ESG/Green Investment and Green Bond

Professor Emeritus, Faculty of Economics Keio University, Japan

Former Dean/CEO Asian Development Bank Institute

Director, Financial Research Institute, FSA

PhD. Johns Hopkins University

yoshino@econ.keio.ac.jp

All the statements are based on my own views which do not reflect views of affiliated institutions

Outlines (1) ESG Investment **Environmental, Social, Governance** (2) Green bond (3) Green Central Bank (4) Environmental consciousness Reputation (5) ESG Investment and Stock Price (6) Green projects The way to bring private sector finance (i) Large scale projects (ii) Hometown Investment Trust Funds

DR. NAOYUKI YOSHINO

International Green Finance Lifetime hievement Scientific Award Id Pénzügyi Tudományos Na

December 1, 2021, Budapest, Hungary, Central European Green Finance Conference

Pénzi

eveme

Internatio

SDG Investments: 17 Goals (UN) Sustainable Development Goals Millennium Development Goals ESG: Environment, Social and Governance

The evaluation methodologies and criteria for ESG scores vary from one evaluating organization to another.

(1) some agency uses its own criteria to evaluate a company's ESG efforts,

(2) some agency assign a score based on the degree of disclosure,

(3) some agency uses a score based on whether or not the company has an ESG policy,

(4) some agency uses a score based on actual ESG activities such as carbon dioxide reduction by judging from performance, and so on.

It raises issues whether ESG scores actually reflect ESG activities and outcomes by companies (Chatterji et al. 2009, Drempetic et al. 2019).

ESG Scores	Overview of Rating Methodology
Bloomberg ESG Disclosure Scores	Evaluating by degree of ESG disclosure
FTSE Russell's ESG Ratings	Evaluating by ESG risks based on disclosure and commitment to policy development and improvement
ISS Quality Score	Evaluating governance (board composition, shareholder and takeover defenses, compensation and remuneration, and audit and risk monitoring)
MSCI ESG Ratings	Evaluating by 37 key ESG issues
RobecoSAM Corporate Sustainability Assessment	Evaluating by economy, environment and society. Governance is included in the economy.
Sustainalytics' ESG Risk Ratings	Evaluating by ESG measures, disclosures, and the level of the problem
Thomson Reuters ESG Scores	Evaluating by 10 categories (environment [resource use, emissions, and innovation], society [employees, human rights, local communities, and product responsibility], and governance [management, shareholders, and CSR strategy]).

Table 1: ESG scores and evaluation methodologies of major ESG rating agencies

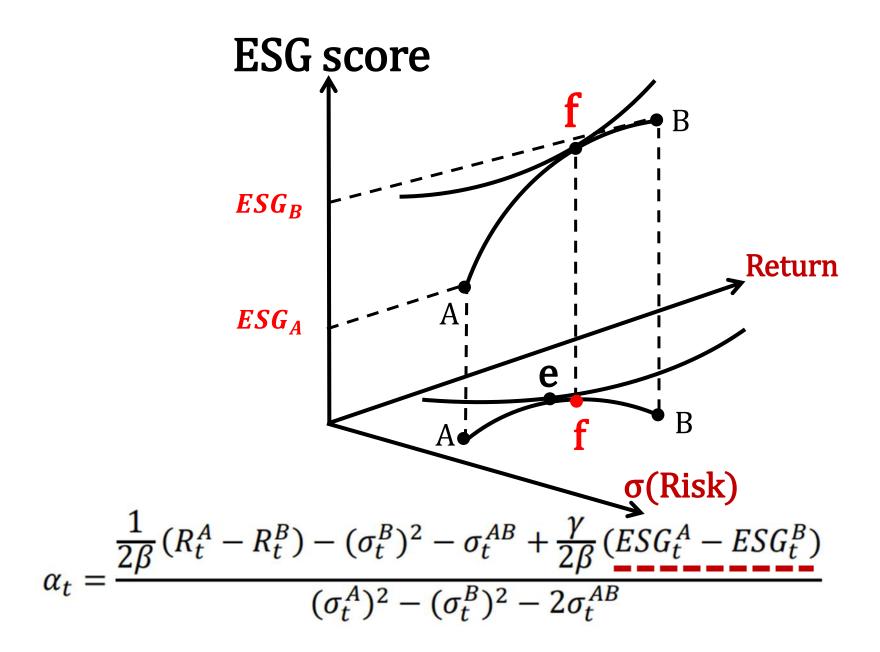
Source: Bloomberg, ESG rating organization websites, and Yuyama et al. (2020).

