Financial Friction and Misallocation in China

Belton M. Fleisher Ohio State University and Hunan University Ohyun Kwon Drexel University

William H. McGuire University of Washington Tacoma

Min Qiang Zhao WISE, Xiamen University

Bank of Thailand, July 24th

Introduction

- Dispersion in marginal revenue product of capital (MRPK) leads to productivity loss. (Hsieh and Klenow, '09)
- Financial friction in China (barrier to borrow)
 - private vs. state (Poncet et al. '10)
 - between provinces (Boyreau-Debray and Wei '05, Qi '10)
- What is the consequence of financial friction in China?
 migration, capital flow, wage and real income

Introduction

- We combine AC-type (Antràs and Caballero '09) financial friction (FF) with quantitative trade model to explain interregional capital flows and labor flows (migration) in China.
 - find strong consistency between model prediction and data
- Estimating parameters to match the model to the data around 2010
 - Removing FF between ownerships improves real income by 1.08% (4.73% for Guangxi)
 - Removing FF between provinces further improves real income by 3.88% (24.84% for Qinghai)
 - Complementarity between financial friction and migration cost

Comparison of Revenue/Capital Ratios between Ownership Types across Industries

 If the production function is Cobb-Douglas, revenue-capital ratio is: r/β (MRPK / capital share)

Comparison of Revenue/Capital Ratios between Regions for Private Firms across Industries

East: Beijing, Fujian, Guangdong, Hainan, Hebei, Jiangsu, Shandong, Shanghai, Tianjin, and Zhejiang. West: Chongqing, Gansu, Guangxi, Guizhou, Inner Mongolia, Ningxia, Qinghai, Shaanxi, Sichuan, Tibet, Xinjiang, and Yunnan

Net Capital Flow

Regional Gap in Gross Saving less Gross Investment

Unit: 1 bn (base: 2000)

Capital Flow and Migration

Input-Ouput Tables

NCO	2002	2012
$East \to West$	82.37	557.93

Unit: 1 bn (base: 2000)

 • Census: current location vs. place of birth

 Net Migration
 2000 (9.5%)
 2010 (10%)

 East → West
 -773377
 -1813225

 ● Census: current location vs. location 5 years ago

 Net Migration
 2000 (9.5%)
 2005 (1%)
 2010 (10%)

 East → West
 -677176
 -108696
 -1119611

Outline

- 1. Introduction
- 2. Model
- 3. Reduced-form Evidence
- 4. Model Estimation
- 5. Counterfactual Results
- 6. Conclusion

Outline

1. Introduction

2. Model

- Utility
- Production
- Migration
- Financial friction
- Market clearing
- 3. Reduced-form Results
- 4. Model Estimation
- 5. Counterfactual Results

6. Conclusion

Model-Utility

▶ $n \in N$ provinces, $i \in \{p, s\}$ firm ownership type, sector $j \in J$

Consumption goods produced in different sectors:

$$C_n = \prod_j \left(\frac{C_n^j}{\alpha_n^j}\right)^{\alpha_n^j}$$

In each sector, varieties are aggregated in CES

$$C_{n}^{j} = \underbrace{\left[\sum_{i} \int_{\omega \in \Omega_{i,n}^{j}} C_{i,n}^{j}(\omega)^{\frac{\sigma^{j}-1}{\sigma^{j}}} d\omega\right]^{\frac{\sigma^{j}}{\sigma^{j}-1}}}_{\text{CES consumption aggregate of varities}}$$

 $\Omega_{i,n}^{j}$ is the set of varieties available in region n.

• C_n is also referred to as "real income".

Model-Production

In each region, there is Mⁱ_{i,n} measure of firms who produce distinct varieties. Each firm has following production function:

$$Y_{i,n}^{j}(\omega) = z_{i,n}^{j} \left(\frac{L_{i,n}^{j}(\omega)}{1-\beta^{j}}\right)^{1-\beta^{j}} \left(\frac{K_{i,n}^{j}(\omega)}{\beta^{j}}\right)^{\beta^{j}}$$

As the demand for each variety has negative elasticity, the pricing of each variety follows

$$p_{i,n}^{j}(\omega) = \underbrace{\frac{\sigma^{j}}{\sigma^{j}-1}}_{\text{markup}} \underbrace{\frac{w_{n}^{1-\beta^{j}}r_{i,n}^{\beta^{j}}}{z_{i,n}^{j}}}_{\text{marginal cost}}$$

Iceberg transport cost d^j_{nn'}

Let $\pi_{i,nn'}^{j}$ denote the share of good from region *n* sold in region *n'*.

$$\pi_{i,nn'}^{j} = \left(\frac{P_{i,nn'}^{j}}{P_{n'}^{j}}\right)^{1-\sigma}$$

where $P_{n'}^{j}$ is the price index of sector j in region n' and $P_{i,nn'}^{j}$ is the price index of export from region n to n'.

