### Epidemics with Behavior

### Satoshi Fukuda<sup>1</sup> Nenad Kos<sup>2</sup> Christoph Wolf<sup>3</sup>

<sup>1</sup>Bocconi U Decision Sciences, IGIER

<sup>2</sup>Bocconi U Economics, IGIER, CEPR

<sup>3</sup>Bocconi U Economics, IGIER

March 31, 2021 Bangkok, Milan, and Washington DC

### The paper:

- studies equilibrium social distancing behavior during an epidemic
- The effect of distancing on
  - the outset
  - the peak
  - the final size of the epidemic

### High level Conclusion

- How should interventions be modeled during an epidemic when individuals internalize the cost and benefit of social distancing?
- Interventions that alter contact behavior should not be modeled as a change in the transmission rate but as a change in the cost of social distancing

preference/deep parameter

### The paper:

- studies equilibrium social distancing behavior during an epidemic
- The effect of distancing on
  - the outset
  - the peak
  - the final size of the epidemic

### High level Conclusion

- How should interventions be modeled during an epidemic when individuals internalize the cost and benefit of social distancing?
- Interventions that alter contact behavior should not be modeled as a change in the transmission rate but as a change in the cost of social distancin

preference/deep parameter

#### The paper:

- studies equilibrium social distancing behavior during an epidemic
- The effect of distancing on
  - the outset
  - the peak
  - the final size of the epidemic

### High level Conclusion

- How should interventions be modeled during an epidemic when individuals internalize the cost and benefit of social distancing?
- Interventions that alter contact behavior should not be modeled as a change in the transmission rate but as a change in the cost of social distancing

preference/deep parameter

Individuals optimally respond to an epidemic by social distancing

- Distancing is costly, but
- Distancing reduces the individual's probability of getting infected



Figure: Google COVID-19 Community Mobility Report (March 29, 2020)

Washington DC

Individuals optimally respond to an epidemic by social distancing

- Distancing is costly, but
- Distancing reduces the individual's probability of getting infected



Figure: 1918 Influenza Pandemic (https://www.nytimes.com/2020/08/03/us/mask-protests-1918.html)

# Summary (1/2)

### High level Conclusion (Again)

Interventions that alter contact behavior should not be modeled as a change in the transmission rate but as a change in the cost of distancing

• Transmission-suppressing policy (e.g., mask mandate)  $\Rightarrow$ Transmission Rate ( $\downarrow$ ) + Exposure ( $\uparrow$ )

Response

- A decrease in the transmission rate
  - ▶ in the short-run, *may increase* the peak prevalence
  - in the long-run, decreases the total number of infected individuals
- Cost of distancing (↓) ⇒ Exposure (↓)
   ⇒ Peak prevalence (↓), Total infection (↓)

# Summary (2/2)

### We study equilibrium distancing:

- Onset
  - The infection takes off only when the transmission rate is moderate

### Peak prevalence

- Distancing flattens the curve
- For Transmission rate ( $\uparrow$ )  $\Rightarrow$  Peak prevalence ( $\uparrow$  and then  $\downarrow$ )
- Cost of distancing  $(\downarrow) \Rightarrow$  Peak prevalence  $(\downarrow)$
- Final size
  - Distancing decreases the final size of the epidemic
  - Transmission rate  $(\uparrow) \Rightarrow$  the final size of the epidemic  $(\uparrow)$
  - Cost of distancing  $(\downarrow) \Rightarrow$  the final size of the epidemic  $(\downarrow)$

# Outline

### Introduction

2 SIR Model without Behavior

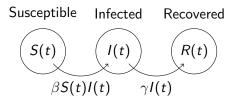
#### 3 The SIR Model with Behavior

- The Onset of an Epidemic
- Peak Prevalence
- Final Size of the Epidemic





### SIR Model without Behavior: Model



$$\begin{split} \dot{S}(t) &= -\beta S(t) I(t) \\ \dot{I}(t) &= \beta S(t) I(t) - \gamma I(t) \\ \dot{R}(t) &= \gamma I(t) \\ (S(0), I(0), R(0)) &= (S_0, I_0, 0) \text{ with } I_0 = 1 - S_0 \end{split}$$

### SIR Model without Behavior: Onset, Peak and Final Size

**(**) Onset: Infection takes off when the transmission rate  $\beta$  is high enough

$$\dot{I}(0) > 0 \Longleftrightarrow R_0 := rac{eta}{\gamma} S_0 > 1$$

② Peak Prevalence: Transmission rate β ↑ ⇒ Peak ↑
 ③ Final Size: Transmission rate β ↑ ⇒ Final Size S(∞) ↓