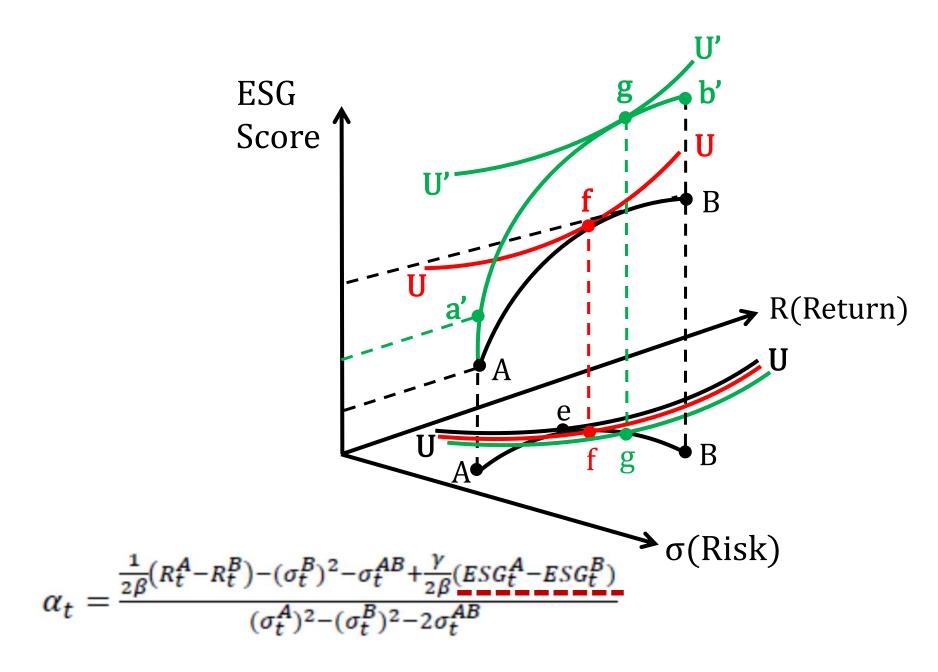
Table 2: Examples of ESG/SDG-related standard development movements in different countries.

	Standard Development Movement
EU	Through the EU Taxonomy, the criteria for classifying economic activity as environmentally compatible or not have been established
China	Develop a green industry guidance catalog and green standards to be applied nationally
International Organization for Standardization (ISO)	Moves to set standards for greenhouse gases, environmental performance, and green finance

Source: MUFJ Research and Consulting(2020).

Current ESG investment distorts asset allocation


- 1, Traditional asset allocation :
 - two parameter approach
 - (i) Rate of return (R), (ii) Risks (σ^2)
- 2, ESG component is added for the asset allocation
 - (iii) ESG (or GEEN) multi-factor model
 - Reputation, Image of the company, Credit rating
- 3, ESG criteria is different from one consulting company to another
- 4, Each Investor changes its' asset allocation based on specific criteria of ESG provided by consultant


Two Parameter Approach: Markovitz and Sharpe Return (R) and Risk (σ)

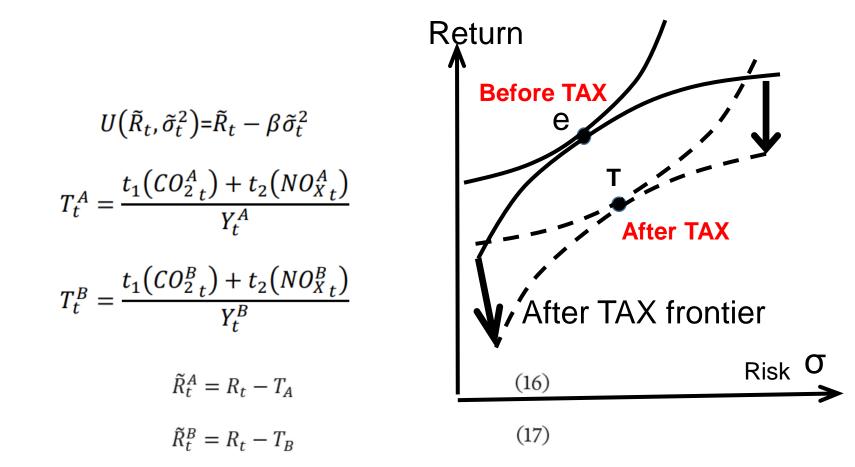
$$U(R_t, \sigma_t^2, ESG_t) = R_t - \beta \sigma_t^2 + \gamma(ESG_t)$$

s.t. $R_t = \alpha_t R_t^A + (1 - \alpha_t) R_t^B$
 $\sigma_t^2 = \alpha_t^2 (\sigma_t^A)^2 + (1 - \alpha_t)^2 (\sigma_t^B)^2$
 $ESG_t = \alpha_t (ESG_t^A) + (1 - \alpha_t) (ESG_t^B)$
 $\frac{1}{2\beta} (R_t^A - R_t^B) - (\sigma_t^B)^2 - \sigma_t^{AB} + \frac{\gamma}{2\beta} (ESG_t^A - ESG_t^B)$

 $(\sigma_t^A)^2 - (\sigma_t^B)^2 - 2\sigma_t^{AB}$

 α_{t}

Empirical Analysis of Asset Allocation including ESG scores


Table 4. Empirical application of the theory					
EGS Score	Optimal portfolio without ESG considerations	Rating agency (1)	Rating agency (2)	Rating agency (3)	
ESG score of company A	-	8.6	9.6	2.9	
ESG score of company B	-	1.8	1.3	3.9	
Value of α	0.57	0.71	0.74	0.54	

- The allocation of assets between A and B changes which ESG rating agencies' ESG score is used for the portfolio allocation.
- The higher ESG score value is the higher α, and thus the higher the investment allocation. For example, since Rating agency (2) is the highest ESG score for Company A, investors following this rating will have the highest allocation to Company A.
- On the other hand, Rating agency (3) is lower for Company A than for Company B, resulting in a smaller investment allocation.
- If we do not take into account the ESG score, the investment allocation to Company A is 0.57

Optimal portfolio allocation can be achieved by taxing wastes

1, By taxing wastes such as CO2, NOX, Plastics etc. by identical international tax rate, the investors can only look for "rate of return" and "risks" as they were conventionally focused on.

