Dual Sectors and Consumption Insurance in Developing Economies

Paphon Kiatsakuldecha

The University of Chicago

April 20, 2020

(日) (部) (注) (注) (三)

1/133

Paphon Kiatsakuldecha

- Core Question for Income-Consumption Dynamics:
 - How do income fluctuations translate into consumption fluctuations?
- In developed countries, most households are wage earners:
 - Income fluctuations mainly come from wage fluctuations.
 - Key question: how do wage fluctuations translate into consumption fluctuations?
- But, households in developing countries are very different, particularly in their income generating process.
- We cannot ask this same question to fully understand their responses to income changes.

- Core Question for Income-Consumption Dynamics:
 - How do income fluctuations translate into consumption fluctuations?
- In developed countries, most households are wage earners:
 - Income fluctuations mainly come from wage fluctuations.
 - Key question: how do wage fluctuations translate into consumption fluctuations?
- But, households in developing countries are very different, particularly in their income generating process.
- We cannot ask this same question to fully understand their responses to income changes.

- Core Question for Income-Consumption Dynamics:
 - How do income fluctuations translate into consumption fluctuations?
- In developed countries, most households are wage earners:
 - Income fluctuations mainly come from wage fluctuations.
 - Key question: how do wage fluctuations translate into consumption fluctuations?
- But, households in developing countries are very different, particularly in their income generating process.

• We cannot ask this same question to fully understand their responses to income changes.

- Core Question for Income-Consumption Dynamics:
 - How do income fluctuations translate into consumption fluctuations?
- In developed countries, most households are wage earners:
 - Income fluctuations mainly come from wage fluctuations.
 - Key question: how do wage fluctuations translate into consumption fluctuations?

イロン イロン イヨン イヨン 一日

- But, households in developing countries are very different, particularly in their income generating process.
- We cannot ask this same question to fully understand their responses to income changes.

A Case of Thai Rubber Farmers

• Excerpt from *Emerging Thailand: The Spirit of Small Enterprise*, a film showcasing *Townsend Thai Project*


(日) (部) (注) (注) (三)

A Case of Thai Rubber Farmers

- Tapping starts early in the morning when internal tree pressure is high; latex drips for 3-4 hours
- After collected, rubber is air-dried and sold to manufacturers typically on the same day.

A Case of Thai Rubber Farmers

- Long working hours and individual skills are highly involved in rubber production activities.
- Output also depends on climate; insufficient rain can greatly reduce rubber yield

A Case of Thai Rubber Farmers

- No production during dry months
- The household takes on another job as construction workers during that period of the year

Income and Consumption in Developing Countries

- Rural households in developing countries generally have income from both paid labor work and home production activities
 - Most of them are small farmers, livestock owners, or small business owners who also take on wage earning jobs for extra income.
 - Their income fluctuations come from both wage fluctuations and productivity fluctuations.
- More appropriate questions to ask:
 - How do their wage and productivity fluctuations translate into consumption fluctuations?
 - What are their responses to wage and productivity fluctuations?

・ロト ・ 日 ト ・ 日 ト ・ 日

Income and Consumption in Developing Countries

- Rural households in developing countries generally have income from both paid labor work and home production activities
 - Most of them are small farmers, livestock owners, or small business owners who also take on wage earning jobs for extra income.
 - Their income fluctuations come from both wage fluctuations and productivity fluctuations.
- More appropriate questions to ask:
 - How do their wage and productivity fluctuations translate into consumption fluctuations?
 - What are their responses to wage and productivity fluctuations?

(ロ) (同) (E) (E) (E) (O)()

• How do households avoid changing consumption when facing economic shocks?

- Types of Shocks
 - Income Shocks (Blundell, Pistaferri, Preston, 2008)
 - Wage Shocks (Heathcote, Storesletten, Violante, 2014)
 - This paper : Wage and Productivity Shocks
- Types of Responses
 - Adjusting Assets
 - Through Savings and Borrowings
 - Through government transfers
 - Through transfers within risk-sharing groups (Townsend, 1994)
 - Adjusting Labor Supply
 - Individual Hours (Heathcote, Storesletten, Violante, 2014)
 - Family Hours (Blundell, Pistaferri, Saporta, 2008)
 - Second Wage Job i.e. Uber (Koustas, 2018)
 - This paper : Hours in wage job and in home production

(日) (部) (注) (注) (三)

- How do households avoid changing consumption when facing economic shocks?
- Types of Shocks
 - Income Shocks (Blundell, Pistaferri, Preston, 2008)
 - Wage Shocks (Heathcote, Storesletten, Violante, 2014)
 - This paper : Wage and Productivity Shocks
- Types of Responses
 - Adjusting Assets
 - Through Savings and Borrowings
 - Through government transfers
 - Through transfers within risk-sharing groups (Townsend, 1994)
 - Adjusting Labor Supply
 - Individual Hours (Heathcote, Storesletten, Violante, 2014)
 - Family Hours (Blundell, Pistaferri, Saporta, 2008)
 - Second Wage Job i.e. Uber (Koustas, 2018)
 - This paper : Hours in wage job and in home production

イロト イヨト イヨト イヨト 三日

- How do households avoid changing consumption when facing economic shocks?
- Types of Shocks
 - Income Shocks (Blundell, Pistaferri, Preston, 2008)
 - Wage Shocks (Heathcote, Storesletten, Violante, 2014)
 - This paper : Wage and Productivity Shocks
- Types of Responses
 - Adjusting Assets
 - Through Savings and Borrowings
 - Through government transfers
 - Through transfers within risk-sharing groups (Townsend, 1994)
 - Adjusting Labor Supply
 - Individual Hours (Heathcote, Storesletten, Violante, 2014)
 - Family Hours (Blundell, Pistaferri, Saporta, 2008)
 - Second Wage Job i.e. Uber (Koustas, 2018)
 - This paper : Hours in wage job and in home production

- How do households avoid changing consumption when facing economic shocks?
- Types of Shocks
 - Income Shocks (Blundell, Pistaferri, Preston, 2008)
 - Wage Shocks (Heathcote, Storesletten, Violante, 2014)
 - This paper : Wage and Productivity Shocks
- Types of Responses
 - Adjusting Assets
 - Through Savings and Borrowings
 - Through government transfers
 - Through transfers within risk-sharing groups (Townsend, 1994)
 - Adjusting Labor Supply
 - Individual Hours (Heathcote, Storesletten, Violante, 2014)
 - Family Hours (Blundell, Pistaferri, Saporta, 2008)
 - Second Wage Job i.e. Uber (Koustas, 2018)
 - This paper : Hours in wage job and in home production

- How do households avoid changing consumption when facing economic shocks?
- Types of Shocks
 - Income Shocks (Blundell, Pistaferri, Preston, 2008)
 - Wage Shocks (Heathcote, Storesletten, Violante, 2014)
 - This paper : Wage and Productivity Shocks
- Types of Responses
 - Adjusting Assets
 - Through Savings and Borrowings
 - Through government transfers
 - Through transfers within risk-sharing groups (Townsend, 1994)
 - Adjusting Labor Supply
 - Individual Hours (Heathcote, Storesletten, Violante, 2014)
 - Family Hours (Blundell, Pistaferri, Saporta, 2008)
 - Second Wage Job i.e. Uber (Koustas, 2018)
 - This paper : Hours in wage job and in home production

• Research focusing on households in rural Thailand who have income from both labor work and home production activities

- Key mechanisms :
 - Income uncertainty from wage and productivity shocks
 - Consumption insurance from entering and reallocating working hours between two sectors
- Key questions :
 - How much consumption insurance do these households have against wage and productivity shocks?
 - How do their labor supplies in the two sectors respond to wage and productivity shocks?
 - How much consumption insurance achieved through this labor supply response channel?

- Research focusing on households in rural Thailand who have income from both labor work and home production activities
- Key mechanisms :
 - Income uncertainty from wage and productivity shocks
 - Consumption insurance from entering and reallocating working hours between two sectors
- Key questions :
 - How much consumption insurance do these households have against wage and productivity shocks?
 - How do their labor supplies in the two sectors respond to wage and productivity shocks?
 - How much consumption insurance achieved through this labor supply response channel?

- Research focusing on households in rural Thailand who have income from both labor work and home production activities
- Key mechanisms :
 - Income uncertainty from wage and productivity shocks
 - Consumption insurance from entering and reallocating working hours between two sectors

Key questions :

- How much consumption insurance do these households have against wage and productivity shocks?
- How do their labor supplies in the two sectors respond to wage and productivity shocks?
- How much consumption insurance achieved through this labor supply response channel?

- Research focusing on households in rural Thailand who have income from both labor work and home production activities
- Key mechanisms :
 - Income uncertainty from wage and productivity shocks
 - Consumption insurance from entering and reallocating working hours between two sectors
- Key questions :
 - How much consumption insurance do these households have against wage and productivity shocks?
 - How do their labor supplies in the two sectors respond to wage and productivity shocks?
 - How much consumption insurance achieved through this labor supply response channel?

- Research focusing on households in rural Thailand who have income from both labor work and home production activities
- Key mechanisms :
 - Income uncertainty from wage and productivity shocks
 - Consumption insurance from entering and reallocating working hours between two sectors
- Key questions :
 - How much consumption insurance do these households have against wage and productivity shocks?
 - How do their labor supplies in the two sectors respond to wage and productivity shocks?
 - How much consumption insurance achieved through this labor supply response channel?

- Research focusing on households in rural Thailand who have income from both labor work and home production activities
- Key mechanisms :
 - Income uncertainty from wage and productivity shocks
 - Consumption insurance from entering and reallocating working hours between two sectors
- Key questions :
 - How much consumption insurance do these households have against wage and productivity shocks?
 - How do their labor supplies in the two sectors respond to wage and productivity shocks?
 - How much consumption insurance achieved through this labor supply response channel?

Preview of the Results

 Household consumption responds very little to both wage and productivity shocks

• Labor supplies in both sectors respond significantly to both wage and productivity shocks

• Labor supply responses play significant roles in consumption insurance from both types of shocks.

