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Introduction

The paper:
@ studies equilibrium social distancing behavior during an epidemic

@ The effect of distancing on

the outset
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the final size of the epidemic
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Introduction

The paper:
@ studies equilibrium social distancing behavior during an epidemic
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High level Conclusion
@ How should interventions be modeled during an epidemic
when individuals internalize the cost and benefit of social distancing?

@ Interventions that alter contact behavior
should not be modeled as a change in the transmission rate
but as a change in the cost of social distancing
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Introduction

Individuals optimally respond to an epidemic by social distancing

o Distancing

@ Distancing

is costly, but
reduces the individual's probability of getting infected

Thailand March 29,2020
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Figure: Google COVID-19 Community Mobility Report (March 29, 2020)

» Washington DC
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Introduction
Individuals optimally respond to an epidemic by social distancing
e Distancing is costly, but

o Distancing reduces the individual’s probability of getting infected

Figure: 1918 Influenza Pandemic (https://www.nytimes.com/2020/08,/03/us/mask-protests-1918.html) 6/23



Summary (1/2)

High level Conclusion (Again)

Interventions that alter contact behavior should not be modeled as a
change in the transmission rate but as a change in the cost of distancing

@ Transmission-suppressing policy (e.g., mask mandate) =
Transmission Rate (}) + Exposure (1)
—_—
Response
@ A decrease in the transmission rate
> in the short-run, may increase the peak prevalence
> in the long-run, decreases the total number of infected individuals
e Cost of distancing (J) = Exposure ({)
= Peak prevalence ({), Total infection ()

7/23



Summary (2/2)

We study equilibrium distancing:
© Onset

The infection takes off only when the transmission rate is moderate
© Peak prevalence

Distancing flattens the curve
Transmission rate (1) = Peak prevalence (t and then )
Cost of distancing (|) = Peak prevalence ({)

@ Final size
Distancing decreases the final size of the epidemic

Transmission rate (1) = the final size of the epidemic (1)
Cost of distancing (|) = the final size of the epidemic (J)
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Outline

@ Introduction
© SIR Model without Behavior

© The SIR Model with Behavior
@ The Onset of an Epidemic
@ Peak Prevalence
@ Final Size of the Epidemic

@ Literature Review and Summary

e Extension
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SIR Model without Behavior: Model

Susceptible Infected Recovered

S(t) = —BS(t)I(t
i(t) = BS(1)1(t) — (1)
R(t) = ~I(t)
(5(0), /(0), R(O)) = (50, lo, 0) with [y =1 — 59
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SIR Model without Behavior: Onset, Peak and Final Size

© Onset: Infection takes off when the transmission rate 3 is high enough

l(0)>0<:>Ro::§50>1

@ Peak Prevalence: Transmission rate § 1 = Peak 1
@ Final Size: Transmission rate 5 T = Final Size S(c0) |

Phase Diagram: 7 =0.14

—_— =019
—_— =034
B =044
— =054
e § =100
B =200

Infected Poy
3
w

0 0.2 0.4 0.6 0.8 1
Susceptible Population §

Figure: Solution Paths (S(t), /(t))¢>o for Different 3
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SIR Dynamics with Behavior

@ We will incorporate behavior £(t) € [0, 1]:

5(t) = —Be(t)S(1)I(t)
(1) = Be(t)S(2)1(t) —~I(t)
R(t) = I(t)

(5(0),1(0), R(0)) = (S0, lo, 0) with Iy =1 — So

@ ¢(t): the average exposure level of susceptible individuals at time t:

£(t) = S(lt)/,-es(t) ei(t)di
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Distancing

@ Susceptible individual i decides exposure ¢;(t) € [0,1] at each t
@ Distancing is costly but reduces the probability of getting infected:
» Cost of distancing: §(1 —&;(t))?
————
distancing
» Rate at which i gets infected: 8/(t)e;(t)
» Cost of getting infected: —n(> 0)

Distancing Problem

C
max 7wg — =

()2 _
&i(t)€[0,1] S 2(1—6,(t)) +5/(t)€,(t)n

Distancing in Equilibrium

£(t) = max (1 + @/(tm) .
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Equilibrium

() = —BS(£)I(t) max (1 + 150 ),o)

t
C

=e(t)

I(t) = BS(t)I(t) max (1 + ?I(t),O) —yI(t)

R(t) = yI(t)
(5(0), 1(0), R(0)) = (So, fo, 0) with Iy =1 — S

Proposition (Symmetric Equilibrium)

An equilibrium exists, is unique, and is symmetric.

Proposition (Single Peak)

The infection peaks (at most) once. At the peak, distancing is maximized.

v
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Onset of an Epidemic

Questions
@ When does an infection take off?

@ How does behavior affect the onset of the epidemic?
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Onset of an Epidemic

Questions
@ When does an infection take off?

@ How does behavior affect the onset of the epidemic?