2, International taxation will lead to optimal asset allocation and achieve sustainable growth

14

Equations (16) and (17) show the after-tax rate of return of company A and company B. We can compute the optimal allocation of assets between company A and company B as in equations (18) and (19), which show the optimal rate of return and risks, respectively:

$$\tilde{R}_t = \tilde{\alpha}_t \tilde{R}_t^A + (1 - \tilde{\alpha}_t) \tilde{R}_t^B \tag{18}$$

$$\tilde{\sigma}_t^2 = \tilde{\alpha}_t^2 (\tilde{\sigma}_t^A)^2 + (1 - \tilde{\alpha}_t)^2 (\tilde{\sigma}_t^B)^2 + 2\tilde{\alpha}_t (1 - \tilde{\alpha}_t) \tilde{\sigma}_t^{AB}$$
(19)

Satellite Photo can monitor CO2 exposures, solar power panels, size of Green area etc.

Green Credit Rating (Example)

Credit Rating	Greenness(%)	CO2	NOx	Plastic	N2O etc
AAA	100 ~ 90	AAA	AAA	AAA	
AA	90 ~ 80	А	AA	AAA	
А	80 ~ 70	А	AA	BBB	
BBB	70 ~ 60	BBB	BB	А	
BB	60 ~ 50	BB	BB	BB	
В	50 ~ 40	В	В	В	
CCC	40 ~ 30	CCC	В	CCC	
CC	30 ~ 20	CC	С	CCC	
С	20 ~ 10	С	С	С	

DOI: http://dx.doi.org/10.25115/eea.v39i3.4628

Volume 39-3, May 2021 // ISSN: 1133-3197

ESG/Green Investment and Allocation of Portfolio Assets¹

NAOYUKI YOSHINO¹, TOMONORI YUYAMA²

¹Department of Economics, Professor Emeritus, KEIO UNIVERSITY and Director of Financial Research Center at FSA, JAPAN. E-mail: yoshino@econ.keio.ac.jp ²Research Fellow of Financial Research Center at FSA and Director of the Macroeconomic and Market Analysis Office at FSA, JAPAN. E-mail: tomonori.yuyama@fsa.go.jp

Contents lists available at ScienceDirect

Finance Research Letters

journal homepage: www.elsevier.com/locate/frl

Covid-19 and Optimal Portfolio Selection for Investment in Sustainable Development Goals

Naoyuki Yoshino^a, Farhad Taghizadeh-Hesary^{b,*}, Miyu Otsuka^c

r Emeritus, Keio University and Visiting Professor, National Graduate Institute for Policy Studies (GRIPS), Tokyo, Japan e Professor, Social Science Research Institute, Tokai University, Hiratsuka-shi, Kanagawa-ken, Japan s, Graduate School of Economics, Keio University, Tokyo, Japan Greenness, mood, and portfolio allocation: A cross-country analysis

Muhammad Zubair Mumtaz^{a,b,*}, Naoyuki Yoshino^c

Environmental Challenges 5 (2021) 100325

$$U_t = R_t - \beta \sigma_t^2 + \gamma (Mood_t) X (Greenness_t)$$

Returns, risk, greenness, mood, and portfolio allocation .

	Developed countries		Developing countries			
	Japan	South Korea	Malaysia	Indonesia	Philippines	
R _A	3.38%	5.46%	7.61%	6.35%	8.44%	
R _B	7.93%	8.03%	13.03%	3.94%	12.84%	
$egin{array}{c} R_B \ \sigma^2_A \ \sigma^2_B \end{array}$	2.44%	6.52%	10.38%	8.34%	11.45%	
σ_{R}^{2}	13.87%	13.09%	15.83%	4.03%	14.48%	
Greenness _A	-0.0156	-0.0361	-0.2012	-0.4334	-0.2102	
Greenness _B	-0.0146	-0.0351	-0.1977	-0.3103	-0.2512	
Mood	120	104	57	44	39	
α	0.64	0.62	0.52	0.56	0.55	
ά	0.83	0.75	0.67	0.68	0.69	
ά-α	0.19	0.13	0.15	0.12	0.14	

June 2018 Green Bond Principles

Voluntary Process Guidelines for Issuing Green Bonds

International Capital Market Association

ICMA Paris Representative Office

62 rue la Boétie

75008 Paris

France

Tel: +33 1 70 17 64 70

greenbonds@icmagroup.org

- renewable energy (including production, transmission, appliances and products);
- energy efficiency (such as in new and refurbished buildings, energy storage, district heating, smart grids, appliances and products);
- pollution prevention and control (including reduction of air emissions, greenhouse gas control, soil remediation, waste prevention, waste reduction, waste recycling and energy/emissionefficient waste to energy);
- environmentally sustainable management of living natural resources and land use

Green Bond Principles (GBP) 2018

(i) renewable energy

(ii) energy efficiency

(iii) pollution prevention and control

(iv) environmentally sustainable management of living natural resources and land use

(v) terrestrial and aquatic biodiversity conservation

(vi) clean transportation

(vii) sustainable water and wastewater management

(viii) climate change adaptation

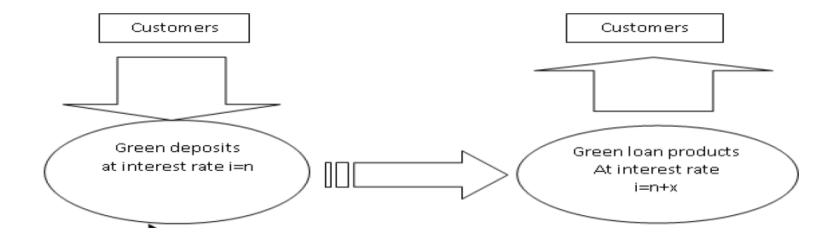
(iX) eco-efficient and/or circular economy adapted products, production technologies and processes

(X) green buildings which meet regional, national or internationally recognized standards or certifications.