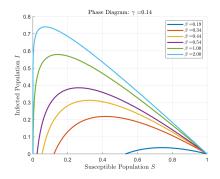


Figure: Solution Paths  $(S(t), I(t))_{t\geq 0}$  for Different  $\beta$ 

### SIR Dynamics with Behavior

• We will incorporate behavior  $\varepsilon(t) \in [0, 1]$ :

$$\begin{split} \dot{S}(t) &= -\beta \varepsilon(t) S(t) I(t) \\ \dot{I}(t) &= \beta \varepsilon(t) S(t) I(t) - \gamma I(t) \\ \dot{R}(t) &= \gamma I(t) \\ (S(0), I(0), R(0)) &= (S_0, I_0, 0) \text{ with } I_0 = 1 - S_0 \end{split}$$

•  $\varepsilon(t)$ : the average exposure level of susceptible individuals at time t:

$$\varepsilon(t) := \frac{1}{S(t)} \int_{i \in S(t)} \varepsilon_i(t) di$$

# Distancing

- Susceptible individual i decides exposure  $\varepsilon_i(t) \in [0,1]$  at each t
- Distancing is costly but reduces the probability of getting infected:
  - Cost of distancing:  $\frac{c}{2}(1-\varepsilon_i(t))^2$ 
    - distancing
  - Rate at which *i* gets infected:  $\beta I(t)\varepsilon_i(t)$
  - Cost of getting infected:  $-\eta(>0)$

**Distancing Problem** 

$$\max_{\varepsilon_i(t)\in[0,1]}\pi_{\mathcal{S}}-\frac{c}{2}(1-\varepsilon_i(t))^2+\beta I(t)\varepsilon_i(t)\eta$$

Distancing in Equilibrium

$$\varepsilon(t) = \max\left(1 + \frac{\eta\beta}{c}I(t), 0\right).$$

Equilibrium (Definition)

# Equilibrium

$$\dot{S}(t) = -\beta S(t)I(t) \underbrace{\max\left(1 + \frac{\eta\beta}{c}I(t), 0\right)}_{=\varepsilon(t)}$$

$$\dot{I}(t) = \beta S(t)I(t) \underbrace{\max\left(1 + \frac{\eta\beta}{c}I(t), 0\right)}_{\dot{R}(t) = \gamma I(t)} -\gamma I(t)$$

$$\dot{R}(t) = \gamma I(t)$$

$$(S(0), I(0), R(0)) = (S_0, I_0, 0) \text{ with } I_0 = 1 - S_0$$

#### Proposition (Symmetric Equilibrium)

An equilibrium exists, is unique, and is symmetric.

#### Proposition (Single Peak)

The infection peaks (at most) once. At the peak, distancing is maximized.

# Onset of an Epidemic

#### Questions

- When does an infection take off?
- How does behavior affect the onset of the epidemic?

•  $\beta > \gamma/S_0$  is needed for  $\dot{I}(0) > 0$ • A higher  $\beta$  is needed for I(0) > 0, but not too high  $(R_0^b \text{ concave in } \beta)$ 

▶ Effect of behavior on the estimation of *R*<sub>0</sub>

# Onset of an Epidemic

#### Questions

- When does an infection take off?
- How does behavior affect the onset of the epidemic?

**1** SIR model without behavior: the infection takes off when

$$R_0 = \frac{\beta}{\gamma} S_0 > 1$$

Basic Reproduction Number

• 
$$\beta > \gamma/S_0$$
 is needed for  $\dot{I}(0) > 0$ 

IR model with behavior: the infection takes off when

$$\underbrace{R_0^b := \frac{\beta}{\gamma} S_0 \varepsilon(0)}_{\gamma} > 1$$

Behavioral Basic Reproduction Number

- A higher  $\beta$  is needed for  $\dot{I}(0) > 0$ , but not too high  $(R_0^b \text{ concave in } \beta)$
- Effect of behavior on the estimation of R<sub>0</sub>

### Onset of the Epidemic

Proposition (Onset of the Epidemic)

Suppose 
$$l_0 \leq \frac{1}{1 - \frac{4\eta\gamma}{c}}$$
. Then,  $\dot{I}(0) > 0$  iff  $\beta \in (\underline{\beta}, \overline{\beta})$ , with  $\underline{\beta} > \frac{\gamma}{S_0}$ 
Also,  $\varepsilon(\cdot) = 1 + \frac{\beta\eta}{c}I(\cdot)$ 
If  $l_0 \geq \frac{1}{1 - \frac{4\eta\gamma}{c}}$ , then  $\dot{I}(\cdot) \leq 0$ 

