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● Introduction to Causal Inference
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○ Deep Balanced Neural Networks
○ Deep Instrumental Variable

● Challenges

● What else ?



Why do we care ?

Seeing != Doing

The best answer in this case 
“I don’t know”

Elements of Causal Inference Foundations and Learning Algorithms (Jonas Peter et al. 2017)



We often deal with causal problems
● Recommender systems

● Drug design 

● Pricing

● Self-driving cars

● Lending systems 



Causal questions as Counterfactual questions
● Will new recommendation algorithm bring more customers ?

○ Counterfactuals: old vs new algorithm

● Does this medication improve patients health
○ Counterfactuals: taking vs not taking

● Is driving off a cliff a good idea ?
○ Counterfactuals: ….



Potential Outcome Framework
● Each unit (patient, customer, student ..) 

has two potential outcomes: (yi
0, yi

1)
○ yi

0: outcome of the ith unit if the control is given “control outcome”
○ yi

1: outcome of the ith unit if the treatment is given “treatment outcome”

● Treatment effect for unit i 
= yi

1- yi
0

● Often interested in Average Treatment Effect: E[yi
1- yi

0]



Hypothetical Example - Effect of treatment on blood pressure

Mean(yi
1 – yi

0) = -7.5 

Mean((yi |treatment=1) - (yi |treatment=0)) = 12.5



● How to deal with the problem
○ Randomization -> very expensive and time consuming
○ Statistical Adjustment (with assumptions)

Treat
ment

Out
come

Age
Confounder



Statistical Adjustment
● Make some assumptions

○ Major one -> Ignorability: Y0, Y1⊥ Z (treatment) | X (covariates)
● Under ignorability

E(Y1) − E(Y0)  = E{ E(Y |Z = 1, X) } − E{ E(Y |Z = 0, X) } 

= E{ E(Y |Z = 1, X) − E(Y |Z = 0, X) }

= E{ f(1, x) - f(0, x) }

● Estimate the outcome function f(z, x) using a model known as Response Surface 
Modeling  



Consider a simple example
● Effect of an enrichment program on subsequent test scores
● Suppose that exposure to the program is 

○ Determined based on one pre-test score and
○ Is probabilistic, as in:

Source: Jennifer Hill



Source: Jennifer Hill



Machine Learning for Counterfactual Predictions
● We wish to model f(1, x) = E(Y|Z=1,X) and f(0, x) = E(Y|Z=0,X)

● In principle any regression method can work:  
use Zi (treatment) as a feature, predict for both Zi =0, Zi=1

● Linear regression is far too weak for most problems of interest!



Bayesian Additive Regression Trees 
(BART)

Bayesian Nonparametric Modeling for Causal Inference, Jennifer L. Hill (2012)



Bayesian Additive Regression Trees (BART)

● Goal: Estimate surface response using BART

● BART is a Bayesian form of boosted regression trees



Source: Jennifer Hill



Boosted Regression Trees

● Builds on the idea of a treed model to create a “sum-of-trees” model

Let {Tj, Mj} j=1,…,m, be a set of tree models 
Tj denotes the jth tree, 
Mj denotes the means from the terminal nodes from the jth tree, 

f(z, x) = g(z,x,T1,M1) + g(z,x,T2,M2) + … + g(z,x,Tm,Mm)



Boosted Regression Trees

Boosting is great for prediction but … 

– Requires ad-hoc choice of tuning parameters to force trees to be 
weak learners (shrink each mean towards zero)

– How estimate uncertainty? Generally, people use bootstrapping 
which can be cumbersome and time consuming



How BART differs from boosting
BART can be thought of as a stochastic alternative to boosting. 

It differs because: 

● f(z,x) is a random variable
● Using an MCMC algorithm, we sample f(z,x) it from a posterior 

○ Allows for uncertainty in our model
● Avoids overfitting by the prior specification that shrinks towards a 

simple fit:
○ Priors tend towards small number of trees (“weak learners”)
○ Each tree is pruned using priors



Causal Inference using BART

Source: Jennifer Hill



Causal Inference using BART

Automated versus do-it-yourself methods
for causal inference: 
Lessons learned from a data analysis competition
Vincent Dorie et al. (2018)



Handle imbalance problem



Imbalance and lack of overlap problem



Counterfactual Regression with 
Neural Network

Estimating individual treatment effect: generalization bounds and algorithms, Uri Shalit et al. (2017)
Learning Representations for Counterfactual Inference, Fredrik D. Johansson et al. (2016)



Balanced-Representation Learning



Counterfactual regression with Neural Network
Neural net based representation learning algorithm with explicit 
regularization for counterfactual estimation 

Goal: Estimate f(z, x) using neural networks
● Add explicit regularization to balance feature representation in 

treated and controlled groups



Counterfactual regression with Neural Network

Integral Probability Metric (IPM) measures distance between two distributions
● Such as Wasserstein and Maximum Mean Discrepancy (MMD) distances

f(1, x)

f(0, x)

Train to minimize 3 objectives

Estimating individual treatment effect: generalization bounds and algorithms, Uri Shalit et al. (2017)



Handle unobserved confounders



Instrumental Variable



Instrumental Variable
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Airline Price Example

Price

SaleHolidays

Conference

Fuel 
costs

Deep IV: A Flexible Approach for Counterfactual Prediction, J Hartford et al. (2017)



Instrumental Variable

Two main assumptions:

1. Relevance: F(z|x,w), the distribution of z given x and w, is not 
constant in w.

2. Exclusion: w ⊥ y | (x, z, e).
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Instrumental Variable

We assume additive error assumption

Taking the expectation of both sides conditional on [x, w] and applying 
the assumptions establishes the relationship



Instrumental Variable

We can recover g(z,x) by solving implied inverse problem

Closed-form solution exists if we posit linearity assumption in g(z, w) 
and F(z|x, w): Two-stage least square

Very inflexible!



Deep Instrumental Variable
Deep IV: A Flexible Approach for Counterfactual Prediction, J Hartford et al. (2017)



Deep Instrumental Variable

We can recover g(z,x) by solving implied inverse problem

Deep IV: A Flexible Approach for Counterfactual Prediction, J Hartford et al. (2017)



Deep Instrumental Variable

DeepIV procedure has two stages: 
● Estimate density 

● Optimize the loss function



Deep Instrumental Variable

Stage 1: fit 
Using the model of choice
The author uses Mixture 
Density Networks

Stage 2: train network 
using stochastic gradient descent 
with monte carlo integration

Deep IV: A Flexible Approach for Counterfactual Prediction, J Hartford et al. (2017)



Time Series Data



Bayesian structural time-series
Intervention

Counterfactual 
Prediction

Factual outcome

Inferring causal impact using Bayesian structural time-series models, Kay H. Brodersen (2015)



Some other stuff

● ML for Propensity Score

● ML for matching (e.g. kernel-based matching)

● ML for variable selection (e.g. LASSO)



Challenge

● Regularization bias

● Cannot perform conventional cross validation because of 
the fundamental problem of causal inference
○ How to perform model selection and hyper-parameter 

tuning

● Very few benchmark dataset available



What else ?



What else?

● Causal discoveries: The next big thing!!

● Combining observational and interventional data

● Relationship with reinforcement learning


