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Plan of Attack
1. Why Do We Care About Uncertainty? 

2. Types of Uncertainty

3. Modelling Uncertainty in Modern ML

4. Characterising Model Interpretability

5. Unboxing the Black Box



1. Why Do We Care About Uncertainty?



Case Study I: Self-Driving Cars

Image Depth Prediction Depth Uncertainty



Case Study II: Policy Uncertainty



Bonus I: Multi-Armed Bandits

“A Modern Bayesian Look at Multi-Armed Bandit”
Scott (2010)



Bonus II: Active Learning

“Active Learning”
Settles (2012)



2. Types of Uncertainty



Epistemic
Uncertainty over data generation.
→ parameter/model uncertainty

Aleatoric
Uncertainty inherent to the system.

→ exogenous uncertainty.



Regression Task with No Uncertainty



Regression with Learned Variance



What about model/parameter uncertainty?



Good Ol’ Linear Regression Model



What Exactly Did We Lose?



Can We Ignore Model Uncertainty?

Aleatoric Epistemic



Epistemic Uncertainty in Impulse Responses

“Inference for Impulse Responses under Model Uncertainty”
Lieb et al. (2018)



3. Modelling Uncertainty in Modern ML



The Classical Gold Standard - MLE



Sometimes Possible for Some Black Boxes

“Asymptotic Theory of Random Forests”
Wager (2014)



Bayesian Inference



Posterior Computations

Markov Chain Monte Carlo Variational Inference



Case Study I: Monte Carlo Dropout
Dropout Variational Inference

“Dropout as Bayesian Approximation”
Gal et al. (2015)



Case Study I: Monte Carlo Dropout (Cont.)

“What Uncertainties Do We Need in BDL for CV?”
Kendall et al. (2017)



Case Study II: Clustering with Dirichlet Processes



Case Study II: Clustering with Dirichlet Processes

“Lecture Notes on Bayesian Nonparametrics”
Orbanz (2014)



Challenges of Bayesian Inference
1. Computationally intensive:

a. Computational power and memory can be expensive.

b. Challenging real-time computations.

2. Complex computations:

a. High barrier to entry for beginners.

b. Are people willing to trust it?



4. Characterising Model Interpretability



Why Do We Even Care?
● Trust:

→ Without trust, adoption rate will be low.
→ Can we legally deploy a black box?

● Causality:
→ Are we capturing the real policy effects?
→ More understanding equals better “debuggability”.

● External validity:
→ Do we introduce feedback loops?
→ Real pattern or data leak? “The Mythos of Model Interpretability”

Lipton et al. (2016)



Case Study I: Medical Treatment for Pneumonia

“Intelligible Models for Healthcare”
Caruana et al. (2015)



Case Study II: Google’s “Racist” Algorithm



Interpretations matter because we cannot encapsulate 
our objectives into a mathematical functions.



How Do We Characterise Interpretability?
● Transparency:

→ “I can simulate the algorithm in my head.”
→ “I can break the algorithm down into smaller intuitive pieces.”

● Post-hoc explicability:
→ “I can tell you why the model behaved that way.”
→ “I know of other instances where the model behaved that way.”

“The Mythos of Model Interpretability”
Lipton et al. (2016)



5. Unboxing the Black Box



Case Study I: LIME

“Why Should I Trust You?”
Ribeiro et al. (2016)



Case Study I: LIME

“Why Should I Trust You?”
Ribeiro et al. (2016)



Case Study II: Influence Functions



Case Study II: Influence Functions

“Understanding Black-box Predictions via Influence Functions”
Koh and Liang (2017)



Conclusion
● Modelling uncertainty and interpretability are extremely valuable:

→ Uncertainties are required to fully inform decisions.
→ Black boxes become blockers in many cases.

● Epistemic uncertainty in modern ML is challenging:
→ Many existing ML methods do not fully account for epistemic uncertainties.
→ Bayesian inference provides a general, principled framework to estimate uncertainty.

● Interpretability is a multi-faceted concept:
→ It all boils down to not being able to write our objectives mathematically.
→ We can aim for transparency and post-hoc explicability.
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