Model-Migration

- ▶ In each province, there is \bar{L}_n measure of workers
- A worker ϵ makes migration decision to maximize the utility:

$$U_n(\epsilon) = \underbrace{b_n(\epsilon)}_{\epsilon} \cdot \underbrace{C_n}_{\epsilon}$$

idiosyncratic regional preference real income

where $b_n(\epsilon)$ is worker ϵ 's draw of regional preference from region *n*.

The distribution of b_n(ε) is independent across regions and workers. Fréchet distribution:

$$G_n(b) = e^{-B_n b^{-\sigma^L}}$$

Then the migration pattern can be expressed as:

$$\pi_{n'n}^{L} = \frac{B_n \left(\frac{w_n}{P_n d_{n'n}^{L}}\right)^{\sigma^{L}}}{\sum_n B_n \left(\frac{w_n}{P_n d_{n'n}^{L}}\right)^{\sigma^{L}}}$$

Model-Financial Friction

- ln each province, μ_n share of capital is owned by private firms.
- ▶ Due to credit constraints (rationing), private firms can borrow up to $(\theta_n 1)$ of own capital. $(\theta_n > 1)$

 $\mu_n K_n \rightarrow \theta_n \mu_n K_n$

► Assumption 1: Credit constraint is always binding for private firms. Thus, the total amount of capital deployed in the private firms is given by $\mu_n \theta_n K_n$ and $r_{p,n} > r_{s,n}$.

Dispersion in Price of Capital across Provinces

Model-Market Clearing

Capital market clearing

$$\mu_n \theta_n K_n r_{p,n} = \underbrace{\sum_j \sum_{n'} E_{n'} \alpha_{n'}^j \pi_{p,nn'}^j \beta^j (\sigma^j - 1) / \sigma^j}_{\sum_{j=1}^{n'} \alpha_{n'}^j \alpha_{n'}^j \pi_{p,nn'}^j \beta^j (\sigma^j - 1) / \sigma^j}_{\sum_{j=1}^{n'} \alpha_{n'}^j \alpha_{n'}^j \alpha_{n'}^j \alpha_{n'}^j \beta^j (\sigma^j - 1) / \sigma^j}_{\sum_{j=1}^{n'} \alpha_{n'}^j \alpha_{n'}^j \alpha_{n'}^j \alpha_{n'}^j \beta^j (\sigma^j - 1) / \sigma^j}_{\sum_{j=1}^{n'} \alpha_{n'}^j \alpha_{n'}^j \alpha_{n'}^j \beta^j (\sigma^j - 1) / \sigma^j}_{\sum_{j=1}^{n'} \alpha_{n'}^j \alpha_{n'}^j \alpha_{n'}^j \beta^j (\sigma^j - 1) / \sigma^j}_{\sum_{j=1}^{n'} \alpha_{n'}^j \alpha_{n'}^j \alpha_{n'}^j \beta^j (\sigma^j - 1) / \sigma^j}_{\sum_{j=1}^{n'} \alpha_{n'}^j \alpha_{n'}^j \alpha_{n'}^j \beta^j (\sigma^j - 1) / \sigma^j}_{\sum_{j=1}^{n'} \alpha_{n'}^j \alpha_{n'}^j \alpha_{n'}^j \alpha_{n'}^j \beta^j (\sigma^j - 1) / \sigma^j}_{\sum_{j=1}^{n'} \alpha_{n'}^j \alpha_{n'}^j \alpha_{n'}^j \alpha_{n'}^j \beta^j (\sigma^j - 1) / \sigma^j}_{\sum_{j=1}^{n'} \alpha_{n'}^j \alpha_{n'}^j$$