(日) (部) (注) (注) (三)

Preview of the Results

 Household consumption responds very little to both wage and productivity shocks

• Labor supplies in both sectors respond significantly to both wage and productivity shocks

• Labor supply responses play significant roles in consumption insurance from both types of shocks.

Preview of the Results

 Household consumption responds very little to both wage and productivity shocks

• Labor supplies in both sectors respond significantly to both wage and productivity shocks

• Labor supply responses play significant roles in consumption insurance from both types of shocks.

- Consumption-Saving model where household chooses to supply working hours in wage labor market and home production activity
- Wage Labor Market: Fixed wage per hour
- Home Production Activity: Hours and Capital (Total Household Assets) as production inputs
- Household wages and productivities follow a joint Markov process
 - some certain skills (e.g. accounting) can be shared across wage jobs and home production activitities.
- Partial Equilibrium Setting:
 - Wage, Productivity, Interest Rate are exogenous
 - Villages are small relative to Thailand's economy; reasonable to consider them as small-open economies.

イロト イヨト イヨト イヨト 三日

- Consumption-Saving model where household chooses to supply working hours in wage labor market and home production activity
- Wage Labor Market: Fixed wage per hour
- Home Production Activity: Hours and Capital (Total Household Assets) as production inputs
- Household wages and productivities follow a joint Markov process
 - some certain skills (e.g. accounting) can be shared across wage jobs and home production activitities.
- Partial Equilibrium Setting:
 - Wage, Productivity, Interest Rate are exogenous
 - Villages are small relative to Thailand's economy; reasonable to consider them as small-open economies.

イロト イヨト イヨト イヨト 三日

- Consumption-Saving model where household chooses to supply working hours in wage labor market and home production activity
- Wage Labor Market: Fixed wage per hour
- Home Production Activity: Hours and Capital (Total Household Assets) as production inputs

• Household wages and productivities follow a joint Markov process

- some certain skills (e.g. accounting) can be shared across wage jobs and home production activitities.
- Partial Equilibrium Setting:
 - Wage, Productivity, Interest Rate are exogenous
 - Villages are small relative to Thailand's economy; reasonable to consider them as small-open economies.

- Consumption-Saving model where household chooses to supply working hours in wage labor market and home production activity
- Wage Labor Market: Fixed wage per hour
- Home Production Activity: Hours and Capital (Total Household Assets) as production inputs
- Household wages and productivities follow a joint Markov process
 - some certain skills (e.g. accounting) can be shared across wage jobs and home production activitities.
- Partial Equilibrium Setting:
 - Wage, Productivity, Interest Rate are exogenous
 - Villages are small relative to Thailand's economy; reasonable to consider them as small-open economies.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日 ・

- Consumption-Saving model where household chooses to supply working hours in wage labor market and home production activity
- Wage Labor Market: Fixed wage per hour
- Home Production Activity: Hours and Capital (Total Household Assets) as production inputs
- Household wages and productivities follow a joint Markov process
 - some certain skills (e.g. accounting) can be shared across wage jobs and home production activitities.
- Partial Equilibrium Setting:
 - Wage, Productivity, Interest Rate are exogenous
 - Villages are small relative to Thailand's economy; reasonable to consider them as small-open economies.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$\begin{split} V(A,W,Z;X) &= \max_{\{C,A,L^1,L^2,K\}} \{ U(C,L^1,L^2;X) + \beta \mathbb{E}[V(A',W',Z';X) \mid W,Z] \} \\ \text{s.t. } A' &= R \cdot A + W \cdot L^1 + F(A,L^2;Z) - C \\ & (W',Z') \in G((W,Z)) \\ & A' \geq 0 \end{split}$$

- C consumption, L^1 labor market hours, L^2 production hours, X taste-shifters (characteristics)
- Labor Income : $W \cdot L^1$
- Production Income : $F(A, L^2; Z)$
- No borrowing

• State variables : A, W, Z, X.

• Choice variables : C, L^1 , L^2 , A'

• Model implies choice variables as functions of state variables

• Objects of interest :

- $\frac{d \log(C)}{d \log(A)}$, $\frac{d \log(C)}{d \log(W)}$, and $\frac{d \log(C)}{d \log(Z)}$
- Similar derivatives on L^1, L^2
- Elasticities of Consumption and Hours on Wage/Productivity Shocks

(日) (部) (注) (注) (三)

• State variables : A, W, Z, X.

- Choice variables : C, L^1 , L^2 , A'
- Model implies choice variables as functions of state variables
- Objects of interest :
 - $\frac{d \log(C)}{d \log(A)}$, $\frac{d \log(C)}{d \log(W)}$, and $\frac{d \log(C)}{d \log(Z)}$
 - Similar derivatives on L^1, L^2
 - Elasticities of Consumption and Hours on Wage/Productivity Shocks

- State variables : A, W, Z, X.
- Choice variables : C, L^1 , L^2 , A'
- Model implies choice variables as functions of state variables

• Objects of interest :

- $\frac{d \log(C)}{d \log(A)}$, $\frac{d \log(C)}{d \log(W)}$, and $\frac{d \log(C)}{d \log(Z)}$
- Similar derivatives on L^1, L^2
- Elasticities of Consumption and Hours on Wage/Productivity Shocks

イロト イヨト イヨト イヨト 三日

- State variables : A, W, Z, X.
- Choice variables : C, L^1 , L^2 , A'
- Model implies choice variables as functions of state variables
- Objects of interest :
 - $\frac{d \log(C)}{d \log(A)}$, $\frac{d \log(C)}{d \log(W)}$, and $\frac{d \log(C)}{d \log(Z)}$
 - Similar derivatives on L^1, L^2
 - Elasticities of Consumption and Hours on Wage/Productivity Shocks

Transmission of Shocks onto Hours

• Suppose leisure is a normal good

• Income Effects :

• Increase in Wage or Productivity makes household works less hours on both sectors

Substitution Effects

- Increase in Wage makes household works more hours on labor market and less hours on home production
- Increase in Productivity makes household works less hours on labor market and more hours on home production

• Overall Effects : Combination of above determines the direction of $\frac{d \log(L^j)}{d \log(W)}$ and $\frac{d \log(L^j)}{d \log(Z)}$ for j = 1, 2.

- Suppose leisure is a normal good
- Income Effects :
 - Increase in Wage or Productivity makes household works less hours on both sectors
- Substitution Effects
 - Increase in Wage makes household works more hours on labor market and less hours on home production
 - Increase in Productivity makes household works less hours on labor market and more hours on home production

• Overall Effects : Combination of above determines the direction of $\frac{d \log(L^j)}{d \log(W)}$ and $\frac{d \log(L^j)}{d \log(Z)}$ for j = 1, 2.

- Suppose leisure is a normal good
- Income Effects :
 - Increase in Wage or Productivity makes household works less hours on both sectors
- Substitution Effects
 - Increase in Wage makes household works more hours on labor market and less hours on home production
 - Increase in Productivity makes household works less hours on labor market and more hours on home production

• Overall Effects : Combination of above determines the direction of $\frac{d \log(L^j)}{d \log(W)}$ and $\frac{d \log(L^j)}{d \log(Z)}$ for j = 1, 2.

イロト イヨト イヨト イヨト 三日

- Suppose leisure is a normal good
- Income Effects :
 - Increase in Wage or Productivity makes household works less hours on both sectors
- Substitution Effects
 - Increase in Wage makes household works more hours on labor market and less hours on home production
 - Increase in Productivity makes household works less hours on labor market and more hours on home production

• Overall Effects : Combination of above determines the direction of $\frac{d \log(L^j)}{d \log(W)}$ and $\frac{d \log(L^j)}{d \log(Z)}$ for j = 1, 2.

- Suppose leisure is a normal good
- Income Effects :
 - Increase in Wage or Productivity makes household works less hours on both sectors
- Substitution Effects
 - Increase in Wage makes household works more hours on labor market and less hours on home production
 - Increase in Productivity makes household works less hours on labor market and more hours on home production

• Overall Effects : Combination of above determines the direction of $\frac{d \log(L^j)}{d \log(W)}$ and $\frac{d \log(L^j)}{d \log(Z)}$ for j = 1, 2.

・ロト ・ 日 ト ・ 日 ト ・ 日

- Suppose leisure is a normal good
- Income Effects :
 - Increase in Wage or Productivity makes household works less hours on both sectors
- Substitution Effects
 - Increase in Wage makes household works more hours on labor market and less hours on home production
 - Increase in Productivity makes household works less hours on labor market and more hours on home production
- Overall Effects : Combination of above determines the direction of $\frac{d \log(L^j)}{d \log(W)}$ and $\frac{d \log(L^j)}{d \log(Z)}$ for j = 1, 2.

Why Reduced-Form?

• Recall : key quantities to be estimated are elasticities of consumption and hours on wages and productivities.

- These quantities can be estimated without fullying specifying functional forms for utility function
- Challenges for misspecification with structural approach for $U(C,L^1,L^2;{\cal X})$
 - Separability of consumption and labor hours in both sectors in household preference
 - Intertemporal preferences of consumption and labor hours in both sectors

Why Reduced-Form?

• Recall : key quantities to be estimated are elasticities of consumption and hours on wages and productivities.

- These quantities can be estimated without fullying specifying functional forms for utility function
- Challenges for misspecification with structural approach for $U(C,L^1,L^2;{\cal X})$
 - Separability of consumption and labor hours in both sectors in household preference
 - Intertemporal preferences of consumption and labor hours in both sectors

Why Reduced-Form?