@ SIR model without behavior: the infection takes off when

B
v

Basic Reproduction Number

Ry =-S5 > 1

» 8> ~/Sp is needed for [(0) > 0
@ SIR model with behavior: the infection takes off when
8
Y

Behavioral Basic Reproduction Number

Rb := = Sye(0) >1

» A higher § is needed for /(0) > 0, but not too high (RY concave in )
» Effect of behavior on the estimation of Ry
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Onset of the Epidemic
Proposition (Onset of the Epidemic)
© Suppose o < <3 4M Then, [(0) > 0iff B € (8, B), with 8>
Also, £(-) = 1+ 22/(.)
Q Iflhp > 4,W,then l()<0

14 10°  Onset of an Epidemic: 5 =-2761.63, 7 =0.14

Onset of an Epidemic: v =0.14, 7 = 0

®

i0)>0

>

i) <o

Initial Infected Population Iy

®

i) >0

°

2 4 6 8 10 12 [ 2 4

6 8 10 12
Transmission Rate 3 (> 7) Transmission Rate § (> 7)

Figure: Onset of the Epidemic. Left: w/ behavior; Right: w/o behavior

» Cost of Infection
23




Phase Diagram

@ The slope of / as a function of S:

o Implicitly solvable

10°  Phase Diagram: § =2761.63, v =0.14, ¢ =2.00

Phase Diagram: 5 =0.19, v =0.14.

Infected Populati

o o . K
05 06 o7 08 09 1 02 03 04 05 06 07 08 09 1
Susceptible Population S Susceptible Population 5

Figure: Left: Solution Paths w/ and w/o behavior; Right: Solution Paths for Different 3

o Flattening of the curve
o We will study: Peak and Final Size
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Peak Prevalence

Proposition (Peak Prevalence)

@ Assume [y <73 Then,

477"/
the peak prevalence I* is non-monotonic in § € (5, B)

@ The peak prevalence is non-decreasing in c.
It is strictly increasing in ¢ whenever /(0) > 0

0 1 2 3 4 5 6 1 8 9
Transmission Rate 3

Figure: Peak Prevalence as Function of 3. Left: w/ behavior; Right: w/o behavior
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Peak Prevalence

14 210 3 Peak Prevalence I*: ¢ =2.00, v =0.14 ) Peak Prevalence [*: v =0.14
09
12
08
L ! & o7
g £ os
Zos E
= 06 [
P %04
= 04 =03
02
02
01
0 - 0
o 1 2 8 9

Transmission Rate § Transmission Rate §

Figure: Peak Prevalence as Function of 3. Left: w/ behavior; Right: w/o behavior

@ More infectious versus distancing more (“High level conclusion™)

e (Mask mandate and) Risk compensation
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Final Size of the Epidemic
Proposition (Final Size of Susceptibles)

Q@ 5. = im 5(t) € (0, %)

@ S is decreasing in 8 and ¢

Final Size S of Susceptibles

0 1 2 3 4 5 6 7 8 9
Transmission Rate 3

Figure: Final Size of Susceptibles as Function of 3

@ The effect of 5 in the short- and long-run 2123



Literature Review (on Behavioral-Epidemiological Models)

Capasso and Serio (1978)

Chen (2012), Dasaratha (2020)

Rachel (2020a, 2020b), Toxvared (2019, 2020)
Farboodi, Jarosch, and Shimer (2020)

Fenichel (2013), Fenichel et al (2011), McAdams (2020), Reluga
(2010)

@ Survey: Funk, Sarathé, and Jansen (2010), Verelst, Willem, and
Beutels (2016), McAdams (2021)
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Summary
Equilibrium distancing:
© Onset
The infection takes off only when the transmission rate is moderate

@ Peak prevalence

Distancing flattens the curve; the epidemic peaks (at most) once
In the short run, transmission rate ({) may lead to peak (1)

© Final size

Distancing decreases the final size of the epidemic
In the long run, transmission rate (]) = the final size ({)

@ The effect of transmission rate vs interventions
Cost of distancing ({) = peak ({), final size ({)

High level Conclusion

Interventions that alter contact behavior
should not be modeled as a change in the transmission rate
but as a change in the cost of social distancing
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Introduction

Individuals optimally respond to an epidemic by social distancing
e Distancing is costly, but

o Distancing reduces the individual’s probability of getting infected

District of Columbia

Retail & recreation Grocery & pharmacy

Parks
-64% compared to baseline -30% compared to baseline -41% compared to baseline
e 0% e
e o e
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-68% compared to baseline -47% compared to baseline +14% compared to baseline
e <oo% .
o - o
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Bt owhws| swiwz  earmis smiwe| smta  omfwnw  omiws | smierzs

Figure: Google COVID-19 Community Mobility Report (March 29, 2020)
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Endogenous Cost of Infection

@ The cost of infection 7;(t) = the marginal cost of an infinitesimal
increase in the (susceptible) individual's infection probability p;(t)
e pj(t) follows
pi(t) = (1 = pi(t))Bei(t)!(¢)
@ Discounting rate: p
o Flow payoff: mg