private demand for capital

$$(1 - \mu_n \theta_n) \mathcal{K}_n r_{s,n} = \underbrace{\sum_j \sum_{n'} \mathcal{E}_{n'} \alpha_{n'}^j \pi_{s,nn'}^j \beta^j (\sigma^j - 1) / \sigma^j}_{\text{output}}$$

state demand for capital

Migration and labor market clearing

$$L_{n} = \sum_{n'} \pi_{n'n}^{L} \bar{L}_{n'}, \quad L_{n} w_{n} = \underbrace{\sum_{i} \sum_{j} \sum_{n'} E_{n'} \alpha_{n'}^{j} \pi_{i,nn'}^{j} (1 - \beta^{j}) (\sigma^{j} - 1) / \sigma^{j}}_{(\sigma^{j} - 1)}$$

total demand for labor

Provincial budget constraint

$$E_n = w_n L_n + r_{p,n} \mu_n \theta_n K_n + r_{s,n} (1 - \mu_n \theta_n) K_n + \sum_i \sum_{n'} E_{n'} \pi_{i,nn'} / \sigma^j + Def_n$$

factor income + profit + trade deficit

Testable Prediction Regarding θ_n - Proposition 1

• Two simplifying assumptions for **Proposition 1** regarding θ_n :

- single sector
- small open economy
- Proposition 1: Lower θ_n (worse financial contractability) leads to lower local wage (w_n), higher rental rate for private capital (r_{p,n}). When θ_n is sufficiently low, lower θ_n leads to lower rental rate for state capital (r_{s,n}).

Proposition 1

Proposition 1

- Intuitively, worse financial friction worsens efficient use of capital, thereby lowering wage.
- Impact on r is decomposed as:

$$\partial \ln r_{p,n} = \underbrace{-\frac{1}{(\sigma-1)\beta+1} \partial \ln \theta_n}_{\text{change in capital supply}} \underbrace{-\frac{(\sigma-1)(1-\beta)}{(\sigma-1)\beta+1} \partial \ln w_n}_{\text{wage complementarity effect}}$$
$$\partial \ln r_{s,n} = \underbrace{\frac{\mu_n \theta_n}{1-\mu_n \theta_n} \frac{1}{(\sigma-1)\beta+1} \partial \ln \theta_n}_{\text{change in capital supply}} \underbrace{-\frac{(\sigma-1)(1-\beta)}{(\sigma-1)\beta+1} \partial \ln w_n}_{\text{wage complementarity effect}}$$

Regions with lower θ has higher r_s and experiences net capital inflow (in the dynamic extension).

Measure of FF - Proposition 2

 Proposition 2: Dispersion in rental rates increase with the degree of financial friction. Specifically,

$$\frac{\mu_n \theta_n}{1 - \mu_n \theta_n} = \left(\frac{r_{p,n}}{r_{s,n}}\right)^{-1} \frac{\sum_j R_{p,n}^j \frac{\beta^j (\sigma^j - 1)}{\sigma^j}}{\sum_j R_{s,n}^j \frac{\beta^j (\sigma^j - 1)}{\sigma^j}}$$

where R is the revenue, β is capital share and σ is elasticity of substitution.

Our measure of financial friction:

$$\underbrace{FF_n}_{\text{relative supply}} = \underbrace{\ln(r_{s,n}) - \ln(r_{p,n})}_{\text{price dispersion}} - \underbrace{\ln\left(\frac{\sum_j R_{s,n}^j \frac{\beta^j(\sigma^j - 1)}{\sigma^j}}{\sum_j R_{s,n}^j \frac{\beta^j(\sigma^j - 1)}{\sigma^j}}\right)}_{\text{relative demand}}$$

Measure of MRPK

- Idea follows Wu (18')
- A firm with Cobb-Douglas production function under monopolistic competition:

$$\ln(MRPK_{it}) \equiv \frac{\partial R_{it}}{\partial K_{it}} = \ln(ARPK_{it}) + \ln(\beta_i(1 - 1/\sigma_i))$$

After first-order approximation and arrangement:

$$\ln(ARPK_{it}) = \gamma_0 + \gamma_{1t} \ln\left(1 - \frac{\Pi_{it}}{R_{it}}\right) + Ind_{it} + \ln(MRPK_{it})$$

Estimate of MRPK

$$\ln(M\hat{R}PK_{it}) = \ln(ARPK_{it}) - \hat{\gamma}_0 + \hat{\gamma}_{1t} \ln\left(1 - \frac{\Pi_{it}}{R_{it}}\right) + \hat{Ind}_{it}$$

▶ We then average *MRPK*_{it} by ownership and region.

