Periphery Dealers in Over-the-counter Markets

Chutiorn Tontivanichanon

PIER Research Exchange

15 October 2019

Chutiorn Tontivanichanon (LSE)

Periphery Dealers in OTC Markets

15 October 2019 1 / 23

3

Empirical Facts

Figure: Inter-dealer network for securitized product (Hollifield et al (2017)), corporate bonds (Di Maggio et al (2017)), and municipal bonds (Li & Schürhoff (2019))

Persistent core-periphery dealer network:

- core (supplier) → market-making (principal)
- periphery (distributor) \rightarrow pre-arrange trades between central dealers and investors (riskless principal/agency)

This Paper

Question: Why some buy-side investors prefer trading with periphery dealers (distributors) instead of core dealers (suppliers)? Why periphery dealers can co-exist with core dealers?

Objective:

- construct a game-theoretic model to study strategic dealer choice of buy-side investors.
- implications of vertical market fragmentation on market efficiency and stability.

Theoretical Framework:

Literature: (random) search and matching model.

This paper: long-term non-binding relationship formation model

(日) (周) (三) (三)

This Paper

Question: Why some buy-side investors prefer trading with periphery dealers (distributors) instead of core dealers (suppliers)? Why periphery dealers can co-exist with core dealers?

Objective:

- construct a game-theoretic model to study strategic dealer choice of buy-side investors.
- implications of vertical market fragmentation on market efficiency and stability.

Theoretical Framework:

Literature: (random) search and matching model. **This paper:** long-term non-binding relationship formation model

- 4 目 ト - 4 日 ト - 4 日 ト

Outline

- Basic model.
 - Why/how do investors form long-term relationship with dealers?
- 2 The model with agency dealer.
 - When will investors prefer trading with periphery dealers?
- **③** The model with heterogeneous investors (SKIP)
- Oiscussion on allocative efficiency and market stability.
- Onclusion

Basic Model – Primitives

- A market for indivisible goods liquidity provision service.
- Infinite periods, discount factor δ .
- Players:
 - n number of homogeneous long-lived investors
 - ► a long-lived principal dealer *P* (supplier).
 - a non-strategic long-lived principal dealer P' (supplier).

Basic Model – Investors

Investor $i \in I$

- i.i.d. one-unit liquidity demand $l_{it} \in \{0,1\}$ with $Pr(l_{it} = 1) = q$.
- Private valuation of liquidity service

$$V_{it} = \begin{cases} 0 & \text{if } I_{it} = 0 \\ V & \text{if } I_{it} = 1. \end{cases}$$

- Cash endowment V_L
- Payoff = $\hat{1}(obtain \ liquidity)V_{it}+$ net cash holding

Basic Model – Principal Dealers

A principal dealer P (i.e core dealers)

Can provide liquidity service at per-unit cost of

$$C_t = \begin{cases} 0 & \text{if } heta_t = G \\ C & \text{if } heta_t = B. \end{cases}$$

where $\theta_t = random$ market state with $Pr(\theta_t = G) = p$

• Payoff = profits from providing liquidity service.

A non-strategic principal dealer P'

- Same cost function with P
- Always quote price $= C_t$ (outside option of investors)

Trading Timeline – Take-it-or-leave-it Bargaining

For each period t,

- **()** θ_t realized and I_{it} observable to *i*.
- **2** Principal dealer *P* quotes a price $\beta_{it} \ge 0$ to every investor.
- **③** Each investor *i* decides $\gamma_{it} \in \{0, 1\}$.
- $P \text{ observes } I_t = \{I_{it}\}_{\forall i}.$
 - Equilibrium: P and I maximize their discounted sum of all future payoffs.

Basic Model – Trade Friction

Assumption: $V > C > V_L$

- Urgent asset demand with insufficient cash.
- Urgent needs to sell asset to meet high cash target.
- Implication: no trade/asset fire-sale phenomenon during bad states

Result I: Trade Occurs With Long-term Relationship

Non-binding agreement between P and i

- P provides liquidity at price x_B in bad states.
- *i* pays x_G in good states.
- relationship continues as long as no one deviates...

Result II: But Investors Must Be Frequent Customers...

- Commitment problem \rightarrow relationship failure.
- Proposition: investors must have frequent liquidity shock for successful relationship.

What if investors rarely need liquidity ...?

Result II: But Investors Must Be Frequent Customers...

- Commitment problem \rightarrow relationship failure.
- Proposition: investors must have frequent liquidity shock for successful relationship.

What if investors rarely need liquidity ...?

Result II: But Investors Must Be Frequent Customers...

- Commitment problem \rightarrow relationship failure.
- Proposition: investors must have frequent liquidity shock for successful relationship.

What if investors rarely need liquidity ...?

• No relationship when Q low.

- What if I forms coalition \rightarrow pool of liquidity demand $\rightarrow Q$ high.
- BUT i must know what others did for collective punishment

- No relationship when Q low.
- What if I forms coalition \rightarrow pool of liquidity demand \rightarrow Q high.
- BUT *i* must know what others did for collective punishment

- No relationship when Q low.
- What if I forms coalition \rightarrow pool of liquidity demand \rightarrow Q high.
- BUT *i* must know what others did for collective punishment

limited information

• Currently: post-trade information without trader identity.