@ The continuation payoff once infected: V;
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Endogenous Cost of Infection

@ The cost of infection 7;(t) = the marginal cost of an infinitesimal
increase in the (susceptible) individual's infection probability p;(t)
e pj(t) follows
pi(t) = (1 = pi(t))Bei(t)!(¢)
@ Discounting rate: p
o Flow payoff: mg

@ The continuation payoff once infected: V;

Distancing Problem

e (Vel0.1) /0°° e’ {(1 —pilt)lrs = %(1 — )]+ p"(t)pv’} dt

s.t. pi(t) = Bei(t)I(t)(1 — pi(t))
pi(0) =0
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Endogenous Cost of Infection

Optimal Distancing

Assuming the interior solution,

() = 1+ Dnieyi(o

The Adjoint equation for #;

i(8) = m(O)(p + Bei( () + (s — 5(1 = &i(8))? — pV0)

Lemma (Bounds for 7;)

_ _ oV — <
_Ts legm(t)S_Ws pVi—35

p p

@ In a symmetric equilibrium, ¢ = ¢; for all i; let n := n;
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Endogenous Cost of Infection

@ 7, and ny: the lower and the upper bound on 7
e (5,1, R;,¢j) for j € {L, H}: the equilibria of the model with the
constant cost of infection corresponding to 7;

Proposition (Endogenous Cost of Infection)

In the phase space, the graph of (Sy, Iy) is above that of (S, /), which, in
turn, is above that of (S, /1)

m: 3 =0.19, v =0.14, ¢ =2.00

3015
3 (0.19)

07 0.75 08 0.85 0.9 0.95 1 0 1 2 3 4 5 6 7

Susceptible Population S Transmission Rate

Figure: Left: Solution Path; Right: Peak Prevalence 26/23



Connection with Behavioral Epidemiology Models

e Capasso and Serio (1978):

(5(0),1(0), R(0)) =

@ The standard SIR model: g(/(t)) = BI(t)
@ Our model provides micro-foundation:
» Cost of distancing = g(/(t)) = Be(/(t))/(t)

» Given g, 3 cost of distancing such that g(/(t)) = Be(/(t))/(t)
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Connection with Behavioral Epidemiology Models

@ In particular, Capasso and Serio (1978) consider

pl(t)
1+ 18

g(/(t)) =

@ The underlying cost function is

c(1—&(t)) = —nBas(t) — log(e(t))

@ When —nfa = 1, the cost function reduces to (up to a constant +1)
Farboodi, Jarosch, and Shimer (2020) in the macroeconomics
literature

30/23



Equilibrium (5,1, R, (€/)icpo,1])

9 (S,/,R) follow

S(t) = —B=(8)S(8)1(2)
i(e) = Be(8)S(O)I(2) — 41(8)
R() = ~1(t

(5(0), 1(0), R(0)) = (So, o, 0) with lp = 1 — Sg
=5 LY

jes(t

@ ¢ solves, given (g});4i,

C
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Onset of the Epidemic

@ Previous Slide: the infection does not take off if 5 is too high
@ Current Slide: the infection does not take off if the cost of infection

—n is too high

(Negative of) Cost of Infection (—7)
o = N w
& - hoov b w & s

o

x10* Onset of an Epidemic: v =0.14

o

2 4 6 8 10 12
Transmission Rate 3 (> v/So)

Figure: Onset of the Epidemic
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Solution Path

Proposition (Solution Path)
When £(0) > 0, the solution path (5(t), /(t))¢>0 is implicitly determined

by
2 <2’YC <5 + 1+ BW)2>

oo ﬁz ( //3 e 1+3,7 2y,
2vc¢ ﬁn SQ 2'yc 3 5+’+B

The case with €(0) = 0 is similar.
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Endogenous Cost of Infection

Continuation Payoff of being Infected

1 Y
Vi= —— <7T/ + —WR)
P+ p

@ Suppose an individual gets infected at time 7

@ The probability of being recovered after time 7 +t: 1 — e~ 7t
@ Thus,

V /oo ,pt( —yt + (1 7’yt) )dt 1 < + Y >
| = (S e ™ — € TR = — | —TR
0 p+ p
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Parameters for Numerical Simulations

Table: Table of Baseline Parameters for Numerical Analysis.

Parameter Description Value Source
¥ Recovery Rate 1/7
B Transmission Rate 0.3+~ Farboodi, Jarosch, and Shimer (2020)
o Initial Seed of Infections 0.95 x 1074 Egsz‘:f;":ed,jf;:;;‘;';‘"ﬁgg
p Discount Rate 0.05/365 Farboodi, Jarosch, and Shimer (2020)
A Arrival Rate of Cure 0.67/365 Farboodi, Jarosch, and Shimer (2020)
c Cost of Distancing 2 Normalization
TS Flow Payoff of Susceptibles 0 Normalization
n Cost of Infection {—2761.63, —2254.68} Hall, Jones, and Klenow (2020)

» Back (Constant Cost) X » Back (Endogenous Cost)
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