- Recall : key quantities to be estimated are elasticities of consumption and hours on wages and productivities.
- These quantities can be estimated without fullying specifying functional forms for utility function
- Challenges for misspecification with structural approach for $U(C,L^1,L^2;{\cal X})$
 - Separability of consumption and labor hours in both sectors in household preference
 - Intertemporal preferences of consumption and labor hours in both sectors

Reduced-Form Model

•
$$c_t = \Theta'_{c,X} X_t + \eta_{c,A} a_t + \eta_{c,w} w_t + \eta_{c,z} z_t + \epsilon_t^c$$

•
$$a_{t+1} = \Theta'_{a,X} X_t + \eta_{c,A} a_t + \eta_{c,w} w_t + \eta_{c,z} z_t + \epsilon^a_t$$

• $D_t^1 = 1\{\delta_{l1,D1}D_{t-1}^1 + \delta_{l1,D2}D_{t-1}^2 + \Phi'_{l1,X}X_t + \phi_{l1,A}a_t + \phi_{l1,w}w_t + \phi_{l1,z}z_t + \zeta_t^{l1} > 0\}$

•
$$l_t^1 = D_t^1 \cdot [\Theta_{l1,X}' X_t + \eta_{l1,A} a_t + \eta_{l1,w} w_t + \eta_{l1,z} z_t + \epsilon_t^{l1}]$$

• $D_t^2 = 1\{\delta_{l2,D1}D_{t-1}^1 + \delta_{l2,D2}D_{t-1}^2 + \Phi'_{l2,X}X_t + \phi_{l2,A}a_t + \phi_{l2,w}w_t + \phi_{l2,z}z_t + \zeta_t^{l2} > 0\}$

•
$$l_t^2 = D_t^2 \cdot [\Theta'_{l2,X} X_t + \eta_{l2,A} a_t + \eta_{l2,w} w_t + \eta_{l2,z} z_t + \epsilon_t^{l2}]$$

- Linear decision rules in log for consumption, assets, hours (among participants), and taste-shifters.
- Probit rules for participations
- Household subscript *i* omitted
- Linear coefficients $\eta_{p,q}$ capture key derivative effects

 Wages and productivities are assumed to jointly evolve as a VAR(1) process:

•
$$\begin{bmatrix} w_{i,t+1} \\ z_{i,t+1} \end{bmatrix} = \begin{bmatrix} \mu'_{w,X}X_{i,t} \\ \mu'_{z,X}X_{i,t} \end{bmatrix} + \begin{bmatrix} \rho_{1,1} & \rho_{1,2} \\ \rho_{2,1} & \rho_{2,2} \end{bmatrix} \begin{bmatrix} w_{i,t} \\ z_{i,t} \end{bmatrix} + \begin{bmatrix} \epsilon^w_{i,t} \\ \epsilon^z_{i,t} \end{bmatrix}$$

Initial wages and productivities are assumed to have normal joint distribution:

•
$$\begin{bmatrix} w_{i,1} \\ z_{i,1} \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} \mu_{1,w} \\ \mu_{1,z} \end{bmatrix}, \begin{bmatrix} \sigma_{1,w}^2 & \rho_{w1,z1}\sigma_{1,w}\sigma_{1,z} \\ \rho_{w1,z1}\sigma_{1,w}\sigma_{1,z} & \sigma_{1,z}^2 \end{bmatrix})$$

 Coefficients ρ_{1,2}, ρ_{2,1} can suggest whether wages and productivities are co-evolving.

(ロ) (部) (目) (日) (日) (の)

- All error terms in the reduced-form specification, except the pairs $(\epsilon_{i,t}^{l1}, \zeta_{i,t}^{l1})$ and $(\epsilon_{i,t}^{l2}, \zeta_{i,t}^{l2})$, are assumed to be independent.
- This assumption allows for equation-by-equation estimation of the reduced-form system.
- This assumption is strong in a sense that any common factor that could impact a pair of model variables must be included in the controls $X_{i,t}$.
- Hence, the set of controls need to account as much as possible for household heterogeneities.

- All error terms in the reduced-form specification, except the pairs $(\epsilon_{i,t}^{l1}, \zeta_{i,t}^{l1})$ and $(\epsilon_{i,t}^{l2}, \zeta_{i,t}^{l2})$, are assumed to be independent.
- This assumption allows for equation-by-equation estimation of the reduced-form system.
- This assumption is strong in a sense that any common factor that could impact a pair of model variables must be included in the controls $X_{i,t}$.
- Hence, the set of controls need to account as much as possible for household heterogeneities.

- All error terms in the reduced-form specification, except the pairs $(\epsilon_{i,t}^{l1}, \zeta_{i,t}^{l1})$ and $(\epsilon_{i,t}^{l2}, \zeta_{i,t}^{l2})$, are assumed to be independent.
- This assumption allows for equation-by-equation estimation of the reduced-form system.
- This assumption is strong in a sense that any common factor that could impact a pair of model variables must be included in the controls $X_{i,t}$.

• Hence, the set of controls need to account as much as possible for household heterogeneities.

- All error terms in the reduced-form specification, except the pairs $(\epsilon_{i,t}^{l1}, \zeta_{i,t}^{l1})$ and $(\epsilon_{i,t}^{l2}, \zeta_{i,t}^{l2})$, are assumed to be independent.
- This assumption allows for equation-by-equation estimation of the reduced-form system.
- This assumption is strong in a sense that any common factor that could impact a pair of model variables must be included in the controls $X_{i,t}$.
- Hence, the set of controls need to account as much as possible for household heterogeneities.

 In order to account for household heterogeneities as much as possible, the set of controls X_{i,t} needs to include fixed effects.

• Using household fixed effects of 571 households will result in incidental parameter problem in estimation of probit equations.

• As a solution, I use 4 grouped fixed effects where the groups are determined by k-mean clustering method.

• Clustering moments: average assets, average consumption, participation rates in both sectors, and demographics

- In order to account for household heterogeneities as much as possible, the set of controls X_{i,t} needs to include fixed effects.
- Using household fixed effects of 571 households will result in incidental parameter problem in estimation of probit equations.
- As a solution, I use 4 grouped fixed effects where the groups are determined by k-mean clustering method.
- Clustering moments: average assets, average consumption, participation rates in both sectors, and demographics

- In order to account for household heterogeneities as much as possible, the set of controls X_{i,t} needs to include fixed effects.
- Using household fixed effects of 571 households will result in incidental parameter problem in estimation of probit equations.
- As a solution, I use 4 grouped fixed effects where the groups are determined by k-mean clustering method.
- Clustering moments: average assets, average consumption, participation rates in both sectors, and demographics

- In order to account for household heterogeneities as much as possible, the set of controls X_{i,t} needs to include fixed effects.
- Using household fixed effects of 571 households will result in incidental parameter problem in estimation of probit equations.
- As a solution, I use 4 grouped fixed effects where the groups are determined by k-mean clustering method.
- Clustering moments: average assets, average consumption, participation rates in both sectors, and demographics

Data: Source

• Townsend Thai Project Monthly Survey

• A panel of 720 households from 16 villages in 4 provinces; started in 1998, over 200 months

• Information used in this project :

- Consumption
- Assets(Financial, Physical)
- Income and Working Hours (Paid Jobs, Production Activities)
- Demographics (Family Size, Age, Gender, Education Level)
- Selected Sample :
 - balanced panel of 571 households from month 9-152
 - aggregated to 'economic year' level where each year is Apr-Mar of calendar year

(日) (部) (注) (注) (三)

Data: Source

Townsend Thai Project Monthly Survey

- A panel of 720 households from 16 villages in 4 provinces; started in 1998, over 200 months
- Information used in this project :
 - Consumption
 - Assets(Financial, Physical)
 - Income and Working Hours (Paid Jobs, Production Activities)
 - Demographics (Family Size, Age, Gender, Education Level)
- Selected Sample :
 - balanced panel of 571 households from month 9-152
 - aggregated to 'economic year' level where each year is Apr-Mar of calendar year

・ロト ・ 日 ト ・ 日 ト ・ 日

Data: Source

• Townsend Thai Project Monthly Survey

- A panel of 720 households from 16 villages in 4 provinces; started in 1998, over 200 months
- Information used in this project :
 - Consumption
 - Assets(Financial, Physical)
 - Income and Working Hours (Paid Jobs, Production Activities)
 - Demographics (Family Size, Age, Gender, Education Level)
- Selected Sample :
 - balanced panel of 571 households from month 9-152
 - aggregated to 'economic year' level where each year is Apr-Mar of calendar year

Data: Notable Patterns

Regional Patterns:

 More urbanized regions have higher consumption, assets, income, and longer working hours

Patterns over time:

- Smooth consumption
- Assets accumulation
- Decreasing participation but longer working hours in labor market
- Relatively flat participation and working hours in home production
- These patterns need to be accounted for in estimation through region-time effects.

Data: Notable Patterns

Regional Patterns:

• More urbanized regions have higher consumption, assets, income, and longer working hours

Patterns over time:

- Smooth consumption
- Assets accumulation
- Decreasing participation but longer working hours in labor market
- Relatively flat participation and working hours in home production

• These patterns need to be accounted for in estimation through region-time effects.

Data: Notable Patterns

• Regional Patterns:

• More urbanized regions have higher consumption, assets, income, and longer working hours

Patterns over time:

- Smooth consumption
- Assets accumulation
- Decreasing participation but longer working hours in labor market
- Relatively flat participation and working hours in home production

▲□▶ ▲御▶ ★臣▶ ★臣▶ ―臣 …の9

60 / 133

• These patterns need to be accounted for in estimation through region-time effects.