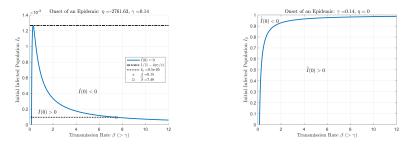


Figure: Onset of the Epidemic. Left: w/ behavior; Right: w/o behavior

Cost of Infection
 Parameters
 17/23

# Phase Diagram

• The slope of *I* as a function of *S*:

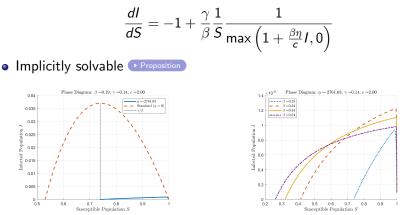


Figure: Left: Solution Paths w/ and w/o behavior; Right: Solution Paths for Different  $\beta$ 

- Flattening of the curve
- We will study: Peak and Final Size

### Peak Prevalence

#### Proposition (Peak Prevalence)

 Assume I<sub>0</sub> < 1/(1-4ηγ). Then, the peak prevalence I\* is non-monotonic in β ∈ (β, β)
 The peak prevalence is non-decreasing in c. It is strictly increasing in c whenever I(0) > 0

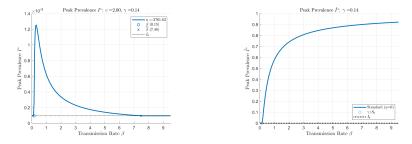


Figure: Peak Prevalence as Function of  $\beta$ . Left: w/ behavior; Right: w/o behavior

### Peak Prevalence

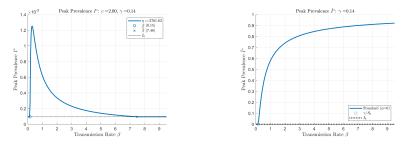


Figure: Peak Prevalence as Function of  $\beta$ . Left: w/ behavior; Right: w/o behavior

- More infectious versus distancing more ("High level conclusion")
- (Mask mandate and) Risk compensation

### Final Size of the Epidemic

Proposition (Final Size of Susceptibles)

• 
$$S_{\infty} := \lim_{t \to \infty} S(t) \in (0, \frac{\gamma}{\beta})$$
  
•  $S_{\infty}$  is decreasing in  $\beta$  and  $c$ 

Final Size  $S_{\infty}$  of Susceptibles:  $\eta = -2761.63$ ,  $\gamma = 0.14$ Constant-Cost Model 0.9 ..... Standard Model 0.8 \$ (0.15) Final Size  $S_{\infty}$  of Susceptibles 3 (7.48) 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 7 1 3 4 5 9 Transmission Rate  $\beta$ 

Figure: Final Size of Susceptibles as Function of  $\beta$ 

• The effect of  $\beta$  in the short- and long-run

### Literature Review (on Behavioral-Epidemiological Models)

- Capasso and Serio (1978) Micro-foundation
- Chen (2012), Dasaratha (2020)
- Rachel (2020a, 2020b), Toxvared (2019, 2020)
- Farboodi, Jarosch, and Shimer (2020)
- Fenichel (2013), Fenichel et al (2011), McAdams (2020), Reluga (2010)
- Survey: Funk, Sarathé, and Jansen (2010), Verelst, Willem, and Beutels (2016), McAdams (2021)

# Summary

### Equilibrium distancing:

Onset

The infection takes off only when the transmission rate is moderate

Peak prevalence

Distancing flattens the curve; the epidemic peaks (at most) once

- In the short run, transmission rate  $(\downarrow)$  may lead to peak  $(\uparrow)$
- Final size
  - Distancing decreases the final size of the epidemic
  - In the long run, transmission rate  $(\downarrow) \Rightarrow$  the final size  $(\downarrow)$

The effect of transmission rate vs interventions

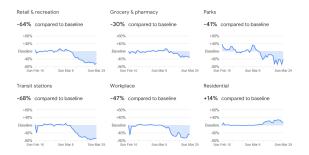
Cost of distancing  $(\downarrow) \Rightarrow$  peak  $(\downarrow)$ , final size  $(\downarrow)$ 

### High level Conclusion

Interventions that alter contact behavior should not be modeled as a change in the transmission rate but as a change in the cost of social distancing

Individuals optimally respond to an epidemic by social distancing

- Distancing is costly, but
- Distancing reduces the individual's probability of getting infected



#### District of Columbia

Figure: Google COVID-19 Community Mobility Report (March 29, 2020)

