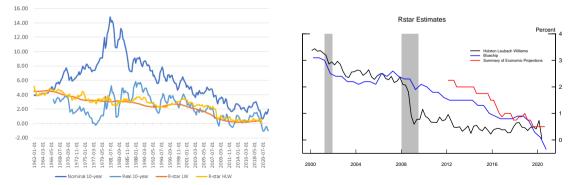
The Natural Rate of Interest through a Hall of Mirrors

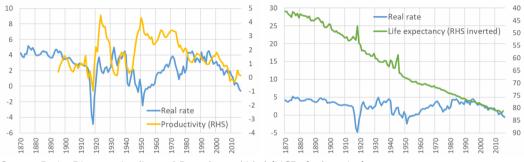
Phurichai Rungcharoenkitkul BIS Fabian Winkler Federal Reserve Board


13 June 2022

PIER Economic Seminar

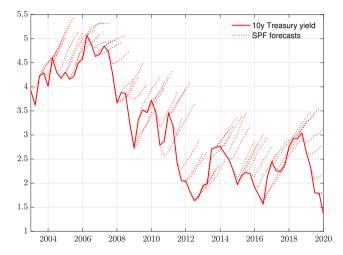
Disclaimer: The views expressed here are ours alone and do not represent those of the Bank for International Settlements or the Board of Governors of the Federal Reserve System.

R-star and monetary policy: the typical narrative

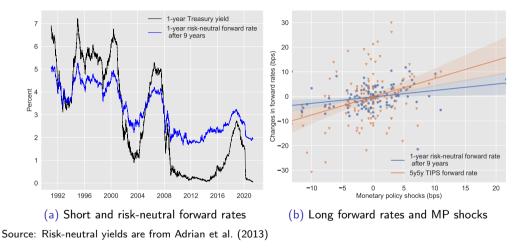

- Secular decline in interest rates due to falling natural rate of interest (r^*)
- Linked to structural forces, e.g. slowing productivity growth, ageing population
- As CB has no control over these, it must lower rate just to be neutral
- With ELB on nominal rates, CB can fall into a liquidity trap

The celestial system analogue

- r^* is the 'star' around which monetary policy orbits
- Monetary policy cannot influence r^\ast any more than planets can affect the path of the sun


Puzzle 1: We know surprisingly little about r^* drivers...

Source: Borio, Disyatat, Juselius and Rungcharoenkitkul (IJCB, forthcoming)


• Weak evidence that usual suspects like productivity growth, demographics, inequality, relative price of capital, MPK etc. explain real rates over long horizons

...indeed, nobody expected the secular decline in r^{st}

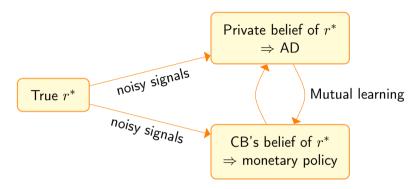

• If persistent & predictable forces like demographics were responsible for r*, why are interest rates so hard to forecast?

Puzzle 2: Monetary policy appears to affect r^* ...

- Forward *risk-neutral* rate (market view of r^*) is sensitive to monetary policy
- Violation of long-run money neutrality

...explaining most of the trend decline in yields

Source: Replicating Hillenbrand (2022)


- Trend shifts in 10-year yields occurred almost exclusively around FOMC meetings
- Why should MP decisions be so informative about long-term interest rates?

Standard model and assumptions

- Everyone knows the process governing real interest rate trends X
- MP should not affect market expectations of r^* X

This paper

- *r*^{*} process is unknown and agents must learn the *r*^{*} value
 ⇒ Beliefs matter for *r*^{*}, not just exogenous fundamentals
- Agents rely on each other to learn about r^*

 \Rightarrow MP and cyclical shocks could affect r^* through mutual learning \checkmark

1

New Keynesian model with learning about the natural rate

• 2-period NK model with incomplete information about r^{**} ("True" r^*)

$$\tilde{y} = -\frac{1}{\sigma} \left(r - E^h[r^{**}] - u_h \right)$$
$$\pi = \kappa \tilde{y}$$
$$r = E^c[r^{**}] + \phi_\pi \pi + \phi_y \tilde{y} + u_d$$