- Market Income and Market Hours aggregated across all household members in each year.
- Wage computed from
 - (Labor Market Income) / (Labor Market Hours)
- Issue : No estimate for non-participants
- Solution : Mincer-type regression to predict unobserved wages $w_{i,t} = \beta'_{village(i)} X_{i,t} + \sum_{\tau=1}^{12} \gamma_{village(i),\tau} \cdot 1_{\{t=\tau\}} + \epsilon_{i,t}$

- Market Income and Market Hours aggregated across all household members in each year.
- Wage computed from
 - (Labor Market Income) / (Labor Market Hours)
- Issue : No estimate for non-participants
- Solution : Mincer-type regression to predict unobserved wages $w_{i,t} = \beta'_{village(i)} X_{i,t} + \sum_{\tau=1}^{12} \gamma_{village(i),\tau} \cdot 1_{\{t=\tau\}} + \epsilon_{i,t}$

- Market Income and Market Hours aggregated across all household members in each year.
- Wage computed from
 - (Labor Market Income) / (Labor Market Hours)
- Issue : No estimate for non-participants
- Solution : Mincer-type regression to predict unobserved wages $w_{i,t} = \beta'_{village(i)} X_{i,t} + \sum_{\tau=1}^{12} \gamma_{village(i),\tau} \cdot 1_{\{t=\tau\}} + \epsilon_{i,t}$

- Market Income and Market Hours aggregated across all household members in each year.
- Wage computed from
 - (Labor Market Income) / (Labor Market Hours)
- Issue : No estimate for non-participants
- Solution : Mincer-type regression to predict unobserved wages $w_{i,t} = \beta'_{village(i)} X_{i,t} + \sum_{\tau=1}^{12} \gamma_{village(i),\tau} \cdot 1_{\{t=\tau\}} + \epsilon_{i,t}$

• Assume Cobb-Douglas Production Function: $Y_{i,t} = e^{z_{i,t}} A_{i,t}^{\alpha} L_{i,t}^{\psi}$

• Log productivity follows process:

$$z_{i,t} = \Lambda_{i,t} + \rho w_{i,t-1} + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}} + \nu_{i,t}$$

- $\Lambda_{i,t}$: component unexplained by characteristics, known to HH, unknown to econometrician
- Taking log and combine two expressions yield $y_{i,t}^2 = \underbrace{\Lambda_{i,t} + \rho w_{i,t-1} + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}} + \nu_{i,t} + \alpha a_{i,t} + \psi l_{i,t}^2}_{z_{i,t}}$

• Goal: estimate above expression and compute $\hat{z}_{i,t} = y_{i,t} - \hat{\alpha}k_{i,t} - \hat{\psi}l_{i,t}.$

- Assume Cobb-Douglas Production Function: $Y_{i,t} = e^{z_{i,t}} A_{i,t}^{\alpha} L_{i,t}^{\psi}$
- Log productivity follows process: $z_{i,t} = \Lambda_{i.t} + \rho w_{i,t-1} + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}} + \nu_{i,t}$
- $\Lambda_{i,t}$: component unexplained by characteristics, known to HH, unknown to econometrician
- Taking log and combine two expressions yield $y_{i,t}^2 = \underbrace{\Lambda_{i,t} + \rho w_{i,t-1} + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}} + \nu_{i,t} + \alpha a_{i,t} + \psi l_{i,t}^2}_{z_{i,t}}$

• Goal: estimate above expression and compute $\hat{z}_{i,t} = y_{i,t} - \hat{\alpha}k_{i,t} - \hat{\psi}l_{i,t}.$

- Assume Cobb-Douglas Production Function: $Y_{i,t} = e^{z_{i,t}} A_{i,t}^{\alpha} L_{i,t}^{\psi}$
- Log productivity follows process:
 <u>12</u>

$$z_{i,t} = \Lambda_{i,t} + \rho w_{i,t-1} + \Upsilon' X_{i,t} + \sum_{\tau=1} \Gamma_{\tau} \cdot \mathbf{1}_{\{t=\tau\}} + \nu_{i,t}$$

- $\Lambda_{i.t}$: component unexplained by characteristics, known to HH, unknown to econometrician
- Taking log and combine two expressions yield $y_{i,t}^2 = \underbrace{\Lambda_{i,t} + \rho w_{i,t-1} + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}} + \nu_{i,t} + \alpha a_{i,t} + \psi l_{i,t}^2}_{z_{i,t}}$

67 / 133

• Goal: estimate above expression and compute $\hat{z}_{i,t} = y_{i,t} - \hat{\alpha}k_{i,t} - \hat{\psi}l_{i,t}.$

Paphon Kiatsakuldecha

- Assume Cobb-Douglas Production Function: $Y_{i,t} = e^{z_{i,t}} A_{i,t}^{\alpha} L_{i,t}^{\psi}$
- Log productivity follows process:

$$z_{i,t} = \Lambda_{i,t} + \rho w_{i,t-1} + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}} + \nu_{i,t}$$

- Λ_{i.t}: component unexplained by characteristics, known to HH, unknown to econometrician
- Taking log and combine two expressions yield $y_{i,t}^2 = \underbrace{\Lambda_{i.t} + \rho w_{i,t-1} + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}} + \nu_{i,t} + \alpha a_{i,t} + \psi l_{i,t}^2}_{z_{i,t}}$

• Goal: estimate above expression and compute $\hat{z}_{i,t} = y_{i,t} - \hat{\alpha}k_{i,t} - \hat{\psi}l_{i,t}.$

- Assume Cobb-Douglas Production Function: $Y_{i,t} = e^{z_{i,t}} A_{i,t}^{\alpha} L_{i,t}^{\psi}$
- Log productivity follows process:

$$z_{i,t} = \Lambda_{i,t} + \rho w_{i,t-1} + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}} + \nu_{i,t}$$

- Λ_{i.t}: component unexplained by characteristics, known to HH, unknown to econometrician
- Taking log and combine two expressions yield $y_{i,t}^2 = \underbrace{\Lambda_{i.t} + \rho w_{i,t-1} + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}} + \nu_{i,t}}_{z_{i,t}} + \alpha a_{i,t} + \psi l_{i,t}^2$

• Goal: estimate above expression and compute $\hat{z}_{i,t} = y_{i,t} - \hat{\alpha}k_{i,t} - \hat{\psi}l_{i,t}.$

Paphon Kiatsakuldecha

• Estimation approach follows Ackerberg, Caves, Frazer 2015 (ACF)

• Assumes $\Lambda_{i,t}$ follows a Markov process:

- $\Lambda_{i,t} = \mathbb{E}[\Lambda_{i,t} \mid \Lambda_{i,t-1}] + \zeta_{i,t}$
- where $\mathbb{E}[\zeta_{i,t} \mid a_{i,t}] = 0$ and $\mathbb{E}[\zeta_{i,t} \mid l_{i,t-1}] = 0$
- Labor is free-input
- Capital is pre-determined
- Proxy variable : intermediate input (such as fertilizers), $m_{i,t}$

(日) (部) (注) (注) (三)

70 / 133

• chosen after capital but before labor decision

• Estimation approach follows Ackerberg, Caves, Frazer 2015 (ACF)

• Assumes $\Lambda_{i.t}$ follows a Markov process:

- $\Lambda_{i,t} = \mathbb{E}[\Lambda_{i,t} \mid \Lambda_{i,t-1}] + \zeta_{i,t}$
- where $\mathbb{E}[\zeta_{i,t} \mid a_{i,t}] = 0$ and $\mathbb{E}[\zeta_{i,t} \mid l_{i,t-1}] = 0$
- Labor is free-input
- Capital is pre-determined

• Proxy variable : intermediate input (such as fertilizers), $m_{i,t}$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

71 / 133

• chosen after capital but before labor decision

• Estimation approach follows Ackerberg, Caves, Frazer 2015 (ACF)

- Assumes $\Lambda_{i.t}$ follows a Markov process:
 - $\Lambda_{i,t} = \mathbb{E}[\Lambda_{i,t} \mid \Lambda_{i,t-1}] + \zeta_{i,t}$
 - where $\mathbb{E}[\zeta_{i,t} \mid a_{i,t}] = 0$ and $\mathbb{E}[\zeta_{i,t} \mid l_{i,t-1}] = 0$
 - Labor is free-input
 - Capital is pre-determined
- Proxy variable : intermediate input (such as fertilizers), $m_{i,t}$

72 / 133

• chosen after capital but before labor decision

• Timing :

- $a_{i,t}$ chosen at t-1,
- *l_{i,t}* chosen at, *t*
- $m_{i,t}$ chosen at t 0.5

• Timing implies HH choose $m_{i,t} = f_t(a_{i,t}, l_{i,t}, \Lambda_{i,t})$ This function is increasing in $\Lambda_{i,t}$

• Inverting the function above yield $\Lambda_{i,t} = f_t^{-1}(a_{i,t}, l_{i,t}, m_{i,t})$

• Plugging everything back in original production function, $y_{i,t}^2 - \alpha a_{i,t} - \psi l_{i,t}^2 = f_t^{-1}(a_{i,t}, l_{i,t}, m_{i,t}) + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}}$

• Timing :

- $a_{i,t}$ chosen at t-1,
- *l_{i,t}* chosen at, *t*
- $m_{i,t}$ chosen at t 0.5
- Timing implies HH choose $m_{i,t} = f_t(a_{i,t}, l_{i,t}, \Lambda_{i,t})$ This function is increasing in $\Lambda_{i,t}$

• Inverting the function above yield $\Lambda_{i,t} = f_t^{-1}(a_{i,t}, l_{i,t}, m_{i,t})$

• Plugging everything back in original production function, $y_{i,t}^2 - \alpha a_{i,t} - \psi l_{i,t}^2 = f_t^{-1}(a_{i,t}, l_{i,t}, m_{i,t}) + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}}$

• Timing :

- $a_{i,t}$ chosen at t-1,
- *l_{i,t}* chosen at, *t*
- $m_{i,t}$ chosen at t 0.5
- Timing implies HH choose $m_{i,t} = f_t(a_{i,t}, l_{i,t}, \Lambda_{i,t})$ This function is increasing in $\Lambda_{i,t}$
- Inverting the function above yield $\Lambda_{i,t} = f_t^{-1}(a_{i,t}, l_{i,t}, m_{i,t})$
- Plugging everything back in original production function, $y_{i,t}^2 - \alpha a_{i,t} - \psi l_{i,t}^2 = f_t^{-1}(a_{i,t}, l_{i,t}, m_{i,t}) + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}}$

<ロト < 部ト < 言ト < 言ト 言 の < で 75 / 133

• Timing :

- $a_{i,t}$ chosen at t-1,
- *l_{i,t}* chosen at, *t*
- $m_{i,t}$ chosen at t 0.5
- Timing implies HH choose $m_{i,t} = f_t(a_{i,t}, l_{i,t}, \Lambda_{i,t})$ This function is increasing in $\Lambda_{i,t}$
- Inverting the function above yield $\Lambda_{i,t} = f_t^{-1}(a_{i,t}, l_{i,t}, m_{i,t})$
- Plugging everything back in original production function, $y_{i,t}^2 - \alpha a_{i,t} - \psi l_{i,t}^2 = f_t^{-1}(a_{i,t}, l_{i,t}, m_{i,t}) + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}}$