- The cost of infection  $\eta_i(t)$  = the marginal cost of an infinitesimal increase in the (susceptible) individual's infection probability  $p_i(t)$
- $p_i(t)$  follows

$$\dot{p}_i(t) = (1 - p_i(t))eta arepsilon_i(t) I(t)$$

- Discounting rate:  $\rho$
- Flow payoff:  $\pi_S$
- The continuation payoff once infected:  $V_I$

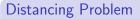


$$\max_{\substack{\varepsilon_i(\cdot)\in[0,1]\\\rho_i(t)=\beta\varepsilon_i(t)I(t)(1-p_i(t))}} \int_0^\infty e^{-\rho t} \left\{ (1-p_i(t))[\pi_S - \frac{c}{2}(1-\varepsilon_i(t))^2] + p_i(t)\rho V_I \right\} dt$$
  
s.t.  $\dot{p}_i(t) = \beta\varepsilon_i(t)I(t)(1-p_i(t))$   
 $p_i(0) = 0$ 

- The cost of infection η<sub>i</sub>(t) = the marginal cost of an infinitesimal increase in the (susceptible) individual's infection probability p<sub>i</sub>(t)
- $p_i(t)$  follows

$$\dot{p}_i(t) = (1 - p_i(t))eta arepsilon_i(t) I(t)$$

- Discounting rate:  $\rho$
- Flow payoff:  $\pi_S$
- The continuation payoff once infected:  $V_I$



$$\max_{\varepsilon_i(\cdot)\in[0,1]} \int_0^\infty e^{-\rho t} \left\{ (1-p_i(t))[\pi_S - \frac{c}{2}(1-\varepsilon_i(t))^2] + p_i(t)\rho V_I \right\} dt$$
  
s.t.  $\dot{p}_i(t) = \beta \varepsilon_i(t)I(t)(1-p_i(t))$   
 $p_i(0) = 0$ 

### **Optimal Distancing**

Assuming the interior solution,

$$arepsilon_i(t) = 1 + rac{eta}{c} \eta_i(t) I(t)$$

The Adjoint equation for  $\eta_i$ 

$$\dot{\eta}_i(t) = \eta_i(t)(
ho + eta arepsilon_i(t)I(t)) + (\pi_S - rac{c}{2}(1 - arepsilon_i(t))^2 - 
ho V_I).$$

Lemma (Bounds for  $\eta_i$ )

$$-rac{\pi_{\mathcal{S}}-
ho \mathcal{V}_{\mathcal{I}}}{
ho}\leq \eta_{i}(t)\leq -rac{\pi_{\mathcal{S}}-
ho \mathcal{V}_{\mathcal{I}}-rac{c_{2}}{2}}{
ho}$$

• In a symmetric equilibrium,  $\varepsilon = \varepsilon_i$  for all *i*; let  $\eta := \eta_i$ 

- $\eta_L$  and  $\eta_H$ : the lower and the upper bound on  $\eta$
- (S<sub>j</sub>, I<sub>j</sub>, R<sub>j</sub>, ε<sub>j</sub>) for j ∈ {L, H}: the equilibria of the model with the constant cost of infection corresponding to η<sub>j</sub>

#### Proposition (Endogenous Cost of Infection)

In the phase space, the graph of  $(S_H, I_H)$  is above that of (S, I), which, in turn, is above that of  $(S_L, I_L)$ 

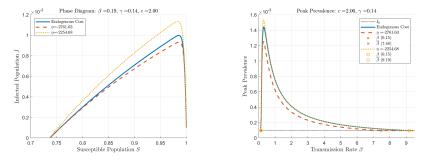


Figure: Left: Solution Path; Right: Peak Prevalence

### Connection with Behavioral Epidemiology Models

• Capasso and Serio (1978):

$$\begin{split} \dot{S}(t) &= -g(I(t))S(t) \\ \dot{I}(t) &= g(I(t))S(t) - \gamma I(t) \\ \dot{R}(t) &= \gamma I(t) \\ (S(0), I(0), R(0)) &= (S_0, I_0, 0) \text{ with } I_0 = 1 - S_0 \end{split}$$

- The standard SIR model:  $g(I(t)) = \beta I(t)$
- Our model provides micro-foundation:
  - Cost of distancing  $\Longrightarrow g(I(t)) = \beta \varepsilon(I(t))I(t)$
  - Given g,  $\exists$  cost of distancing such that  $g(I(t)) = \beta \varepsilon(I(t))I(t)$

### Connection with Behavioral Epidemiology Models

• In particular, Capasso and Serio (1978) consider

$$g(I(t)) = \frac{\beta I(t)}{1 + \frac{I(t)}{\alpha}}$$

• The underlying cost function is

$$c(1 - \varepsilon(t)) = -\eta \beta \alpha \varepsilon(t) - \log(\varepsilon(t))$$

