2005; Sum and Fanta, 2012; Antonakakis et al., 2013; Liu and Zhang, 2015; Sum, 2012; Momin and Masih, 2015)

Those focusing on connectedness utilize pairwise correlations or monthly data

(Beirne et al., 2009; Tsai, 2017)

- Strong evidence of how financial and policy uncertainty has generated strong synchronized movements across equity markets worldwide
- → To what extent are spillovers received by stock markets driven by uncertainty in the US?

Financial vs. economic policy uncertainty

Empirical Model

□ For each country i, we estimate the following VAR:

$$Y_{it} = \Phi_1 Y_{i,t-1} + \dots + \Phi_p Y_{i,t-p} + \varepsilon_t$$

where Y includes the estimated total return spillover *received* for country *i*, VIX and EPU.

Table 4. Correlation Table

Correlation								Cou	ntry						
Correlation.	THA	MYS	IDN	PHL	HKG	KOR	IND	JPN	CHN	TAI	AUS	GER	UK	FRA	US
VIX	0.140	0.112	0.175	0.251	-0.068	-0.008	-0.116	-0.072	0.027	0.103	0.082	0.068	0.024	0.053	0.019
EPU	0.453	0.368	0.291	0.354	0.351	0.370	0.307	0.317	0.398	0.459	0.433	0.406	0.348	0.398	0.342

Note: Reported are the pairwise correlation coefficients between the time-varying spillover of stock returns received by each country and the VIX and EPU indices.

Empirical findings

Table 5. (Granger	Causality	Tests	Results
------------	---------	-----------	-------	---------

Country	VIX	EPU
THA	7.512 (0.482)	18.403*** (0.018)
MYS	1.609 (0.900)	10.920** (0.053)
IDN	1.117 (0.891)	7.018 (0.134)
PHL	2.813 (0.589)	8.765* (0.067)
IND	6.642 (0.355)	2.392 (0.880)
CHN	3.396 (0.493)	1.799 (0.772)
TAI	5.622 (0.584)	13.277* (0.065)
KOR	8.267 (0.689)	15.780 (0.149)
JPN	14.327** (0.026)	13.137** (0.0409)
HKG	9.816* (0.080)	15.816*** (0.007)
AUS	4.549 (0.473)	9.613* (0.087)
GER	10.067* (0.073)	11.983** (0.035)
FRA	14.077*** (0.015)	16.248*** (0.006)
UK	11.924** (0.035)	11.929** (0.035)
US	10.238* (0.068)	8.906 (0.112)

Note: Reported are the Chi-square test statistics associated with the Block exogeneity Wald test with the corresponding null hypothesis that all lags of the EPU and VIX can be excluded from each equation in the VAR system. The corresponding p-values are reported in parentheses and *,**,*** denotes statistical significance at the 10, 5, and 1 percent levels respectively.

Discussion

Joins a growing literature which finds that US EPU shocks can significantly influence real variables

(IMF, 2013; Gauvin et al. 2014; Colombo, 2016; Biljanovska et al. 2017)

- Uncertainty and the type of uncertainty matters for spillovers received
- The effect of VIX and EPU shocks depends on region and level of development

Conclusion

- International equity markets are tightly integrated
- Connectedness have increased over time, with a burst during GFC
- Advanced countries are net transmitters of shocks while emerging Asian countries are consistently net receivers
- Advanced markets are more connected amongst themselves while intraregional connectedness within Asia is strong
- EPU from the US has a significant impact on global markets while the effect of VIX is relatively contained for advanced economies