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Talk outline

e Introduction to Causal Inference

e Machine Learning for Counterfactual Predictions

o Bayesian Additive Regression Trees
o Deep Balanced Neural Networks
o Deep Instrumental Variable

e Challenges

e \Whatelse ?



Why do we care ?
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The best answer in this case
e “l don’t know”
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Elements of Causal Inference Foundations and Learning Algorithms (Jonas Peter et al. 2017)



We often deal with causal problems

e Recommender systems
e Drug design

e Pricing

e Self-driving cars

e Lending systems



Causal questions as Counterfactual questions

e Will new recommendation algorithm bring more customers ?
o Counterfactuals: old vs new algorithm

e Does this medication improve patients health
o Counterfactuals: taking vs not taking

e |[s driving off a cliff a good idea ?
o Counterfactuals: ....



Potential Outcome Framework

e Each unit (patient, customer, student ..)
has two potential outcomes: (yio, yi1)
o y?: outcome of the i unit if the control is given “control outcome”
o y.": outcome of the i unit if the treatment is given “treatment outcome”

e Treatment effect for unit i
— Y-1' Y-O

o Often interested in Average Treatment Effect: E[y.'- y°]



Hypothetical Example - Effect of treatment on blood pressure

potential | potential | observed
outcome outcome outcome

Audrey 1 0

Anna 1 40 0 140 140
Bob 0 50 0 150 150
Bill 0 50 0 150 150
Caitlin 1 60 1 155 155
Cara 1 60 1 155 155
Dave 0 70 1 160 160
Doug 0 70 1 160 160

Source: Jennifer Hill

Mean(y'-y?°) =-7.5

Mean((y, [treatment=1) - (y. [treatment=0)) = 12.5



The fundamental problem of
causal inference:
We only ever observe one of the
two outcomes

e How to deal with the problem
o Randomization -> very expensive and time consuming
o Statistical Adjustment (with assumptions)



Statistical Adjustment

e Make some assumptions
o Major one -> Ignorability: Y°, Y' L Z (treatment) | X (covariates)
e Under ignorability

E(Y1) - E(Y0) =E{E(Y [Z=1,X)}-E{E(Y|Z=0, X))}
=E{E(Y|Z=1,X)-E(Y|Z=0, X))}
= E{ f(1, x) - (0, x) }

e Estimate the outcome function f(z, x) using a model known as Response Surface
Modeling



Consider a simple example

e Effect of an enrichment program on subsequent test scores

e Suppose that exposure to the program is
o Determined based on one pre-test score and
o |s probabilistic, as in:
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red for treatment E[Y(1)]
observations pretest]
and response surface
blue for control observation
and response surface
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Machine Learning for Counterfactual Predictions

e \We wish to model f(1, x) = E(Y|Z=1,X) and (0, x) = E(Y|Z=0,X)

e In principle any regression method can work:
use Z (treatment) as a feature, predict for both Z. =0, Z=1

e Linear regression is far too weak for most problems of interest!



Bayesian Additive Regression Trees
(BART)

Bayesian Nonparametric Modeling for Causal Inference, Jennifer L. Hill (2012)



Bayesian Additive Regression Trees (BART)

e (Goal: Estimate surface response using BART

e BART is a Bayesian form of boosted regression trees



Will find interactions, non-linearities. Not the best for additive models.

" Progressively splits the
Regression trees data into more and more
homogenous subsets.

Within each of these subsets
the mean of y can be
calculated
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Boosted Regression Trees

e Builds on the idea of a treed model to create a “sum-of-trees” model

Let {TJ., I\/IJ.} j=1,...,m, be a set of tree models

T, denotes the i tree,
Mj denotes the means from the terminal nodes from the j™ tree,

f(z, x) = 9(zx,T,,M,) + 9(z,x,T,,M,) + ... + g(z,x,T_,M_)

Z<.5
g(z=0,age=7,T,,M;)=50

ageJlO pretestl<90

u=50 u=60 p=80 u=100



Boosted Regression Trees

Boosting is great for prediction but ...