• When  $-\eta\beta\alpha = 1$ , the cost function reduces to (up to a constant +1) Farboodi, Jarosch, and Shimer (2020) in the macroeconomics literature

Back (Literature Review)

Equilibrium  $(S, I, R, (\varepsilon_i)_{i \in [0,1]})$ 

• (S, I, R) follow

$$\begin{split} \dot{S}(t) &= -\beta \varepsilon(t) S(t) I(t) \\ \dot{I}(t) &= \beta \varepsilon(t) S(t) I(t) - \gamma I(t) \\ \dot{R}(t) &= \gamma I(t) \\ (S(0), I(0), R(0)) &= (S_0, I_0, 0) \text{ with } I_0 = 1 - S_0 \\ \varepsilon(t) &= \frac{1}{S(t)} \int_{j \in S(t)} \varepsilon_j(t) dj \end{split}$$

2  $\varepsilon_i$  solves, given  $(\varepsilon_j)_{j\neq i}$ ,

$$\max_{\varepsilon_i(t)\in[0,1]}\pi_S-\frac{c}{2}(1-\varepsilon_i(t))^2+\beta\varepsilon_i(t)I(t)\eta$$



# Onset of the Epidemic

- Previous Slide: the infection does not take off if  $\beta$  is too high
- Current Slide: the infection does not take off if the cost of infection  $-\eta$  is too high

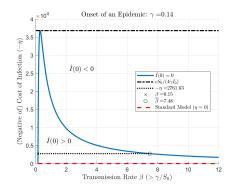


Figure: Onset of the Epidemic



### Solution Path

#### Proposition (Solution Path)

When  $\varepsilon(0) > 0$ , the solution path  $(S(t), I(t))_{t \ge 0}$  is implicitly determined by

$$S = \frac{\exp\left(\frac{\beta^2\eta}{2\gamma c}\left(S + I + \frac{c}{\beta\eta}\right)^2\right)}{\exp\left(\frac{\beta^2\eta}{2\gamma c}\left(1 + \frac{c}{\beta\eta}\right)^2\right)\frac{1}{S_0} + 2\beta\sqrt{\frac{(-\eta)}{2\gamma c}}\int_{\beta\sqrt{\frac{-\eta}{2\gamma c}}\left(S + I + \frac{c}{\beta\eta}\right)}^{\beta\sqrt{\frac{-\eta}{2\gamma c}}\left(1 + \frac{c}{\beta\eta}\right)}e^{-v^2}dv}.$$

The case with  $\varepsilon(0) = 0$  is similar.

▶ Back

Continuation Payoff of being Infected

$$V_I = \frac{1}{\rho + \gamma} \left( \pi_I + \frac{\gamma}{\rho} \pi_R \right)$$

- $\bullet\,$  Suppose an individual gets infected at time  $\tau$
- The probability of being recovered after time au + t:  $1 e^{-\gamma t}$

Thus,

$$V_{I} = \int_{0}^{\infty} e^{-\rho t} \left( e^{-\gamma t} \pi_{I} + (1 - e^{-\gamma t}) \pi_{R} \right) dt = \frac{1}{\rho + \gamma} \left( \pi_{I} + \frac{\gamma}{\rho} \pi_{R} \right)$$

### Parameters for Numerical Simulations

#### Table: Table of Baseline Parameters for Numerical Analysis.

| Parameter      | Description                 | Value                    | Source                                              |
|----------------|-----------------------------|--------------------------|-----------------------------------------------------|
| $\gamma$       | Recovery Rate               | 1/7                      |                                                     |
| β              | Transmission Rate           | $0.3 + \gamma$           | Farboodi, Jarosch, and Shimer (2020)                |
| I <sub>0</sub> | Initial Seed of Infections  | $0.95 	imes 10^{-4}$     | Based on death toll in the US before March 19, 2020 |
| $\tilde{\rho}$ | Discount Rate               | 0.05/365                 | Farboodi, Jarosch, and Shimer (2020)                |
| λ              | Arrival Rate of Cure        | 0.67/365                 | Farboodi, Jarosch, and Shimer (2020)                |
| с              | Cost of Distancing          | 2                        | Normalization                                       |
| $\pi_{S}$      | Flow Payoff of Susceptibles | 0                        | Normalization                                       |
| η              | Cost of Infection           | $\{-2761.63, -2254.68\}$ | Hall, Jones, and Klenow (2020)                      |

→ Back (Constant Cost) → Back (Endogenous Cost)