Outline

- 1. Introduction
- 2. Model
- 3. Reduced-form Evidence
- 4. Model Estimation
- 5. Counterfactual Results
- 6. Conclusion

Regression Specifications

Province-pair net export

$$ln(NX_{nn't}) = \gamma_1(FF_{n',t-1} - FF_{n,t-1}) + \gamma_2 \ln(d_{nn'}) + \gamma_3(NT_{n',t-1} - NT_{n,t-1}) + D_n + D_{n'} + D_t + \epsilon_{nn't}$$

Province-level net export

$$NX_{nt} = \lambda_1 FF_{n,t-1} + \lambda_2 \ln(NT_{n,t-1}) + D_t + \epsilon_{nt}$$

Province-level wage

$$\ln(Wage_{nt}) = \eta_1 FF_{n,t-1} + \eta_2 \ln(NT_{n,t-1}) + D_t + \epsilon_{nt}$$

Migration ratio

$$\ln \pi_{nn't}^{L} = \xi_1 FF_{n',t-1} + \xi_2 \ln(d_{nn'}) + D_n + D_{n'} + D_t + \epsilon_{nn't}$$

Data

Net export by pair

- inter-provincial trade data (2002, 2012)
- Financial friction
 - Chinese firm-level data (1998-2011)
- Provincial wage, Net export
 - statistical yearbook (1998-2011)
- Migration ratio
 - census survey (2000, 2010)

Table 2: Panel Results Using Provincial Paired Data						
	(1)	(2)	(3)	(4)		
	Log NX	Log NX	Log Net GFCF	Log Net GFCF		
VARIABLES	Lagged one year	Average of the last three years	Lagged one year	Average of the last three years		
Diff (FF)	0.267*	0.311***	0.629***	0.615***		
	(0.144)	(0.111)	(0.169)	(0.142)		
Log Distance	-1.096***	-1.106***	-1.140***	-1.147***		
	(0.0895)	(0.0888)	(0.115)	(0.115)		
Diff (Net Transfers)	-1.569	-0.941	-0.199	-0.168		
	(1.587)	(1.462)	(1.809)	(1.770)		
Observations	869	869	864	864		
Adjusted R^2	0.608	0.610	0.767	0.769		
Origin FE	YES	YES	YES	YES		
Destination FE	YES	YES	YES	YES		
Year FE	YES	YES	YES	YES		

m 1 1

Table 5: Panel Results Using Provincial Data					
	(1)	(2)			
	NX	NX			
VARIABLES	Lagged one year	Average of the last three years			
FF	-0.472***	-0.605***			
	(0.0720)	(0.0872)			
Net Transfers	-0.489	-0.283			
	(0.397)	(0.396)			
Observations	370	371			
Adjusted R^2	0.163	0.179			
Year FE	YES	YES			
Transfers ervations isted R ² FE	(0.0720) -0.489 (0.397) 370 0.163 YES	(0.0872) -0.283 (0.396) 371 0.179 YES			

1.0

Table 4: Panel Results Using Provincial Data						
	(1)	(2)				
	ln(Wage)	ln(Wage)				
VARIABLES	Lagged one year	Average of the last three years				
FF	-0.0457***	-0.0471***				
	(0.0173)	(0.0176)				
Net Transfers	0.388***	0.372***				
	(0.126)	(0.131)				
Observations	370	371				
Adjusted R^2	0.790	0.781				
Year FE	YES	YES				

Table 5: Panel Results Using Provincial Data					
	(1)	(2)			
	ln(Migration Share)	ln(Migration Share)			
VARIABLES	Lagged one year	Average of the last three years			
Destination FF	-0.158***	-0.216***			
	(0.0381)	(0.0574)			
Log Distance	-1.052***	-1.049***			
	(0.0170)	(0.0172)			
Observations	1,922	1,891			
Adjusted R^2	0.822	0.822			
Origin FE	YES	YES			
Destination FE	YES	YES			
Year FE	YES	YES			