- Two natural rate concepts: $r^* \equiv E^h[r^{**}]$ and $\hat{r}^* \equiv E^c[r^{**}]$
- Each agent $i \in \{h, c\}$ observes a noisy private signal about r^{**} :

$$s_{i} = r^{**} + \epsilon_{i}, \qquad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma_{\epsilon_{i}}^{2}\right)$$
$$r^{**} \sim \mathcal{N}\left(0, \sigma_{z}^{2}\right), \qquad u_{i} \sim \mathcal{N}\left(0, \sigma_{u_{i}}^{2}\right)$$

- CB chooses r (given $E^{c}[r^{**}]$, π and \tilde{y}), HH chooses \tilde{y}, π (given $E^{h}[r^{**}]$ and r)
- Each knows that the other's action reveals private signal about r^{**}

Common knowledge benchmark

- Both players know the true signal precision
- Optimal filtering produces equilibrium beliefs:

$$E^{i}[r^{**}] = g_{si}s_{i} + g_{ai}(g_{sj}s_{j} + u_{j})$$

with the gain parameters

$$\left(\begin{array}{c}g_{si}\\g_{ai}\end{array}\right) = \frac{1}{g_{sj}^2 \left(\sigma_{\epsilon i}^2 + \sigma_{\epsilon j}^2 + \sigma_{\epsilon i}^2 \sigma_{\epsilon j}^2\right) + \sigma_{uj}^2 \left(\sigma_{\epsilon i}^2 + 1\right)} \left(\begin{array}{c}g_{sj}^2 \sigma_{\epsilon j}^2 + \sigma_{uj}^2\\g_{sj} \sigma_{\epsilon i}^2\end{array}\right)$$

- Nests Laubach and Williams (2003): HH has perfect info, CB tries to extract it
- Our general setup lets both learn from each other arguably more realistic

Hall-of-mirrors equilibrium

- Agents *i* hold subjective beliefs $\sigma_{\epsilon i}^{|i|}$ about signal precision $\sigma_{\epsilon j}$
- Equilibrium with misperception:

$$\hat{E}^{i} [r^{**}] = g_{si}^{|i} s_{i} + g_{ai}^{|i} \left(g_{sj}^{|j} s_{j} + u_{j} \right) \\ + \frac{g_{ai}^{|i}}{1 - g_{ai}^{|i} g_{aj}^{|j}} \left[\left(g_{aj}^{|j} - g_{aj}^{|i} \right) \left(g_{si}^{|i} s_{i} + u_{i} \right) + \left(g_{ai}^{|i} - g_{ai}^{|j} \right) g_{aj}^{|j} \left(g_{sj}^{|j} s_{j} + u_{j} \right) \right]$$

- When each overestimates the other's information $(\sigma_{\epsilon j}^{|i|} < \sigma_{\epsilon j})$

 - 1. Each loads too much on the other's actions: $g_{ai}^{|i|} > g_{ai}$ 2. Each doesn't realise the other is doing the same: $g_{aj}^{|j|} > g_{aj}^{|i|}$

Proposition (Hall-of-mirrors effect)

- r^*, \hat{r}^* overreact to u_c, u_h with unbounded magnitude
- Private sector and central bank confuse cyclical shocks for r-star movements

General dynamic setting

• Dynamic infinite-horizon NK model

$$\tilde{y}_{t} = \mathbb{E}_{t}^{h}[\tilde{y}_{t+1}] - \frac{1}{\sigma} \left(i_{t} - \mathbb{E}_{t}^{h}[\pi_{t+1}] - \mathbb{E}_{t}^{h}[r_{t}^{**}] - u_{ht} \right) \pi_{t} = \beta \mathbb{E}_{t}^{h}[\pi_{t+1}] + \kappa \tilde{y}_{t} + u_{pt} i_{t} = \rho_{i}i_{t-1} + (1 - \rho_{i}) \left(\mathbb{E}_{t}^{c}[r_{t}^{**}] + \phi_{\pi}\pi_{t} + \phi_{y}\tilde{y}_{t} + u_{ct} \right)$$

• Signal and r_t^{**} processes

$$\begin{split} r_t^{**} &= r_{t-1}^{**} + v_t, \qquad v_t \sim \mathcal{N}\left(0, \sigma_r^2\right) \\ s_{it} &= r_t^{**} + e_{it} \qquad \text{(Private signals)} \\ x_t &= r_t^{**} + f_t \qquad \text{(Public signals)} \end{split}$$

