

How much should central banks lean against the wind? (Work in progress) Teerat Wongrattanapiboon

Model Development Unit (MDU)

Motivation

What've been done in the past?

DSGE model

Household is optimistic:

solve optimization problem with fixed probability of crisis ($m{\epsilon}$)

 $oldsymbol{\epsilon}$ is a small constant number

Model with probability of crisis

Central bank is rational:

solve optimization problem with probability of crisis (γ)

 $oldsymbol{\gamma}$ is a function of loan growth

Traditional household's problem

Goal: Maximize welfare function subject to budget constraint

HH's problems in the face of crisis

Traditional model Teerat's model $S_{t} = \frac{C_{t}^{1-\sigma}}{1-\sigma} - \frac{L_{t}^{1+\psi}}{1+\psi} + \beta S_{t+1} \qquad S_{t} = \frac{C_{t}^{1-\sigma}}{1-\sigma} - \frac{L_{t}^{1+\psi}}{1+\psi} + \beta(1-\epsilon)S_{t+1} + \beta(\epsilon)S_{t+1}^{c}$ $C_{t+1}^c = w_1 C_t$ $P_{t+1}^c = w_2 P_t$ subject to $P_t C_t + \frac{B_{t+1}}{1+i_t} = W_t L_t + B_t$

 w_1, w_2 are percentages of consumption and price level in crisis state

Euler equation and IS curve

Traditional model

Teerat's model

$$\left(\frac{C_{t+1}}{C_t}\right)^{\sigma} = \frac{\beta(1+i_t)}{(1+\pi_{t+1})} \qquad \left(\frac{C_{t+1}}{C_t}\right)^{\sigma} \left(1-\frac{(\epsilon)\beta w_1^{-\sigma}(1+i_t)}{w_2}\right) = \frac{\beta(1-\epsilon)(1+i_t)}{(1+\pi_{t+1})}$$

 $y_{t+1} = y_t - b_1 \pi_{t+1} + b_2 i_t \qquad \qquad y_{t+1} = y_t - c_1 \pi_{t+1} + c_2 i_t + c_3$

$$b_1, b_2, c_1, c_2, c_3$$
 are constant

Two types of firm & Phillips curve

Goal : Minimize a quadratic loss function that

depends on output and inflation

Rewrite with recursive relationship

subject to

$$\pi_t = \beta \pi_{t+1} + \kappa y_t$$

Notations	Meaning
У	Output gap
π	Inflation gap
β	Discount factor
λ	Weight of output gap
κ	Constant
М	Value function
1	

Central bank's problems with financial stability

subject to

ธนาคารแห่งประเทศไทย BANK OF THAILAND

Market clearing conditions

$$\begin{array}{c} 1 \\ C_{t}^{-\sigma} = \beta(\epsilon)(C_{t+1}^{c})^{-\sigma} \left(\frac{P_{t}}{P_{t+1}^{o}}\right)(1+i_{t}^{c}) + \beta(1-\epsilon)C_{t+1}^{-\sigma} \left(\frac{P_{t}}{P_{t+1}}\right)(1+i_{t}) & i_{t} = X(O_{t})y_{t} + Y(O_{t})\pi_{t} + Z(O_{t}) \\ \end{array}$$

$$\begin{array}{c} 2 \\ P_{t+1}^{c} = w_{2}P_{t} & L_{t}^{\psi}P_{t} = W_{t}C_{t}^{-\sigma} & P_{t}^{1-\omega} = (1-\theta)(P_{t}^{*})^{1-\omega} + (\theta)P_{t-1}^{1-\omega} \\ \end{array}$$

$$\begin{array}{c} 9 \\ P_{t+1}^{c} = w_{2}P_{t} & L_{t}^{\psi}P_{t} = W_{t}C_{t}^{-\sigma} & P_{t}^{1-\omega} = (1-\theta)(P_{t}^{*})^{1-\omega} + (\theta)P_{t-1}^{1-\omega} \\ \end{array}$$

$$\begin{array}{c} 0 \\ P_{t+1}^{*} = w_{1}C_{t} & Y_{t}^{c} = C_{t}^{c} & \left(\frac{P_{t}^{*}}{P_{t}}\right) = \left(\frac{\omega}{1-\omega}\right)\frac{\sum_{t=0}^{\omega}\theta^{t}\beta^{t}C_{t}^{1-\sigma}\psi_{t}\left(\frac{P_{t}}{P_{0}}\right)^{\omega}}{\sum_{t=0}^{\omega}\theta^{t}\beta^{t}C_{t}^{1-\sigma}\left(\frac{P_{t}}{P_{0}}\right)^{\omega-1}} \\ \end{array}$$

$$\begin{array}{c} 10 \\ Y_{t}^{*} = C_{t} & i_{t}^{c} = i_{t} & O_{t} = \rho_{0}O_{t-1} + \phi_{i}i_{t} + \phi_{\pi}\left(\frac{P_{t+1}-P_{t}}{P_{t}}\right) - \phi_{y}Y_{t} + \phi_{0} \end{array}$$

Full-blown Taylor's rule

$$i_t = X(O)y_t + Y(O)\pi_t + Z(O)$$

$$Y(O) = \left(\frac{\sigma - \sigma c_1}{c_2 c_3 + c_1 c_3}\right) \left(\frac{c_2 c_4 m}{\sigma - \sigma c_1} + \frac{k}{m(c_7 - c_7 \gamma(O))}\right) \quad \Longrightarrow \quad \frac{dY(O)}{dO} \text{ negative}$$

$$Z(O) = \left(\frac{\sigma - \sigma c_1}{c_2 c_3 + c_1 c_3}\right) \left(\frac{1 - c_1 - c_2}{\sigma - \sigma c_1} + \frac{\beta \phi(O) c_6 - c_8 \gamma(O)}{c_7 - c_7 \gamma(O)}\right)$$

 $\frac{dZ(O)}{dO}$ positive

Meaning
$\frac{\beta \epsilon (1+i_{ss})}{w_1^\sigma w_2}$
$\frac{\beta(1-\epsilon)(1+i_{ss})}{(1+\pi_{ss})}$
$\frac{i_{ss}}{1+i_{ss}}$
$\frac{\pi_{ss}}{1+\pi_{ss}}$
$\frac{\lambda k w_1}{m}$
$M_{t+1}^c - M_{t+1}$
$eta\lambda k$
$\beta c_5(1-w_1)$

Teerat's rule

$$i_t = X(O)y_t + Y(O)\pi_t + Z(O)$$

X(O),Y(O),Z(O) are functions of loan growth

Key takeaways:

- 1. Coefficient of output and inflation gaps
- 2. Additional term that is always positive
- 3. Signs of partial derivatives

Calibration – The process of restricting parameters in an economic model so that the model is consistent with long run growth facts and microeconomic observations.

Parameters to calibrate:

$$\beta, \sigma, l_1, l_2, \epsilon, i_{ss}, \pi_{ss}, \kappa, \lambda, \phi_0, \phi_y, \phi_\pi, \phi_i, h_0, h_1$$

Run regression on Thai data:

$$O_t = \rho_O O_{t-1} + \phi_i (i_t + i_{ss}) + \phi_\pi (\pi_t + \pi_{ss}) + \phi_y y_t + \phi_0$$

Optimal policy rate in response to severity of crisis

Expand the model

Firms solve optimization problems with probability of crisis

Add financial sector to the model

Acknowledgement

P' Note

P' Pat

WARAPONG WONGWACHARA

PONGPITCH AMATYAKUL

P' Blink SIRAWIT WORAMONGKHON