- First, consider for any guess (α, ψ)
- Step 1:
 - Estimate

• Obtain
$$\hat{\Lambda_{i,t}} = \hat{f_t}^{-1}(a_{i,t}, l_{i,t}, m_{i,t}) + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}}$$

• Step 2:

• Use $\{\Lambda_{i,t}\}$ to estimate $\Lambda_{i,t} = \mathbb{E}[\Lambda_{i,t} \mid \Lambda_{i,t-1}] + \zeta_{i,t}$

 Obtain ζ_{i,t}, these residuals are estimates for ζ_{i,t}(α, ψ) Note that these are functions of (α, ψ)

- To estimate (α, ψ) , use moment conditions based on $\mathbb{E}[\zeta_{i,t} \mid a_{i,t}] = \mathbb{E}[\zeta_{i,t} \mid l_{i,t-1}] = 0$
- Use semi-parametric regressions in estimation steps above

<ロ> <回> <回> <三> <三> <三> <三> <三> <三> <三> <三

- First, consider for any guess (α, ψ)
- Step 1:
 - Estimate

$$y_{i,t}^2 - \alpha a_{i,t} - \psi l_{i,t}^2 = f_t^{-1}(a_{i,t}, l_{i,t}, m_{i,t}) + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}}$$

• Obtain $\hat{\Lambda_{i,t}} = \hat{f}_t^{-1}(a_{i,t}, l_{i,t}, m_{i,t})$

10

・ロト ・ 日 ト ・ 日 ト ・ 日

- Step 2:
 - Use $\{\Lambda_{i,t}^{\uparrow}\}$ to estimate $\Lambda_{i,t} = \mathbb{E}[\Lambda_{i,t} \mid \Lambda_{i,t-1}] + \zeta_{i,t}$
 - Obtain ζ_{i,t}, these residuals are estimates for ζ_{i,t}(α, ψ) Note that these are functions of (α, ψ)
- To estimate (α, ψ) , use moment conditions based on $\mathbb{E}[\zeta_{i,t} \mid a_{i,t}] = \mathbb{E}[\zeta_{i,t} \mid l_{i,t-1}] = 0$
- Use semi-parametric regressions in estimation steps above

- First, consider for any guess (α, ψ)
- Step 1:
 - Estimate

$$y_{i,t}^2 - \alpha a_{i,t} - \psi l_{i,t}^2 = f_t^{-1}(a_{i,t}, l_{i,t}, m_{i,t}) + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_\tau \cdot \mathbf{1}_{\{t=\tau\}}$$

• Obtain $\hat{\Lambda_{i,t}} = \hat{f}_t^{-1}(a_{i,t}, l_{i,t}, m_{i,t})$

10

・ロト ・ 日 ト ・ 日 ト ・ 日

- Step 2:
 - Use $\{\Lambda_{i,t}\}$ to estimate $\Lambda_{i,t} = \mathbb{E}[\Lambda_{i,t} \mid \Lambda_{i,t-1}] + \zeta_{i,t}$

 Obtain ζ_{i,t}, these residuals are estimates for ζ_{i,t}(α, ψ) Note that these are functions of (α, ψ)

• To estimate (α, ψ) , use moment conditions based on $\mathbb{E}[\zeta_{i,t} \mid a_{i,t}] = \mathbb{E}[\zeta_{i,t} \mid l_{i,t-1}] = 0$

Use semi-parametric regressions in estimation steps above

- First, consider for any guess (α, ψ)
- Step 1:
 - Estimate

$$y_{i,t}^2 - \alpha a_{i,t} - \psi l_{i,t}^2 = f_t^{-1}(a_{i,t}, l_{i,t}, m_{i,t}) + \Upsilon' X_{i,t} + \sum_{\tau=1}^{12} \Gamma_{\tau} \cdot 1_{\{t=\tau\}}$$

• Obtain $\hat{\Lambda_{i,t}} = \hat{f}_t^{-1}(a_{i,t}, l_{i,t}, m_{i,t})$

- Step 2:
 - Use $\{\hat{\Lambda_{i,t}}\}$ to estimate $\Lambda_{i,t} = \mathbb{E}[\Lambda_{i,t} \mid \Lambda_{i,t-1}] + \zeta_{i,t}$

 Obtain ζ_{i,t}, these residuals are estimates for ζ_{i,t}(α, ψ) Note that these are functions of (α, ψ)

- To estimate (α, ψ) , use moment conditions based on $\mathbb{E}[\zeta_{i,t} \mid a_{i,t}] = \mathbb{E}[\zeta_{i,t} \mid l_{i,t-1}] = 0$
- Use semi-parametric regressions in estimation steps above

Measuring Productivities: Production Function Estimates

• Labor and Capital Elasticities:

Coefficients	Estimates
Log(Hours)	0.541***
	(0.093)
Log(Total Assets)	0.361**
	(0.020)

- Other significant estimates for controls: Education
 - Productivities peak among households with lower secondary education level
 - Education improves productivity,
 - But higher educated households specialize in skills unrelated to production activities

Measuring Productivities: Production Function Estimates

• Labor and Capital Elasticities:

Coefficients	Estimates
Log(Hours)	0.541***
	(0.093)
Log(Total Assets)	0.361**
	(0.020)

- Other significant estimates for controls: Education
 - Productivities peak among households with lower secondary education level
 - Education improves productivity,
 - But higher educated households specialize in skills unrelated to production activities

· Again, key issue is no productivity estimate for non-participants

• Possible solution: Mincer-type regression similar to wages

• But, productivities vary much more than wages at household levels.

• More robust approach: treat unobserved productivities as hidden state variables and perform joint estimation with the reduced-form model coefficients

イロト イヨト イヨト イヨト 三日

83 / 133

· Again, key issue is no productivity estimate for non-participants

• Possible solution: Mincer-type regression similar to wages

• But, productivities vary much more than wages at household levels.

• More robust approach: treat unobserved productivities as hidden state variables and perform joint estimation with the reduced-form model coefficients

· Again, key issue is no productivity estimate for non-participants

• Possible solution: Mincer-type regression similar to wages

• But, productivities vary much more than wages at household levels.

• More robust approach: treat unobserved productivities as hidden state variables and perform joint estimation with the reduced-form model coefficients

イロト イヨト イヨト イヨト 三日

· Again, key issue is no productivity estimate for non-participants

• Possible solution: Mincer-type regression similar to wages

• But, productivities vary much more than wages at household levels.

 More robust approach: treat unobserved productivities as hidden state variables and perform joint estimation with the reduced-form model coefficients

Joint Estimation: State-Space Model Approach

Unobserved States:

- (log) productivity: $z_{i,t}^{(s)}$
- probit indices for participations in both sectors: $v_{i,t}^{1,(s)}, v_{i,t}^{2,(s)}$

• Model Parameters: $\Omega^{(s)}$

- reduced-form coefficients; mostly elasticities of interest
- joint-distribution parameters for wage/productivity

• Estimation Procedure : Markov Chain Monte Carlo Method

- Update $\Omega^{(s)}$ (using previous guess of unobserved states)
- Draw unobserved states from posterior via Gibbs sampling
- Alternate between above two steps until stationary (1000 iterations).

Joint Estimation: State-Space Model Approach

- Unobserved States:
 - (log) productivity: $z_{i,t}^{(s)}$
 - probit indices for participations in both sectors: $v_{i,t}^{1,(s)}, v_{i,t}^{2,(s)}$
- Model Parameters: $\Omega^{(s)}$
 - reduced-form coefficients; mostly elasticities of interest
 - joint-distribution parameters for wage/productivity
- Estimation Procedure : Markov Chain Monte Carlo Method
 - Update $\Omega^{(s)}$ (using previous guess of unobserved states)
 - Draw unobserved states from posterior via Gibbs sampling
 - Alternate between above two steps until stationary (1000 iterations).

Joint Estimation: State-Space Model Approach

- Unobserved States:
 - (log) productivity: $z_{i,t}^{(s)}$
 - probit indices for participations in both sectors: $v_{i,t}^{1,(s)}, v_{i,t}^{2,(s)}$
- Model Parameters: $\Omega^{(s)}$
 - reduced-form coefficients; mostly elasticities of interest
 - joint-distribution parameters for wage/productivity
- Estimation Procedure : Markov Chain Monte Carlo Method
 - Update $\Omega^{(s)}$ (using previous guess of unobserved states)
 - Draw unobserved states from posterior via Gibbs sampling
 - Alternate between above two steps until stationary (1000 iterations).