Source: The Green Bond Principles: Voluntary Process Guidelines for Issuing Green Bonds, ICMA, June 2018

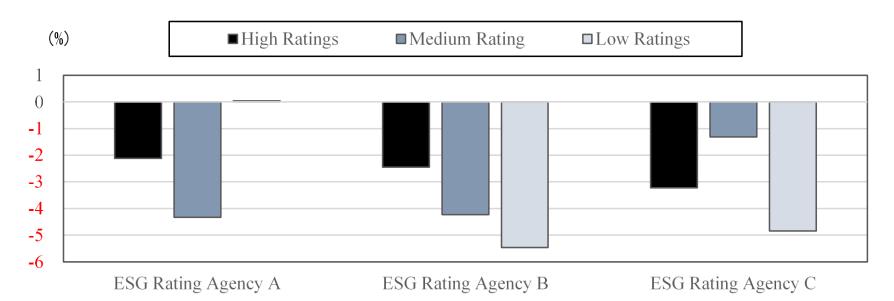
Green bond issues in Nordic Countries, Example

Sweden		10,239						
State Bank	SBAB Bank	397						
	Swedish Export Credit	444	SEK issu	iance dom	inates for o	utstanding	green bond	s
LGFA	Kommuninvest	1,511	SEK issuance dominates for outstanding green bonds EUR Billions				-	
Bank	Nordea Bank	500		0	2.0	4.0	6.0	8.0
	SEB	500	1-3Y					
	Swedbank	500						
Local government	City of Gothenburg	601	3-5Y					
	City of Lunds	77						
	City of Malmö	131	5-7Y					
	City of Norrköping	62	7-10Y					
	City of Västerås	76	/-101					
	Örebro Kommun	133	10-15Y					Finland
	Region Skåne	124						Denmark Norway
	Stockholms Läns Landsting	518	Over 50Y					Sweden
Agri/Forestry	Södra Skogsägarna	107						
	Svenska Cellulosa AB	170						
Agri/Forestry GBE	Sveaskog	213						



Ecology & Safety ISSN 1314-7234, Volume 9, 2015 Journal of International Scientific Publications www.scientific-publications.net

GREEN BANKING – DEFINITION, SCOPE AND PROPOSED BUSINESS MODEL


Virginia Zhelyazkova, Yakim Kitanov

VUZF University, 1, Gusla Str., Sofia

Green Central Bank				
Gold				
SDR				
Green Bond	Money Supply			
Ordinary Bond				

ESG and Stock Price : Relations

Note: Only stocks covered by each ESG rating agency are aggregated. The estimation period is the first quarter of 2020 (December 30, 2019 to March 31, 2020).

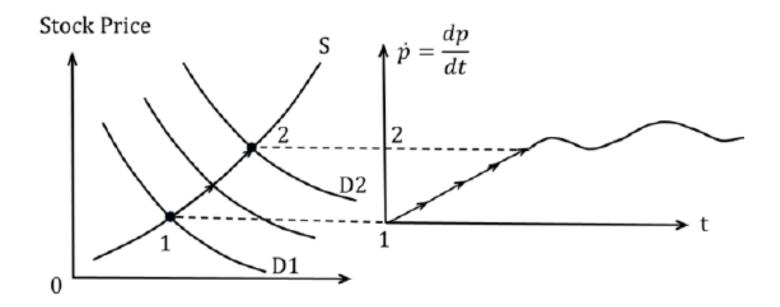
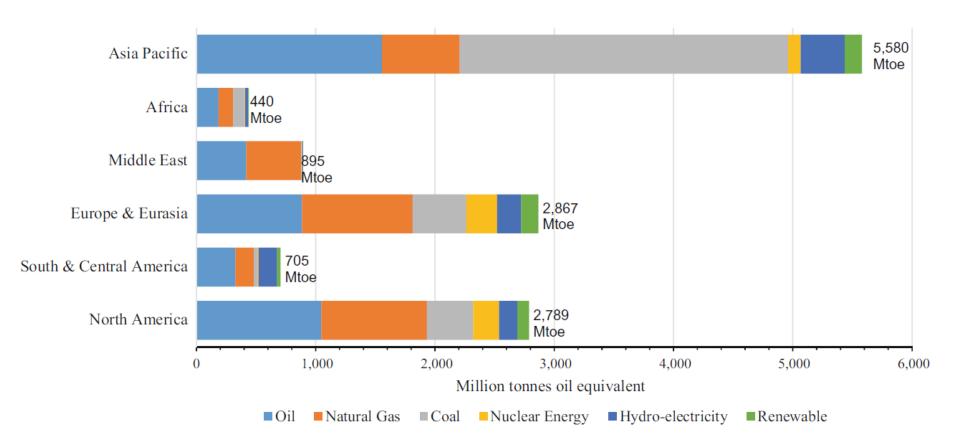

Source: Authors' calculations from Bloomberg data.