Outline

- 1. Introduction
- 2. Model
- 3. Reduced-form Evidence
- 4. Model Estimation
- 5. Counterfactual Results
- 6. Conclusion

Parameters

Table 6: Parameters For Quantitative Model						
σ^L	migration elasticity	Tombe and Zhu (2018)				
$\{\sigma^j\}_{j\in J}$	elasticity of substitution	Caliendo et al. (2017)				
	Agriculture and Mining	8.2				
	Manufacturing Sectors	4.4				
	Nontraded services	2.8				
$\{\alpha_n^j\}_{n\in N,\ j\in J}$	expenditure share	input-output table				
$\{\beta^j\}_{j\in J}$	capital share	firm level data				
$\{K_n\}_{n\in\mathbb{N}}$	capital stock	Holz and Yue (2018)				
$\{\overline{L}_n\}_{n\in\mathbb{N}}$	hukou registration	2010 census data				
$\{d_{nn'}^j\}_{n,n'\in N, j\in J}$	iceberg trade cost	estimated following Novy (2013)				
$\{d_{nn'}^L\}_{n,n'\in N}$	migration cost	estimated following Novy (2013)				
B_n	local amenities	jointly estimated to fit the				
\tilde{M}_n^j	productivity measure of firms	migration share, provincial output				
$\mu \theta_n$	private capital share	and dispersion in rental rates				

27/40

Novy 13'

Migration ratio can be expressed as:

$$\pi_{n'n}^{L} = \frac{B_n \left(\frac{w_n}{P_n d_{n'n}^{L}}\right)^{\sigma^{L}}}{\sum_n B_n \left(\frac{w_n}{P_n d_{n'n}^{L}}\right)^{\sigma^{L}}}$$
$$\pi_{i,nn'}^{j} = \frac{M_{i,n}^{j} \left(w_n^{1-\beta^{j}} r_{i,n}^{\beta^{j}} d_{nn'}^{j} / z_{i,n}^{j}\right)^{1-\sigma^{j}}}{\sum_n \sum_i M_{i,n}^{j} \left(w_n^{1-\beta^{j}} r_{i,n}^{\beta^{j}} d_{nn'}^{j} / z_{i,n}^{j}\right)^{1-\sigma^{j}}}$$

Under the symmetric trade/migration cost assumption,

$$d_{nn'}^{L} = d_{n'n}^{L} = \left(\frac{\pi_{nn'}^{L}\pi_{n'n}^{L}}{\pi_{n'n'}^{L}\pi_{nn}^{L}}\right)^{-\frac{1}{2\sigma^{L}}}$$

and

$$d_{nn'}^{j} = d_{n'n}^{j} = \left(\frac{\sum_{i} \pi_{i,nn'}^{j} \sum_{i} \pi_{i,n'n}^{j}}{\sum_{i} \pi_{i,n'n'}^{j} \sum_{i} \pi_{i,nn}^{j}}\right)^{\frac{1}{2(1-\sigma^{j})}}$$

Estimation

• Estimate $\hat{\hat{M}}_{p,n}^{j}$, \hat{B}_{n} , $\hat{\mu}_{n}\theta_{n}$ to minimize the sum of squared error of model and data:

$$\left\{\hat{\tilde{M}}_{p,n}^{j},\hat{B}_{n},\hat{\mu_{n}}\theta_{n}\right\} \equiv \operatorname{argmin}\sum_{j}\sum_{n}\sum_{n'}\left(\hat{X}_{n}^{j}-X_{n}^{j}\right)^{2} + \sum_{n}\left(\hat{\pi}_{nn}^{L}-\pi_{nn}^{L}\right)^{2} + \sum_{n}\left(\frac{\hat{r}_{p,n}}{\hat{r}_{s,n}}-\frac{r_{p,n}}{r_{s,n}}\right)^{2}$$

where X_n^j is provincial sectoral output (relative to Beijing), π_{nn}^L is migration share, $r_{p,n}/r_{s,n}$ is dispersion in rental rates.