— Requires ad-hoc choice of tuning parameters to force trees to be
weak learners (shrink each mean towards zero)

— How estimate uncertainty? Generally, people use bootstrapping
which can be cumbersome and time consuming



How BART differs from boosting

BART can be thought of as a stochastic alternative to boosting.
It differs because:

e f(z,x)is a random variable
e Using an MCMC algorithm, we sample f(z,x) it from a posterior
o Allows for uncertainty in our model
e Avoids overfitting by the prior specification that shrinks towards a
simple fit:
o Priors tend towards small number of trees (“weak learners”)
o Each tree is pruned using priors



Causal Inference using BART

posttest

Response surface and BART fit
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Causal Inference using BART

Lessons learned from a data analysis competition

Automated versus do-it-yourself methods
Vincent Dorie et al. (2018)

for causal inference:
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Handle imbalance problem



Imbalance and lack of overlap problem
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Counterfactual Regression with
Neural Network

Estimating individual treatment effect: generalization bounds and algorithms, Uri Shalit et al. (2017)
Learning Representations for Counterfactual Inference, Fredrik D. Johansson et al. (2016)



Balanced-Representation Learning
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Counterfactual regression with Neural Network

Neural net based representation learning algorithm with explicit
regularization for counterfactual estimation

Goal: Estimate f(z, x) using neural networks
e Add explicit regularization to balance feature representation in
treated and controlled groups



Counterfactual regression with Neural Network

Train to minimize 3 objectives

| hy f(1, x)
= A L (@),y = Ty)
X i .- f(f’,_’)
reol LT L(ho(®),y = Yp)
0
e () S L JIPMc (5%, 51

Integral Probability Metric (IPM) measures distance between two distributions
e Such as Wasserstein and Maximum Mean Discrepancy (MMD) distances

Estimating individual treatment effect: generalization bounds and algorithms, Uri Shalit et al. (2017)



Handle unobserved confounders



Instrumental Variable



Instrumental Variable
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Airline Price Example
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Deep IV: A Flexible Approach for Counterfactual Prediction, J Hartford et al. (2017)



Instrumental Variable

Two main assumptions:

1. Relevance: F(z|x,w), the distribution of z given x and w, is not
constant in w.

2. Exclusion:w L y| (X, z, e).

Unobserved

’
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Instrumental Variable

We assume additive error assumption
y=g(z,z) +e

Taking the expectation of both sides conditional on [x, w] and applying
the assumptions establishes the relationship

Ely|z, w] = Elg(z, w)|z, w] + Ele|z]

- /g(z,x)dF(z!JJ, w)



Instrumental Variable

Elylz,w] = /g(z,a:)dF(z\aj,w)

We can recover g(z,x) by solving implied inverse problem

Closed-form solution exists if we posit linearity assumption in g(z, w)
and F(z|x, w): Two-stage least square

Very inflexible!



Deep Instrumental Variable

Deep IV: A Flexible Approach for Counterfactual Prediction, J Hartford et al. (2017)



Deep Instrumental Variable

Elylz,w] = /g(z,a:)dF(z\aj,w)

We can recover g(z,x) by solving implied inverse problem

Deep IV: A Flexible Approach for Counterfactual Prediction, J Hartford et al. (2017)



Deep Instrumental Variable

DeeplV procedure has two stages:
e Estimate density F(z‘gj: w)

e Optimize the loss function



Deep Instrumental Variable

n

: 2
min Y (y; — /g(z, xy )dF (z|x, w))
geG
t=1
Stage 1: fit F(z|7r w) Stage 2: train network g,
Using the model of choice using stochastic gradient descent
The author uses with monte carlo integration
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Deep IV: A Flexible Approach for Counterfactual Prediction, J Hartford et al. (2017)



Time Series Data



Factual outcome

Bayesian structural time-series
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Inferring causal impact using Bayesian structural time-series models, Kay H. Brodersen (2015)



Some other stuff

e ML for Propensity Score
e ML for matching (e.g. kernel-based matching)

e ML for variable selection (e.g. LASSO)



Challenge

e Regularization bias

e Cannot perform conventional cross validation because of
the fundamental problem of causal inference
o How to perform model selection and hyper-parameter
tuning

e Very few benchmark dataset available



What else ?



What else?

e Causal discoveries: The next big thing!!
e Combining observational and interventional data

e Relationship with reinforcement learning