- Estimate $\varOmega^{(s)}$ using observed data and previous guess of hidden states $\{z_t^{(s-1)}, v_t^{1,(s-1)}, v_t^{2,(s-1)}\}$
- Consumption and future asset equations estimated via OLS:

•
$$c_t = \Theta'_{c,X} X_t + \eta_{c,A} a_t + \eta_{c,w} w_t + \eta_{c,z} z_t + \epsilon_t^c$$

•
$$a_{t+1} = \Theta'_{a,X} X_t + \eta_{c,A} a_t + \eta_{c,w} w_t + \eta_{c,z} z_t + \epsilon^a_t$$

- · Hours and participation estimated via Heckman selection
 - $D_t^j = 1\{\delta_{l1,D1}D_{t-1}^1 + \delta_{l1,D2}D_{t-1}^2 + \Phi_{l1,X}'X_t + \phi_{l1,A}a_t + \phi_{l1,w}w_t + \phi_{l1,z}z_t + \zeta_t^{lj} > 0\}$

•
$$l_t^j = D_t^j \cdot [\Theta_{l1,X}^j X_t + \eta_{l1,A} a_t + \eta_{l1,w} w_t + \eta_{l1,z} z_t + \epsilon_t^{e_j}]$$

for $j = 1, 2$)

 Compute joint initial distribution for wage/productivity and estimate the process via OLS:

•
$$\begin{bmatrix} w_{t+1} \\ z_{t+1} \end{bmatrix} = \begin{bmatrix} \mu'_{w,X}X_t \\ \mu'_{z,X}X_t \end{bmatrix} + \begin{bmatrix} \rho_{1,1} & \rho_{1,2} \\ \rho_{2,1} & \rho_{2,2} \end{bmatrix} \begin{bmatrix} w_t \\ z_t \end{bmatrix} + \begin{bmatrix} \epsilon_t^w \\ \epsilon_t^z \end{bmatrix}$$

Paphon Kiatsakuldecha

- Estimate $\Omega^{(s)}$ using observed data and previous guess of hidden states $\{z_t^{(s-1)}, v_t^{1,(s-1)}, v_t^{2,(s-1)}\}$
- Consumption and future asset equations estimated via OLS:

•
$$c_t = \Theta'_{c,X}X_t + \eta_{c,A}a_t + \eta_{c,w}w_t + \eta_{c,z}z_t + \epsilon_t^c$$

•
$$a_{t+1} = \Theta'_{a,X} X_t + \eta_{c,A} a_t + \eta_{c,w} w_t + \eta_{c,z} z_t + \epsilon^a_t$$

- · Hours and participation estimated via Heckman selection
 - $D_t^j = 1\{\delta_{l1,D1}D_{t-1}^1 + \delta_{l1,D2}D_{t-1}^2 + \Phi_{l1,X}'X_t + \phi_{l1,A}a_t + \phi_{l1,w}w_t + \phi_{l1,z}z_t + \zeta_t^{lj} > 0\}$

•
$$l_t^j = D_t^j \cdot [\Theta_{l1,X}^{\prime} X_t + \eta_{l1,A} a_t + \eta_{l1,w} w_t + \eta_{l1,z} z_t + \epsilon_t^{\prime j}]$$

for $j = 1, 2$)

 Compute joint initial distribution for wage/productivity and estimate the process via OLS:

$$\begin{bmatrix} w_{t+1} \\ z_{t+1} \end{bmatrix} = \begin{bmatrix} \mu'_{w,X}X_t \\ \mu'_{z,X}X_t \end{bmatrix} + \begin{bmatrix} \rho_{1,1} & \rho_{1,2} \\ \rho_{2,1} & \rho_{2,2} \end{bmatrix} \begin{bmatrix} w_t \\ z_t \end{bmatrix} + \begin{bmatrix} \epsilon_t^w \\ \epsilon_t^z \end{bmatrix}$$

- Estimate $\varOmega^{(s)}$ using observed data and previous guess of hidden states $\{z_t^{(s-1)}, v_t^{1,(s-1)}, v_t^{2,(s-1)}\}$
- Consumption and future asset equations estimated via OLS:

•
$$c_t = \Theta'_{c,X} X_t + \eta_{c,A} a_t + \eta_{c,w} w_t + \eta_{c,z} z_t + \epsilon_t^c$$

• $a_{t+1} = \Theta'_{a,X} X_t + \eta_{c,A} a_t + \eta_{c,w} w_t + \eta_{c,z} z_t + \epsilon_t^a$

Hours and participation estimated via Heckman selection

•
$$D_t^j = 1\{\delta_{l1,D1}D_{t-1}^1 + \delta_{l1,D2}D_{t-1}^2 + \Phi_{l1,X}'X_t + \phi_{l1,A}a_t + \phi_{l1,w}w_t + \phi_{l1,z}z_t + \zeta_t^{lj} > 0\}$$

• $l_t^j = D_t^j \cdot [\Theta_{l1,X}'X_t + \eta_{l1,A}a_t + \eta_{l1,w}w_t + \eta_{l1,z}z_t + \epsilon_t^{lj}]$
(for $j = 1, 2$)

 Compute joint initial distribution for wage/productivity and estimate the process via OLS:

$$\begin{bmatrix} w_{t+1} \\ z_{t+1} \end{bmatrix} = \begin{bmatrix} \mu'_{w,X}X_t \\ \mu'_{z,X}X_t \end{bmatrix} + \begin{bmatrix} \rho_{1,1} & \rho_{1,2} \\ \rho_{2,1} & \rho_{2,2} \end{bmatrix} \begin{bmatrix} w_t \\ z_t \end{bmatrix} + \begin{bmatrix} \epsilon_t^w \\ \epsilon_t^z \end{bmatrix}$$

- Estimate $\varOmega^{(s)}$ using observed data and previous guess of hidden states $\{z_t^{(s-1)}, v_t^{1,(s-1)}, v_t^{2,(s-1)}\}$
- Consumption and future asset equations estimated via OLS:

•
$$c_t = \Theta'_{c,X} X_t + \eta_{c,A} a_t + \eta_{c,w} w_t + \eta_{c,z} z_t + \epsilon_t^c$$

• $a_{t+1} = \Theta'_{a,X} X_t + \eta_{c,A} a_t + \eta_{c,w} w_t + \eta_{c,z} z_t + \epsilon_t^a$

Hours and participation estimated via Heckman selection

•
$$D_t^j = 1\{\delta_{l1,D1}D_{t-1}^1 + \delta_{l1,D2}D_{t-1}^2 + \Phi_{l1,X}'X_t + \phi_{l1,A}a_t + \phi_{l1,w}w_t + \phi_{l1,z}z_t + \zeta_t^{lj} > 0\}$$

• $l_t^j = D_t^j \cdot [\Theta_{l1,X}'X_t + \eta_{l1,A}a_t + \eta_{l1,w}w_t + \eta_{l1,z}z_t + \epsilon_t^{lj}]$
(for $j = 1, 2$)

 Compute joint initial distribution for wage/productivity and estimate the process via OLS:

•
$$\begin{bmatrix} w_{t+1} \\ z_{t+1} \end{bmatrix} = \begin{bmatrix} \mu'_{w,X}X_t \\ \mu'_{z,X}X_t \end{bmatrix} + \begin{bmatrix} \rho_{1,1} & \rho_{1,2} \\ \rho_{2,1} & \rho_{2,2} \end{bmatrix} \begin{bmatrix} w_t \\ z_t \end{bmatrix} + \begin{bmatrix} \epsilon_t^w \\ \epsilon_t^z \end{bmatrix}$$

Paphon Kiatsakuldecha

• Draw
$$\{z_t^{(s)}, v_t^{1,(s)}, v_t^{2,(s)}\}$$
 given $\{z_t^{(s-1)}, v_t^{1,(s-1)}, v_t^{2,(s-1)}\}$ and $\Omega^{(s)}$

• Via Gibbs Sampling, I can draw each $z_{i,t}, v_{i,t}^1, v_{i,t}^2$ one by one i.e.

- \bullet Draw $z_t^{(s)}$ from $z_t^{(s-1)} \mid z_{-t}^{(s-1)}, v^{1,(s-1)}, v^{2,(s-1)}$
- Draw $v_t^{1,(s)}$ from $v_t^{1,(s-1)} \mid z^{(s-1)}, v_{-t}^{1,(s-1)}, v^{2,(s-1)}$
- Draw $v_t^{2,(s)}$ from $v_t^{2,(s-1)} \mid z^{(s-1)}, v^{1,(s-1)}, v_{-t}^{2,(s-1)}$
- In this system, all posterior distributions above are normal and hence convenient to compute

イロン イヨン イヨン イヨン 三日

94 / 133

• Use 100 iterations in each Gibbs Sampling step.

• Draw
$$\{z_t^{(s)}, v_t^{1,(s)}, v_t^{2,(s)}\}$$
 given $\{z_t^{(s-1)}, v_t^{1,(s-1)}, v_t^{2,(s-1)}\}$ and $\Omega^{(s)}$

• Via Gibbs Sampling, I can draw each $z_{i,t}, v_{i,t}^1, v_{i,t}^2$ one by one i.e.

• Draw
$$z_t^{(s)}$$
 from $z_t^{(s-1)} \mid z_{-t}^{(s-1)}, v^{1,(s-1)}, v^{2,(s-1)}$

• Draw
$$v_t^{1,(s)}$$
 from $v_t^{1,(s-1)} \mid z^{(s-1)}, v_{-t}^{1,(s-1)}, v^{2,(s-1)}$

• Draw
$$v_t^{2,(s)}$$
 from $v_t^{2,(s-1)} \mid z^{(s-1)}, v^{1,(s-1)}, v_{-t}^{2,(s-1)}$

• In this system, all posterior distributions above are normal and hence convenient to compute

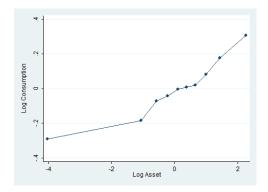
イロト イヨト イヨト イヨト 三日

95 / 133

• Use 100 iterations in each Gibbs Sampling step.

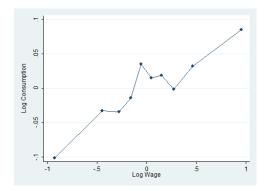
• Draw
$$\{z_t^{(s)}, v_t^{1,(s)}, v_t^{2,(s)}\}$$
 given $\{z_t^{(s-1)}, v_t^{1,(s-1)}, v_t^{2,(s-1)}\}$ and $\Omega^{(s)}$

- Via Gibbs Sampling, I can draw each $z_{i,t}, v_{i,t}^1, v_{i,t}^2$ one by one i.e.
 - Draw $z_t^{(s)}$ from $z_t^{(s-1)} \mid z_{-t}^{(s-1)}, v^{1,(s-1)}, v^{2,(s-1)}$
 - Draw $v_t^{1,(s)}$ from $v_t^{1,(s-1)} \mid z^{(s-1)}, v_{-t}^{1,(s-1)}, v^{2,(s-1)}$
 - Draw $v_t^{2,(s)}$ from $v_t^{2,(s-1)} \mid z^{(s-1)}, v^{1,(s-1)}, v_{-t}^{2,(s-1)}$
- In this system, all posterior distributions above are normal and hence convenient to compute

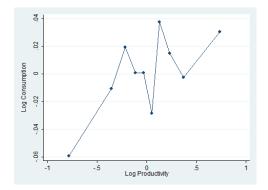

96 / 133

• Use 100 iterations in each Gibbs Sampling step.