Figure 6: ESG score (high-medium-low quintile) and stock returns (first quarter of 2020)

ESG investment and Stock Price

$$\frac{dp}{dt} = \dot{p} = \lambda \{ D(R, \sigma, ESG - \underline{ESG}) - S(r, Y) \}$$

$$\frac{dp}{dt} = \dot{p} = \lambda \{ D(R, \sigma) - S(r, Y) \}$$
(29)
(30)


Infrastructure Investment Needs by Sector, 2016-2030

(\$ billion in 2015 prices)

	Baseline estimates				
Sector	Investment Needs	Annual average	% share to total		
Power	11689	779	51.8		
Transport	7796	520	34.6		
Telecommunications	2279	152	10.1		
Water and Sanitation	787	52	3.5		
Total	22551	1503	100		

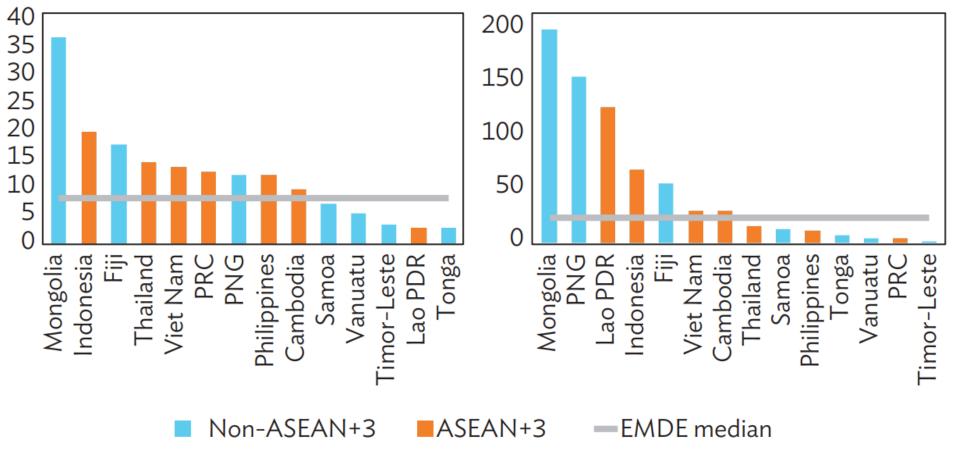
Source: Meeting Asia's Infrastructure Needs, ADB (2017)

Energy Sources

Green energy projects categorized into two groups based on scale:

A) large projects, such as Hydro-power: B) Community type green energy project (Hometown Crowd Funds)

Large projects can be financed by i) insurance and pension funds, that have long-term Financing.


Bank loans are not so much suitable for these project, because energy projects are long-term (10-20 years), However bank deposits are short to mediumterm (1-5 years).

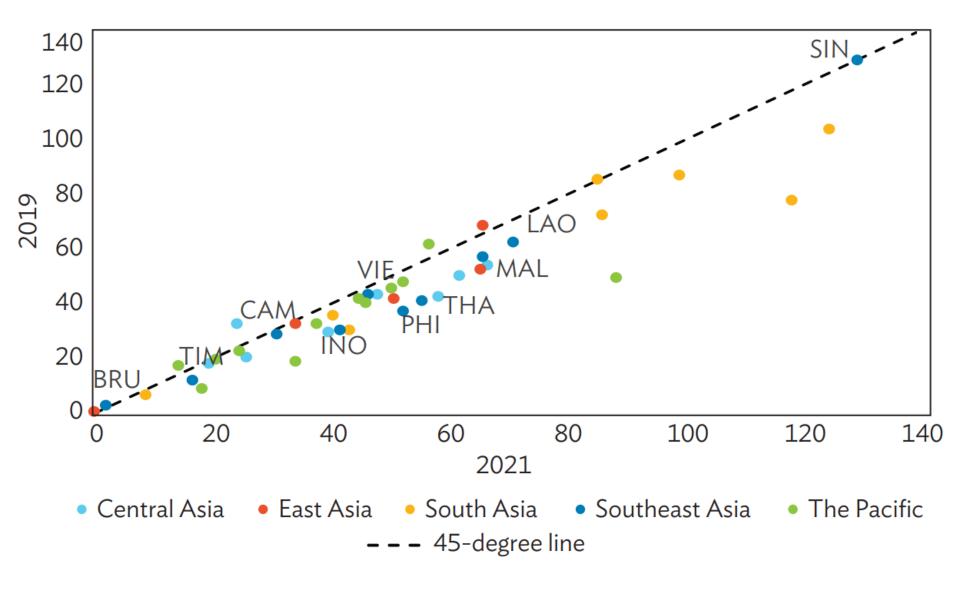
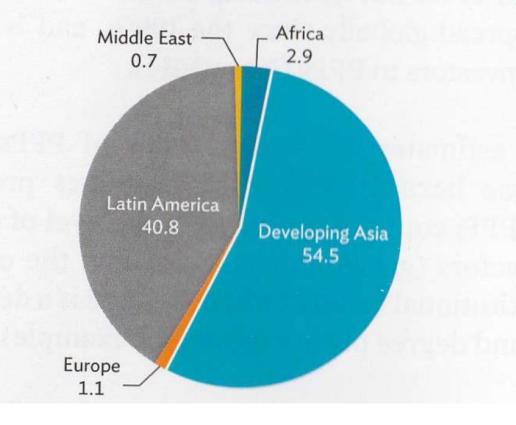

Hydropower plant

Figure 5.4: Debt Service in Selected Developing Asian Economies, 2019 and 2020

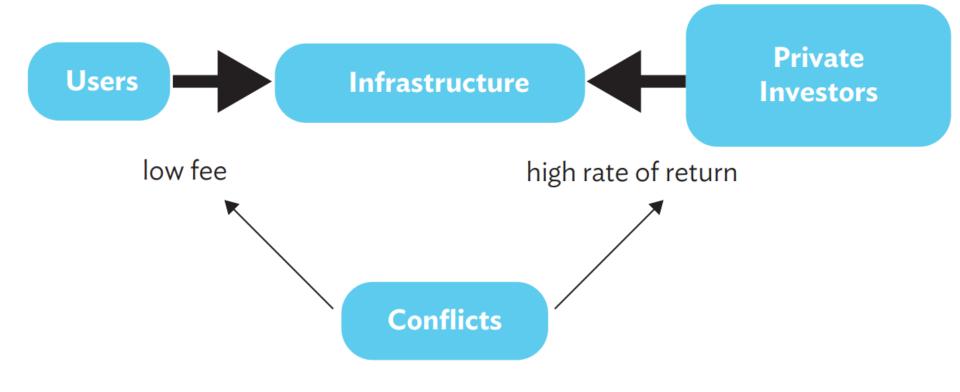
a. Debt Service on External Debt to Total External Debt, 2019 (%) b. Debt Service on External Debt to Total Revenues, 2020 (%)

