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Machine Learning Life Cycle
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Credit: Operationalizing Machine Learning Using GPU Accelerated, In-Database Analytics



Outline

Data Pipeline
Model Training
Model Deployment

Measurement
o Real traffic
o Feedback loop



Data Pipeline

Most data need cleansing and transformation before ML training
Multiple stages and continuously happening -> Pipeline
Usually end result is data warehouse

Key challenges:
o Batch and stream
o Infrastructure management
o  Unstructured data

e Sometimes you need to build ML to generate features for other ML



Data Sources - Credit Scoring

Phone bill payment record
o Already structured data
o ETL into data warehouse such as BigQuery

Landsat satellite images

o Used for creating history of flood/drought in the past
Unstructured and need to be processed by image classifier
Existing 15 M images
85 GB new images every day
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Other sources such as demographics or weather can be used too



Data Pipeline Architecture for Credit Scoring
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Train and Keep Track of Model Metadata

e Locally train or train on cloud
e Measure offline metric
o Record training parameter, data used, and metric in model repository

e |n addition to model metric we need to consider:
o Speed of model training and inference
o Infrastructure constraints to train model with real dataset
o Incremental training possible?



Model Training
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Model Deployment

e Use model to give result to user
o e Typically REST API
_p. \/EQ\ e Implementation
o il E:;I;J a?o/n o Custom web service
o TensorflowServing
I I o Cloud ML Engine
e Serving API on top
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Deployment
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Model Evaluation
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Business Metrics != Model
Metrics

Keep track which model/version
served which requests
Compare between multiple
models

Credit - Production and Beyond: Deploying and Managing Machine Learning Models



Model Monitoring & Management

e Monitor metrics overtime
e React to feedback
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Putting Everything Together



Architecture; Credit Scoring with Alternative Data
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Summary

e Model is central part of Machine-Learning Driven system

e But it takes solid system to deliver value to customer

e A lot of practices from system engineering can be borrowed to combine with
unique characteristics of ML to deliver highest impact to business
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