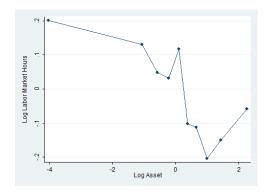
• Draw
$$\{z_t^{(s)}, v_t^{1,(s)}, v_t^{2,(s)}\}$$
 given $\{z_t^{(s-1)}, v_t^{1,(s-1)}, v_t^{2,(s-1)}\}$ and $\Omega^{(s)}$


- Via Gibbs Sampling, I can draw each $z_{i,t}, v_{i,t}^1, v_{i,t}^2$ one by one i.e.
 - Draw $z_t^{(s)}$ from $z_t^{(s-1)} \mid z_{-t}^{(s-1)}, v^{1,(s-1)}, v^{2,(s-1)}$
 - Draw $v_t^{1,(s)}$ from $v_t^{1,(s-1)} \mid z^{(s-1)}, v_{-t}^{1,(s-1)}, v^{2,(s-1)}$
 - Draw $v_t^{2,(s)}$ from $v_t^{2,(s-1)} \mid z^{(s-1)}, v^{1,(s-1)}, v_{-t}^{2,(s-1)}$
- In this system, all posterior distributions above are normal and hence convenient to compute
- Use 100 iterations in each Gibbs Sampling step.

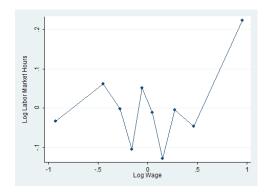
Qualitative Patterns: Consumption on Assets/Wages/Productivities


· Consumption is increasing in assets, wages, and productivities

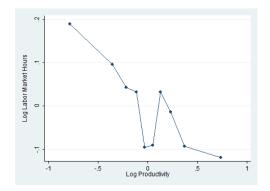
Qualitative Patterns: Consumption on Assets/Wages/Productivities


· Consumption is increasing in assets, wages, and productivities

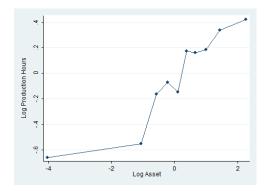
Qualitative Patterns: Consumption on Assets/Wages/Productivities


· Consumption is increasing in assets, wages, and productivities

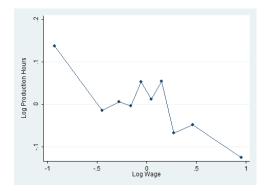
Qualitative Patterns: Market Hours on Assets/Wages/Productivities


 Market hours decrease with assets, increase with wages, and decrease with productivities

Qualitative Patterns: Market Hours on Assets/Wages/Productivities


 Market hours decrease with assets, increase with wages, and decrease with productivities

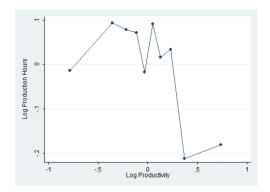
Qualitative Patterns: Market Hours on Assets/Wages/Productivities


 Market hours decrease with assets, increase with wages, and decrease with productivities

Qualitative Patterns: Production Hours on Assets/Wages/Productivities

Production hours increase with assets, decrease with wages, and decrease with productivities

Qualitative Patterns: Production Hours on Assets/Wages/Productivities



Production hours increase with assets, decrease with wages, and decrease with productivities

イロト イヨト イヨト イヨト

105 / 133

Qualitative Patterns: Production Hours on Assets/Wages/Productivities

Production hours increase with assets, decrease with wages, and decrease with productivities

Key Parameter Estimates: Wage/Productivity Process

Parameter	Estimates
Falameter	(s.e.)
(Euture Wage Electicity in Current Wage)	0.849***
$ ho_{1,1}$ (Future Wage Elasticity in Current Wage)	(0.000)
$\rho_{1,2}$ (Future Wage Elasticity in Current Productivity)	0.008***
$p_{1,2}$ (Future wage Elasticity in Current Froductivity)	(0.002)
(Euture Productivity Electicity in Current Ware)	0.032**
$ ho_{2,1}$ (Future Productivity Elasticity in Current Wage)	(0.012)
(Euture Productivity Electicity in Current Productivity)	0.435***
$ ho_{2,2}$ (Future Productivity Elasticity in Current Productivity)	(0.016)

• Wages and productivities indeed co-evolve over time.

Key Parameter Estimates: Consumption Rule

Parameters	Estimates
Farameters	(s.e.)
m (Concumption Electicity in Accotc)	0.849***
$\eta_{c,a}$ (Consumption Elasticity in Assets)	(0.000)
(Consumption Electicity in Maga)	0.008***
$\eta_{c,w}$ (Consumption Elasticity in Wage)	(0.001)
m (Concumption Electicity in Droductivity)	0.032***
$\eta_{c,z}$ (Consumption Elasticity in Productivity)	(0.003)

• 99.2% of wage shocks and 96.8% of productivity shocks are insured!

Key Parameter Estimates: Market Hours Rule

Parameter	Estimates (s.e.)
$\eta_{l1,a}$ (Labor Market Hours Elasticity in Assets)	0.001***
	(0.000)
$\eta_{l1,w}$ (Labor Market Hours Elasticity in Wage)	0.083***
	(0.002)
$\eta_{l1,z}$ (Labor Market Hours Elasticity in Productivity)	-0.081***
	(0.007)

- Labor market hours on wage shocks: substitution effect dominates
- Labor market hours on productivity shocks: substitution effect dominates

Key Parameter Estimates: Production Hours Rule

Parameter	Estimates (s.e.)
$\eta_{l2,a}$ (Production Hours Elasticity in Assets)	0.037*** (0.000)
$\eta_{l2,w}$ (Production Hours Elasticity in Wage)	-0.112*** (0.002)
$\eta_{l2,z}$ (Production Hours Elasticity in Productivity)	-0.146*** (0.010)

- Production market hours on wage shocks: substitution effect dominates
- Production market hours on productivity shocks: income effect dominates

Key Parameter Estimates: Market Participation (Probit)

Parameter	Estimates
	(s.e.)
$\phi_{l1,a}$ (Assets Effect)	-0.021***
	(0.000)
$\phi_{l1,w}$ (Wage Effect)	-0.081***
	(0.000)
$\phi_{l1,z}$ (Productivity Effect)	0.014
	(0.010)
$\delta_{1,1}$ (Past Parcitipation in Labor Market Effect)	1.593***
	(0.000)
$\delta_{1,2}$ (Past Parcitipation in Production Effect)	-0.042***
	(0.006)

- Market participation decreases in asset
- Income effects dominate for extensive margin response to wage shocks
- Past participations have large impact on current participation

Paphon Kiatsakuldecha

Key Parameter Estimates: Production Participation

Parameter	Estimates
	(s.e.)
$\phi_{l2,a}$ (Asset Effect)	0.028***
	(0.002)
$\phi_{l2,w}$ (Wage Effect)	-0.081***
	(0.012)
$\phi_{l2,z}$ (Productivity Effect)	0.296***
	(0.030)
$\delta_{2,1}$ (Past Parcitipation in Labor Market Effect)	0.074***
	(0.015)
$\delta_{2,2}$ (Past Parcitipation in Production Effect)	2.328***
	(0.017)

- Production participation increases in asset
- Substitution effects dominate for both wage/productivity shocks on the extensive margin
- Past participations have large impact on current participation

Recap

- Household consumption responds very little to both wage and productivity shocks
 - more than 99% of shocks are insured on consumption
- Labor supplies in both sectors respond significantly to both wage and productivity shocks
 - substitution effects dominate mostly for intensive margin except for production hours on productivity shocks

イロト イヨト イヨト イヨト 三日

- extensive margin mostly governed by past participations
- Final key question: how much of consumption insurance is accounted for by labor supply responses?

- Household consumption responds very little to both wage and productivity shocks
 - more than 99% of shocks are insured on consumption
- Labor supplies in both sectors respond significantly to both wage and productivity shocks
 - substitution effects dominate mostly for intensive margin except for production hours on productivity shocks

- extensive margin mostly governed by past participations
- Final key question: how much of consumption insurance is accounted for by labor supply responses?

- Household consumption responds very little to both wage and productivity shocks
 - more than 99% of shocks are insured on consumption
- Labor supplies in both sectors respond significantly to both wage and productivity shocks
 - substitution effects dominate mostly for intensive margin except for production hours on productivity shocks

- extensive margin mostly governed by past participations
- Final key question: how much of consumption insurance is accounted for by labor supply responses?

• How much insurance from asset adjustment and from labor supply response?

• Decomposing wage shocks on consumption: $\frac{\partial c}{\partial w} = \frac{\partial y}{\partial w} - \frac{\partial (S/Y)}{\partial w}$

- $\frac{\partial y}{\partial w}$: effect of log wage change on income
- $\frac{\partial (S/Y)}{\partial w}$: effect of log wage change on savings
- Suppose θ is the share of labor market income, then I can further decompose

•
$$\frac{\partial y}{\partial w} = \theta \frac{\partial y^1}{\partial w} + (1-\theta) \frac{\partial y^2}{\partial w}$$
 where
• $\frac{\partial y^1}{\partial w} = \frac{\partial (w+l^1)}{\partial w} = 1 + \eta_{l1,w}$ and
• $\frac{\partial y^2}{\partial w} = \frac{\partial (z+\alpha a+\psi l^2)}{\partial w} = \psi \eta_{l2,w}$

 How much insurance from asset adjustment and from labor supply response?