Figure 5.10: Comparing Public Debt in 2019 and 2021

BRU = Brunei Darussalam, CAM = Cambodia, INO = Indonesia, LAO = Lao PDR, MAL = Malaysia,


PPP = Public Private Partnerships

Realizing The Potential of Public Private Partnerships to Advance Asia's Infrastructure Development


Akash Deep Jungwook Kim Minsoo Lee

ADB (2019)

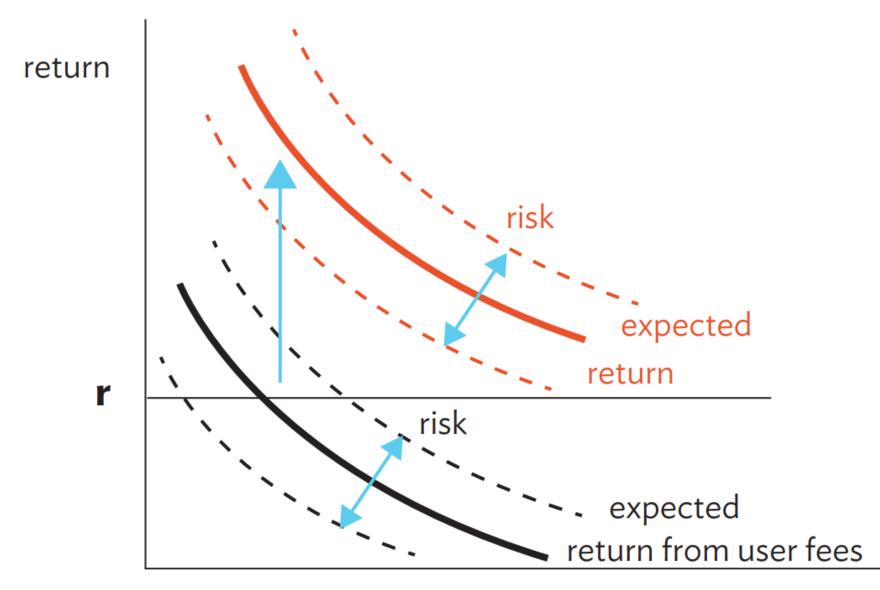


Figure 5.6: Conflict of Interest between Users and Investors

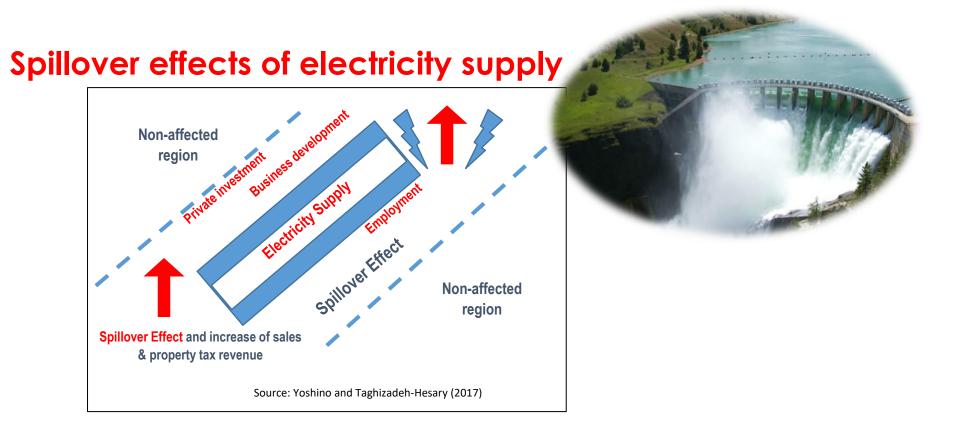

Source: Authors.

Figure 5.2: Expected Rate of Return and Risk Profile of Project Bonds versus Benchmark Yield

Level of investment

Injection of Increased tax revenues from the spillover effect into energy projects in order to increase the rate of return for private investors

ORIGINAL ARTICLE

Financing infrastructure using floating-interest-rate infrastructure bond[†]

Naoyuki Yoshino^{1*}, Dina Azhgaliyeva² and Ranjeeta Mishra²

Figure 4. The proposed floating-rate infrastructure bonds to make spillover tax return in practice.