- Shocks u_{ht} , u_{pt} , u_{ct} , e_{it} , $f_t \sim AR(1)$
- Private sector observes u_{ht}, u_{pt} , sets \tilde{y}_t, π_t ; central bank observes u_{ct} , sets i_t
- Agents learn from observing \tilde{y}_t, π_t, i_t , updating r_t^{**} beliefs over time

Solving the dynamic model

• Defining $Z_t \equiv (r_t^{**}, e_{ht}, e_{ct}, f_t, u_{ht}, u_{pt}, u_{ct})'$, we can write

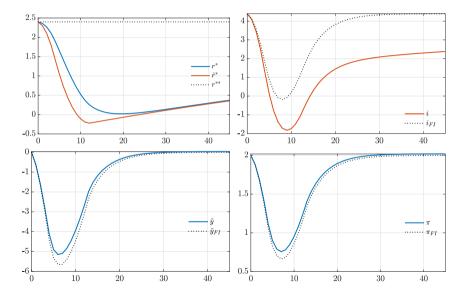
$$Z_t = A_z Z_{t-1} + q_t, \qquad q_t \sim \mathcal{N}\left(0, \Sigma_q\right)$$

Common knowledge: Everyone uses the correct A_z and Σ_q Hall-of-Mirrors: Agents hold subjective beliefs about A_z and Σ_q

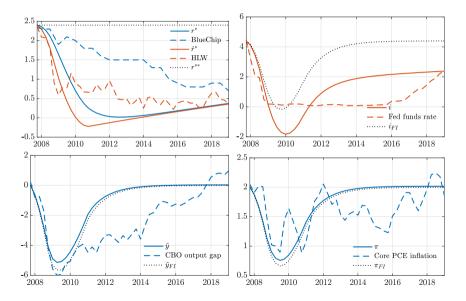
• Complication: we must keep track of agent i's belief of agent j's n-order belief:

$$X_{it|t-1} \equiv E_{i|t-1} \left(E_{jt}^{(n)} Z_t \right)_{n=0}^{\infty} \sim \mathcal{N}\left(m_{it-1}, P_i \right)$$

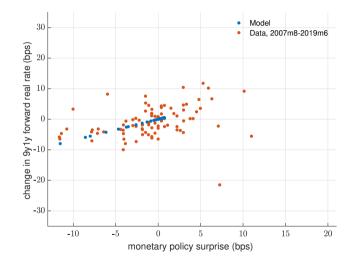
• To solve for equilibrium, we guess m_{jt} takes a linear form

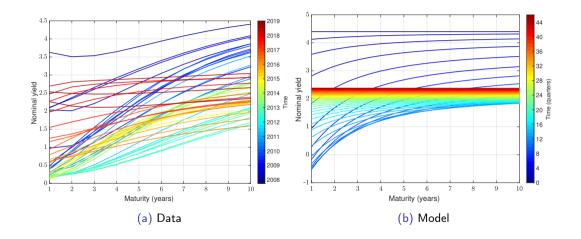

$$m_{jt} = \Phi_j m_{jt-1} + \Psi_j m_{it-1} + \Omega_j Z_t$$

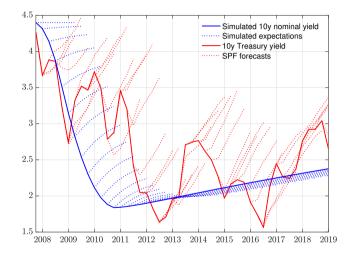
compute implied states, verify that the linear form is correct, and iterate until Φ_j, Ψ_j, Ω_j converge.