• A third party A (i.e. periphery dealers) as an agent for P (i.e. core dealers) and I in partially-transparent market.

(C) A as facilitator under limited information

- Currently: post-trade information without trader identity.
- A third party A (i.e. periphery dealers) as an agent for P (i.e. core dealers) and I in partially-transparent market.

The Model with Agency Dealer

Add an agency dealer A (i.e periphery dealers) to the model

- Intermediate trades between P and I
- No intermediation cost and can charge fees to investors.
- Payoff: profits from intermediation fees

- Trading: Sequential take-it-or-leave-it bargaining.
- Relationship: informal agreement on wholesale price, fees, and maximum quantity to sell in bad times (quota).

The Model with Agency Dealer

Add an agency dealer A (i.e periphery dealers) to the model

- Intermediate trades between P and I
- No intermediation cost and can charge fees to investors.
- Payoff: profits from intermediation fees

- Trading: Sequential take-it-or-leave-it bargaining.
- Relationship: informal agreement on wholesale price, fees, and maximum quantity to sell in bad times (quota).

周 ト イ ヨ ト イ ヨ

The Model with Agency Dealer

Add an agency dealer A (i.e periphery dealers) to the model

- Intermediate trades between P and I
- No intermediation cost and can charge fees to investors.
- Payoff: profits from intermediation fees

- Trading: Sequential take-it-or-leave-it bargaining.
- Relationship: informal agreement on wholesale price, fees, and maximum quantity to sell in bad times (quota).

Result III: Agency Dealer Helps **Infrequent** Investors Obtain Liquidity in Bad Times...

How: liquidity shock aggregation + low quota

Result III: Agency Dealer Helps **Infrequent** Investors Obtain Liquidity in Bad Times...

How: liquidity shock aggregation + low quota

But:

- must leave enough surplus (intermediation fees) to incentivize A (agency cost).
- effective only when the investors rarely demand liquidity simultaneously – HERE.

Result III: Agency Dealer Helps **Infrequent** Investors Obtain Liquidity in Bad Times...

Corollary: Provided that the probability of liquidity shock is low enough, A can help **excluded** investors form relationship if $\frac{quota}{n(investors)}$ is sufficiently low.

Empirical Implication: Longer Intermediation Chain \neq Higher Price

Let x_G = minimum price that would induce P to form direct relationship.

Indirect relationship via A

Provided that the investors cannot form direct relationship with P

- Finding: $X_G + F_G < \underline{x_G}$
- Tradeoff between execution cost and trading speed.
- Infrequent investors can only commit to relationship contract offered by agency dealer.

< 回 ト < 三 ト < 三 ト

Implications on Market Efficiency and Stability

Efficiency - improving!

Stability (likelihood of first-trigger event of systemic crisis) – ambiguous!

- \uparrow as existing investors get liquidity during bad times.
- ↓ as ↑ participation of new investors facing liquidity shortage during extremely bad events.

Conclusion

This paper: construct a game-theoretic model to study strategic dealer choice of buy-side investors in OTC secondary asset markets.

Key insight: Infrequent investors trade with periphery dealers to obtain the benefit of long-term relationship.

Takeaway point: periphery dealers can improve market efficiency but might create market instability.

The model with heterogeneous investors - here

THANK YOU VERY MUCH!

3

(日) (同) (三) (三)

Appendix

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

The Model with Heterogeneous Investors

What we know so far...

- Low-liquidity-need investors choose agency dealer (i.e periphery dealers) to obtain the benefit of long-term relationship (i.e. costly liquidity in future bad states).
- What about high-liquidity-need investors?

Separating equilibrium

\rightarrow High-type investor: price & insurance coverage.

The Model with Heterogeneous Investors

What we know so far...

- Low-liquidity-need investors choose agency dealer (i.e periphery dealers) to obtain the benefit of long-term relationship (i.e. costly liquidity in future bad states).
- What about high-liquidity-need investors?

Separating equilibrium

Pooling equilibrium

 \rightarrow High-type investor: price & insurance coverage.

The Model with Heterogeneous Investors

Setting:

- Investors $\{H, L_1, L_2, \ldots, L_n\}$ with q_H, q_L .
- $q_L \in \mathcal{N}_{\epsilon}(0) \rightarrow (\text{almost})$ full insurance with $n^* = 1$.
- *n* sufficiently high to sustain any equilibrium.
- Lowest possible payoff for $\{P, A\}$.
- Investors pay F for only their trades \rightarrow no cross-subsidy.

Equilibrium:

• liquidity quota = 1 under separating equilibrium

Pooling Equilibrium: Existence

	n* increases one unit	n* unchanged
Efficiency	pooling > separating	separating > pooling
Existence	$nQ_L \geq rac{2+Q_H}{2p-1}$	q_H low & $nQ_L \in [\underline{Q}, \overline{Q}]$
Payoff	$\bar{P}, L\downarrow$	$P\downarrow$, L unknown

- A and P are complementary if A not too big.
- A may have too much power on the low-type.

BACK

Extra: Probability of Liquidity Shock (q) Matters

Low prob of liquidity shock

High prob of liquidity shock

BACK