Model Goodness of Fit

Model Goodness of Fit

Outline

- 1. Introduction
- 2. Model
- 3. Reduced-form Evidence
- 4. Model Estimation
- 5. Counterfactual Results
- 6. Conclusion

Counterfactual Results

Benchmark: model estimated to data around 2010

- NoFF: no financial friction between private and state firms in a given province
 - increase θ_n until rental rates between private and state firms are equalized
- NoNFF: no national financial friction, no financial friction between ownership and provinces
 - integrated capital market

Perturbation of θ_n

▶ 1% increase in θ_n from the Benchmark

34/40

Counterfactual Results

Illustration of NoFF Counterfactual

Counterfactual Results

Illustration of NoNFF Counterfactual

Percentage Change Relative To Benchmark

	Real Income (Consumption)		Real Wage		Labor		Real Income per capita	
	noFF	noNFF	noFF	noNFF	noFF	noNFF	noFF	noNFF
National	1.08	3.88	1.04	3.11				
Beijing	0.98	-3.38	1.12	-3.36	-0.18	-5.19	1.16	1.91
Shanghai	1.01	13.41	0.91	19.88	-0.09	10.35	1.10	2.77
Tianjin	0.61	1.91	1.12	-3.49	-0.08	-1.93	0.70	3.92
Jiangsu	1.57	-1.04	0.97	-2.86	-0.02	-2.18	1.60	1.17
Zhejiang	0.51	1.71	0.26	10.53	-0.35	1.95	0.87	-0.24
Fujian	-0.63	8.91	0.29	21.17	-0.21	3.75	-0.42	4.97
Guangdong	0.34	-0.82	0.32	0.49	-0.28	-0.79	0.63	-0.03
Shandong	2.46	8.25	2.00	21.75	0.14	3.48	2.32	4.62
InnerMongolia	-0.44	10.00	0.95	-22.32	-0.08	-6.45	-0.36	17.58
Hubei	0.78	-0.92	0.91	-6.51	-0.03	-2.05	0.81	1.15
Chongging	3.86	1.00	2.90	-18.27	0.46	-6.52	3.39	8.05
Shaanxi	1.71	7.16	2.54	7.92	0.26	1.72	1.45	5,35
Liaoning	1.15	4.86	1.35	10.18	0.03	2.72	1.12	2.09
lilin	0.58	1.10	1.10	-18.28	-0.03	-4.34	0.61	5.69
Ningxia	1.75	2.13	1.43	-0.53	0.01	-0.06	1.74	2.19
Hunan	0.17	18.83	0.64	40.56	-0.07	6.00	0.24	12.10
Hainan	0.76	6.39	0.75	6.38	-0.10	1.04	0.86	5.29
Henan	2.51	1.88	2.01	-15.21	0.17	-3.33	2.34	5.40
Xinijang	0.88	3.44	0.59	-20.79	-0.21	-5.81	1.09	9.82
Sichuan	1.37	4.22	1.25	10.83	0.01	2.44	1.35	1.74
Hebei	0.03	2.55	0.98	-3.21	-0.05	-0.19	0.09	2.74
Anhui	0.75	7.81	0.46	22.77	-0.15	4.60	0.90	3.07
Oinghai	3.15	24.84	3.14	-31.01	0.45	-9.06	2.69	37.28
liangxi	0.10	0.11	0.37	2.18	-0.10	-0.93	0.20	1.05
Shanxi	-0.46	4.50	0.72	-1.89	-0.08	0.12	-0.38	4.38
Heilongjiang	0.00	4.57	1.04	-6.91	-0.07	-2.20	0.06	6.91
Guangxi	4.73	4.72	4.03	-9.57	0.54	-2.31	4.17	7.19
Guizhou	4.17	9.84	3.99	15.12	0.65	2.04	3.49	7.64
Yunnan	0.47	0.35	0.45	-11.40	-0.09	-2.17	0.57	2.58
Gansu	1.23	3.86	1.50	5.34	0.03	1.38	1.19	2.45

Complementarity Between Labor and Capital Movement

Change in real income

	Migration Cost					
	Full Half Zero					
noFF:Benchmark	1.08	1.05	1.00			
noNFF:Benchmark	3.88	4.51	6.01			

Outline

- 1. Introduction
- 2. Model
- 3. Reduced-form Evidence
- 4. Model Estimation
- 5. Counterfactual Results
- 6. Conclusion

Conclusion

- We build a model of financial friction that explains regional capital flow and migration flow.
- Estimated model around year 2010 shows up to 4% real income game from removing financial friction.
- The impact is enhanced with reduced migration cost.