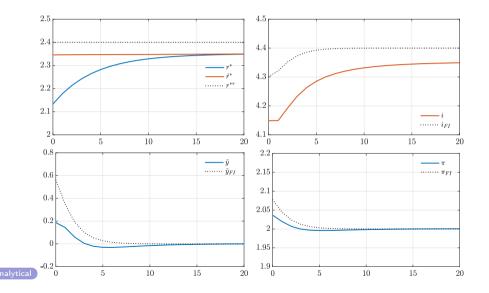

Quantitative implications

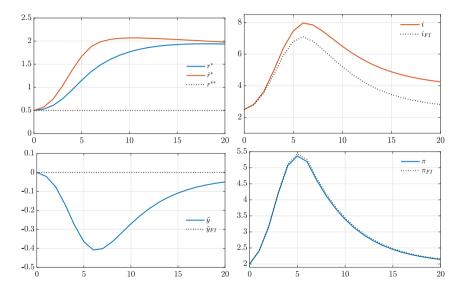
- We solve the dynamic model numerically with calibrated parameters
- Standard macro parameters Table
- Information structure
 - ► Initial $r_0^{**} = 2.4\%$, $\sigma_r = 0.05$ (from Holston et al. (2017))
 - ▶ Private signal noise: $\sigma_{\epsilon i} = \infty$ (actual), $\sigma_{\epsilon i}^{|j|} = 0.2$ (perceived); i.e. each thinks the other knows something useful when in fact nobody does
 - Uninformative public signal noise $\sigma_{\eta} = 3$
- Simulation exercises
 - 1. Persistent demand shocks mimicking initial GFC contraction
 - 2. One-time expansionary MP shock
 - 3. Persistent negative AS shocks + positive AD shocks (current situation)


Demand shocks prompt a persistent decline in r^*


Demand shocks simulation + data


Explaining excess sensitivity of expected r^* to MP


Explaining excess sensitivity of long-term yields to MP


Explaining failure to predict the interest rate trend

MP shock loses force by inducing r^* changes

Hall-of-mirrors and endogenous stagflation

Conclusion

- r^{\ast} is endogenous to monetary policy and cyclical shocks, due to self-reinforcing two-way learning feedback
- This hall-of-mirror mechanism can quantitatively explain many post-GFC salient features: low for long interest rates, declining estimates of r^* , slow output recovery, low inflation
- Explain puzzling excess sensitivity of long-term interest rate to MP and the violation of money neutrality in the data
- Far-reaching policy implications, both when rates are falling and rising

Epilogue: more precise celestial physics

Source: nasa.gov

Extra slides

Macroeconomic implications

Full information
$$ilde{y} = \lambda \left(u_h - u_c \right)$$

 $\begin{array}{ll} \text{Common knowledge} & \tilde{y} = \lambda \left[(1 - g_{ac})(g_{sh}s_h + u_h) - (1 - g_{ah})(g_{sc}s_c + u_c) \right] \\ \text{Hall of mirrors} & \tilde{y} = \lambda \left[b_h (g_{sh}^{|h}s_h + u_h) - b_c (g_{sc}^{|c}s_c + u_c) \right] \end{array}$

where
$$g_{si}^{ert i} < g_{si}$$
 and $b_i < 1 - g_{aj}$

Proposition (Muted macroeconomic impact)

In the hall-of-mirrors equilibrium:

- Output gap and inflation <u>under-react</u> to shocks
- Monetary policy less effective

Calibration (Back)

Parameter	Symbol	Value	Parameter	Symbol	Value
Inverse EIS	σ	6	Initial value of r^{**}	ζ_0	2.4 %
Phillips curve slope	κ	0.015	S.d. of r^{**} shock	σ_{ζ}	0.05
Discount factor	β	0.9941	Steady-state inflation	π^*	2 %
Rule coefficient on inflation	ϕ_{π}	1.5	Autocorr. of cost-push shock	$ ho_{u\pi}$	0.8
Rule coefficient on output gap	ϕ_y	0.125	S.d. of cost-push shock	$\sigma_{u\pi}$	0.1
Rule coefficient on lagged rate	$ ho_i$	0.7	Autocorr. of public signal noise	$ ho_f$	0
Autocorr. of policy shock	$ ho_{uc}$	0.7	Autocorr. of private signal noise	$ ho_{ei}$	0
S.d. of policy shock	σ_{uc}	0.1	S.d. of public signal noise	σ_η	3
Autocorr. of demand shock	$ ho_{uh}$	0.8	S.d. of private signal noise	$\sigma_{\epsilon i}$	∞
S.d. of demand shock	σ_{uh}	0.2	Perceived —	$\sigma_{\epsilon i}^{ j }$	0.2

Robustness to alternative learning calibrations

- Less misperception: raise $\sigma_i^{|i|}$ 10-fold
- Better information: lower σ_i from ∞ to 1
- More volatile fundamentals: increase σ_z to upperbound of HLW