Various Private Financial Investors in Asia

1, Banks --- Safer projects

Brown field (infrastructure) Invest into operation period Securitization after certain period of time Privatized projects by the government

2, Insurance and Pension funds

Long term projects (10 years -20- 30 years)

3, Revenue Bonds (floating interest rate) uncertain income streams

4, Equity Investments

Construction period and Green fields

Naoyuki Yoshino · Sahoko Kaji Editors

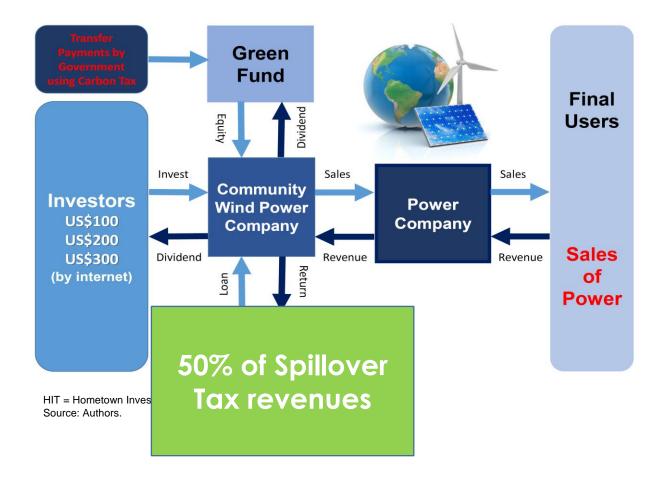
Hometown

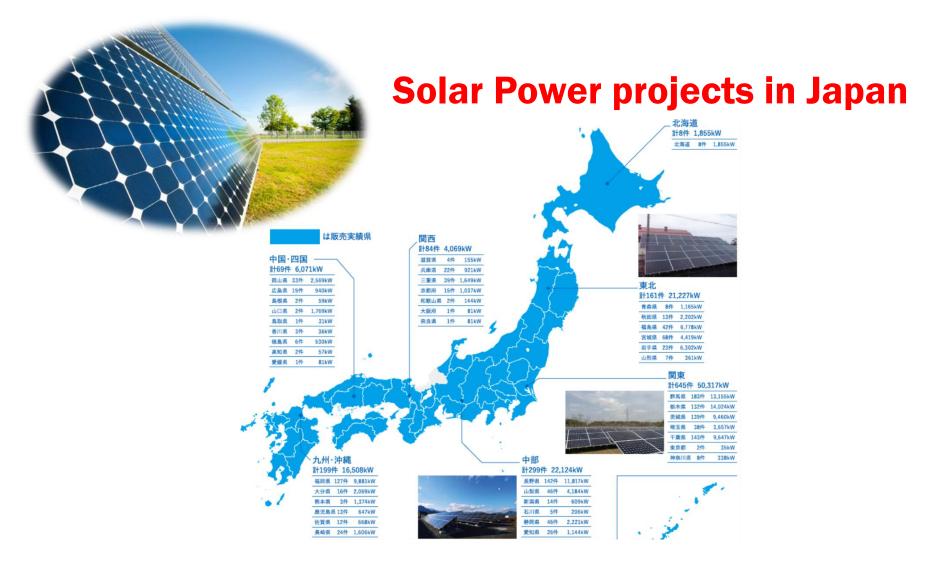
Investment

Trust Funds

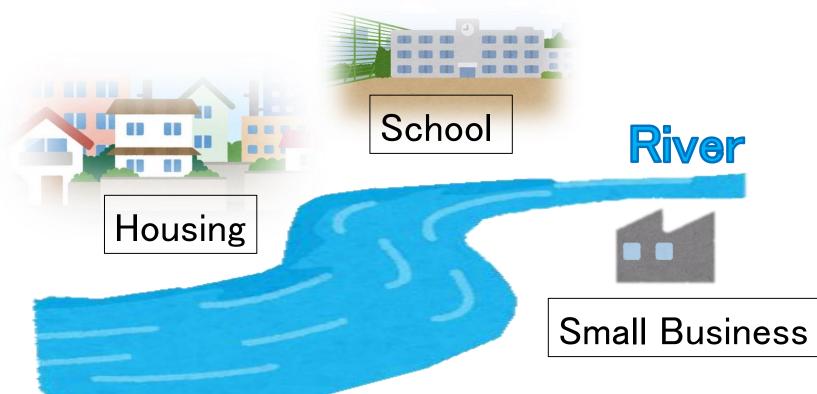
Possible Solutions by use of community funds For Risky businesses

Hometown Investment Trust Funds


A Stable Way to Supply Risk Capital Yoshino, Naoyuki; Kaji Sahoko (Eds.), 2013,


D Springer

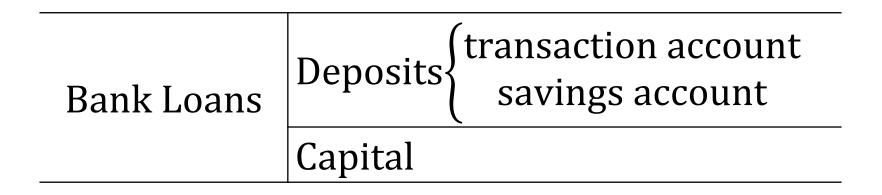
ADBI Working Paper Series


Naoyuki Yoshino and Farhad Taghizadeh-Hesary

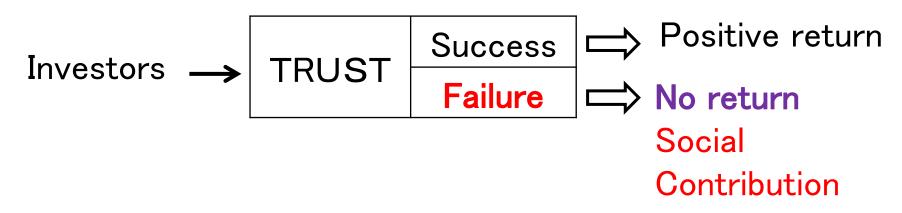
Financing Scheme for Renewable Energy Projects Using HITs and Injecting Carbon Tax