• Decomposing wage shocks on consumption: $\frac{\partial c}{\partial w} = \frac{\partial y}{\partial w} - \frac{\partial (S/Y)}{\partial w}$

- $\frac{\partial y}{\partial w}$: effect of log wage change on income
- $\frac{\partial (S/Y)}{\partial w}$: effect of log wage change on savings
- Suppose θ is the share of labor market income, then I can further decompose

•
$$\frac{\partial y}{\partial w} = \theta \frac{\partial y^1}{\partial w} + (1-\theta) \frac{\partial y^2}{\partial w}$$
 where
• $\frac{\partial y^1}{\partial w} = \frac{\partial (w+l^1)}{\partial w} = 1 + \eta_{l1,w}$ and
• $\frac{\partial y^2}{\partial w} = \frac{\partial (z+\alpha a+\psi l^2)}{\partial w} = \psi \eta_{l2,w}$

- How much insurance from asset adjustment and from labor supply response?
- Decomposing wage shocks on consumption: $\frac{\partial c}{\partial w} = \frac{\partial y}{\partial w} \frac{\partial (S/Y)}{\partial w}$
 - $\frac{\partial y}{\partial w}$: effect of log wage change on income
 - $\frac{\partial (S/Y)}{\partial w}$: effect of log wage change on savings
- Suppose θ is the share of labor market income, then I can further decompose

(ロ) (部) (目) (日) (日) (の)

•
$$\frac{\partial y}{\partial w} = \theta \frac{\partial y^1}{\partial w} + (1 - \theta) \frac{\partial y^2}{\partial w}$$
 where
• $\frac{\partial y^1}{\partial w} = \frac{\partial (w + l^1)}{\partial w} = 1 + \eta_{l1,w}$ and
• $\frac{\partial y}{\partial w} = \frac{\partial (z + \alpha a + \psi l^2)}{\partial w} = \psi \eta_{l2,w}$

- Total effects of wage shock: $\eta_{c,w} = \frac{\partial c}{\partial w}$
- Extensive margin labor supply responses: choose θ between 0 and 1
- Intensive margin labor supply responses: choose $\eta_{l1,w}, \eta_{l2,w} \neq 0$
- Residual response: adjusting savings through asset channel
- 1% wage shock induce 0.008% consumption change ... 0.992 ppt insured
 - 0.72 ppt insured from choosing to participate in both sectors (extensive margin)
 - 0.02 ppt insured from adjusting hours in both sectors (intensive margin)
 - 0.252 ppt insured from adjusting savings

- Total effects of wage shock: $\eta_{c,w} = \frac{\partial c}{\partial w}$
- Extensive margin labor supply responses: choose heta between 0 and 1
- Intensive margin labor supply responses: choose $\eta_{l1,w}, \eta_{l2,w} \neq 0$
- Residual response: adjusting savings through asset channel
- 1% wage shock induce 0.008% consumption change ... 0.992 ppt insured
 - 0.72 ppt insured from choosing to participate in both sectors (extensive margin)
 - 0.02 ppt insured from adjusting hours in both sectors (intensive margin)
 - 0.252 ppt insured from adjusting savings

イロト イヨト イヨト イヨト 三日

- Total effects of wage shock: $\eta_{c,w} = \frac{\partial c}{\partial w}$
- Extensive margin labor supply responses: choose heta between 0 and 1
- Intensive margin labor supply responses: choose $\eta_{l1,w}, \eta_{l2,w} \neq 0$
- Residual response: adjusting savings through asset channel
- 1% wage shock induce 0.008% consumption change ... 0.992 ppt insured
 - 0.72 ppt insured from choosing to participate in both sectors (extensive margin)
 - 0.02 ppt insured from adjusting hours in both sectors (intensive margin)
 - 0.252 ppt insured from adjusting savings

イロン イロン イヨン イヨン 三日

- Total effects of wage shock: $\eta_{c,w} = \frac{\partial c}{\partial w}$
- Extensive margin labor supply responses: choose heta between 0 and 1
- Intensive margin labor supply responses: choose $\eta_{l1,w}, \eta_{l2,w} \neq 0$
- Residual response: adjusting savings through asset channel
- 1% wage shock induce 0.008% consumption change ... 0.992 ppt insured
 - 0.72 ppt insured from choosing to participate in both sectors (extensive margin)
 - 0.02 ppt insured from adjusting hours in both sectors (intensive margin)
 - 0.252 ppt insured from adjusting savings

- Total effects of wage shock: $\eta_{c,w} = \frac{\partial c}{\partial w}$
- Extensive margin labor supply responses: choose heta between 0 and 1
- Intensive margin labor supply responses: choose $\eta_{l1,w}, \eta_{l2,w} \neq 0$
- Residual response: adjusting savings through asset channel
- 1% wage shock induce 0.008% consumption change ... 0.992 ppt insured
 - 0.72 ppt insured from choosing to participate in both sectors (extensive margin)
 - 0.02 ppt insured from adjusting hours in both sectors (intensive margin)
 - 0.252 ppt insured from adjusting savings

• Decomposing productivity shocks of consumption: $\frac{\partial c}{\partial x} = \frac{\partial y}{\partial x} = \frac{\partial (S/Y)}{\partial x}$

$$\frac{\partial c}{\partial z} = \frac{\partial g}{\partial z} - \frac{\partial (z/1)}{\partial z}$$

- $\frac{\partial y}{\partial z}$: effect of log productivity change on income
- $\frac{\partial \tilde{(S/Y)}}{\partial z}$: effect of log productivity change on savings

124 / 133

Again, further decompose

•
$$\frac{\partial y}{\partial z} = \theta \frac{\partial y^1}{\partial z} + (1-\theta) \frac{\partial y^2}{\partial z}$$
 where
• $\frac{\partial y^1}{\partial z} = \frac{\partial (w+l^1)}{\partial z} = \eta_{l1,z}$ and
• $\frac{\partial y^2}{\partial z} = \frac{\partial (z+\alpha a+\psi l^2)}{\partial z} = 1 + \psi \eta_{l2,z}$

• Decomposing productivity shocks of consumption: $\partial u = \partial (S/Y)$ $\frac{\partial c}{\partial z}$

$$\frac{\partial c}{\partial z} = \frac{\partial g}{\partial z} - \frac{\partial (z/z)}{\partial z}$$

- $\frac{\partial y}{\partial z}$: effect of log productivity change on income
- $\frac{\tilde{\partial}(S/Y)}{\partial z}$: effect of log productivity change on savings

125 / 133

Again, further decompose

•
$$\frac{\partial y}{\partial z} = \theta \frac{\partial y^1}{\partial z} + (1 - \theta) \frac{\partial y^2}{\partial z}$$
 where
• $\frac{\partial y^1}{\partial z} = \frac{\partial (w + l^1)}{\partial z} = \eta_{l1,z}$ and
• $\frac{\partial y^2}{\partial z} = \frac{\partial (z + \alpha a + \psi l^2)}{\partial z} = 1 + \psi \eta_{l2,z}$

• Total effects of productivity shock: $\eta_{c,z} = \frac{\partial c}{\partial z}$

- Extensive margin labor supply responses: choose heta between 0 and 1
- Intensive margin labor supply responses: choose $\eta_{l1,z}, \eta_{l2,z} \neq 0$
- 1% productivity shock induce 0.032% consumption change ... 0.968 ppt insured
 - 0.28 ppt insured from choosing to participate in both sectors (extensive margin)
 - 0.08 ppt insured from adjusting hours in both sectors (intensive margin)
 - 0.608 ppt insured from adjusting savings

イロト イヨト イヨト イヨト 三日

- Total effects of productivity shock: $\eta_{c,z} = \frac{\partial c}{\partial z}$
- Extensive margin labor supply responses: choose θ between 0 and 1

• Intensive margin labor supply responses: choose $\eta_{l1,z}, \eta_{l2,z} \neq 0$

- 1% productivity shock induce 0.032% consumption change ... 0.968 ppt insured
 - 0.28 ppt insured from choosing to participate in both sectors (extensive margin)
 - 0.08 ppt insured from adjusting hours in both sectors (intensive margin)
 - 0.608 ppt insured from adjusting savings

イロト イヨト イヨト イヨト 三日

- Total effects of productivity shock: $\eta_{c,z} = \frac{\partial c}{\partial z}$
- Extensive margin labor supply responses: choose θ between 0 and 1
- Intensive margin labor supply responses: choose $\eta_{l1,z}, \eta_{l2,z} \neq 0$
- 1% productivity shock induce 0.032% consumption change ... 0.968 ppt insured
 - 0.28 ppt insured from choosing to participate in both sectors (extensive margin)
 - 0.08 ppt insured from adjusting hours in both sectors (intensive margin)
 - 0.608 ppt insured from adjusting savings

イロン イロン イヨン イヨン 三日

- Total effects of productivity shock: $\eta_{c,z} = \frac{\partial c}{\partial z}$
- Extensive margin labor supply responses: choose θ between 0 and 1
- Intensive margin labor supply responses: choose $\eta_{l1,z}, \eta_{l2,z} \neq 0$
- 1% productivity shock induce 0.032% consumption change ... 0.968 ppt insured
 - 0.28 ppt insured from choosing to participate in both sectors (extensive margin)
 - 0.08 ppt insured from adjusting hours in both sectors (intensive margin)
 - 0.608 ppt insured from adjusting savings

Direction for Future Work

- Non-linear reduced-form specification
 - Allow for heteregenous elasticities across the range of state variables
- Incorporate risk-sharing framework to explain the less explored asset channel response.
- Reduced-form estimation as a starting point for counterfactual policy questions
 - My estimates can be use to 'purge' data from the effects of household characteristics
 - We can then focus only on key variables in building a full structural model

Direction for Future Work

- Non-linear reduced-form specification
 - Allow for heteregenous elasticities across the range of state variables
- Incorporate risk-sharing framework to explain the less explored asset channel response.
- Reduced-form estimation as a starting point for counterfactual policy questions
 - My estimates can be use to 'purge' data from the effects of household characteristics
 - We can then focus only on key variables in building a full structural model

Direction for Future Work

- Non-linear reduced-form specification
 - Allow for heteregenous elasticities across the range of state variables
- Incorporate risk-sharing framework to explain the less explored asset channel response.
- Reduced-form estimation as a starting point for counterfactual policy questions
 - My estimates can be use to 'purge' data from the effects of household characteristics
 - We can then focus only on key variables in building a full structural model

(ロ) (同) (E) (E) (E) (0)

Thank you so much for inviting me here today! I am happy to answer any remaining questions.

イロト イポト イヨト イヨト ヨー わへの