Spillover Effect of Community Based Hydro Power

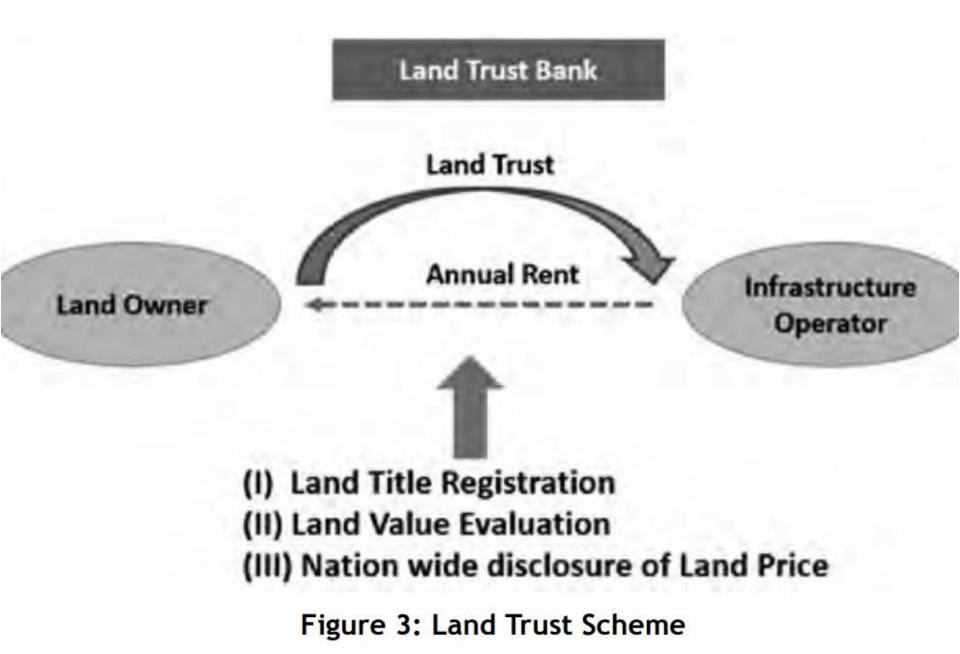
Structure of Wind Power Fund

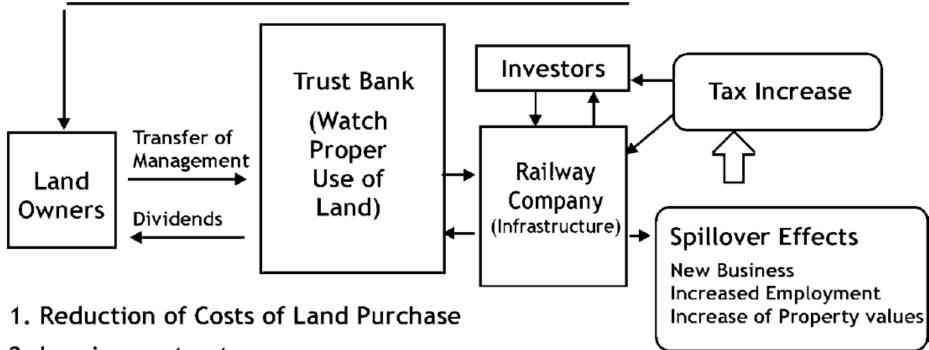

249 people participated (donation and investment) Total cost of one wind power = 2 million US \$ 5% extra price is charged = (1+0.05)X PE People should reduce Energy consumption by 5%

so that total energy costs remain the same <Bank Loans to environmental projects>


Revenue : sales price of electric power supply cannot set the price based on MC (Price=MC)

Traditional Banking


Not Necessarily High Rate of Return



Success Case: High Rate of Return

Investors
$$\rightarrow$$
 TRUST Success $\xrightarrow{\text{positive rate of}}$ return

ASCI Journal of Management 49 (2) September 2020

- 2. Leasing contract
- 3. Future tax revenues can be used for repayment
- 4. Land owners keep their ownership

Figure 2: Land Trust for Infrastructure Investment

Source: Yoshino, N., Abidhadjaev, U., & Hendriyetty, N. (2019).

Reference

- Sachs, Jeffery, Wing Thye Woo, Naoyuki Yoshino and Farhad Taghizadeh-Hesary. 2019. *Handbook of Green Finance: <u>Energy Security and Sustainable Development</u></u>. Springer.
 Yoshino, Naoyuki and Farhad Taghizadeh-Hesary, 2018. "Combining environmental taxation, spill-over effects and community-based financing in development of renewable energy projects in Asia." <u>Economics and Policy of Energy and the Environment</u> 2018(1):133-148, DOI: 10.3280/EFE2018-001006.*
- Yoshino, Naoyuki, Farhad Taghizadeh-Hesary, and Miyu Otsuka. 2020. "Covid-19 and Optimal Portfolio Selection for Investment in Sustainable Development Goals." *Finance Research Letters*: 101695.
- Yoshino, Naoyuki, Farhad Taghizadeh-Hesary and Mumtaz Khan. 2020. "Taxation on Waste Will Lead to Optimal Portfolio Allocation in Green Investment." <u>Japan</u> <u>Spotlight</u> (Nov/Dec issue, Japan Economic Foundation).
- Yoshino, Naoyuki and Yuyama 2021. "ESG/SDG Investment and Allocation of Portfolio Assets", *Studies of Applied Economics*, Vol.33-9, 2021.

Thank you for your Attention

Professor Emeritus, Faculty of Economics Keio University, Japan Former Dean/CEO Asian Development Bank Institute Director/Financial Research Center/FSA yoshino@econ.keio.ac.jp

All the statements are based on my own views which do not reflect views of affiliated Institutions.