Redistribution, distortions, and the welfare effects of Social Security

Youngsoo Jang University of Queensland

Svetlana Pashchenko University of Georgia

Ponpoje Porapakkarm (Poe) National Graduate Institute for Policy Studies (GRIPS)

#### PIER ( Jan 2025 )

| Introduction | data   | theory | model     | estimation | results     | Conclusions |
|--------------|--------|--------|-----------|------------|-------------|-------------|
| •000000000   | 000000 | 000000 | 000000000 | 00000      | 00000000000 | 00          |
|              |        |        |           |            |             |             |

### Motivating background





- US social security program (old-age survival ins trust fund) will be exhausted by 2033 ...(CBO, 2024)
- Existing studies/debates focus on instrument for its long-run sustainability given its current design
  - increase partoll taxes
  - cut benefits
  - increase full retirement age (F



- US social security program (old-age survival ins trust fund) will be exhausted by 2033 ...(CBO, 2024)
- Existing studies/debates focus on instrument for its long-run sustainability given its current design
  - increase payroll taxes
  - cut benefits
  - increase full retirement age (FRA)



#### Motivating background

- US social security program (old-age survival ins trust fund) will be exhausted by 2033 ...(CBO, 2024)
- Existing studies/debates focus on instrument for its long-run sustainability given its current design
  - increase payroll taxes
  - cut benefits
  - increase full retirement age (FRA)
- Pre-requisite questions:



- $\Rightarrow~$  What is the optimal size of the program in the long-run?
  - $\Rightarrow$  Should some features of the program also be redesigned?



What is the optimal size of US Social Security in the long-run given its current design?

Auerbach and Kotlikoff (AER1987); Hubbard, Judd (AER1987); Hong, Rios-Rull (JME2007); Imrohoroglu, Imrohoroglu, Joines (RED1999, QJE2003); Kumru, Thanopoulos (JEDC2008); Bagchi, Jeurgen (MD2023)

Can the design of Social Security be improved given its current size?

Yes: Golosov, Shourideh, Troshkin, Tsyvinski (AER2013); Jones and Li (RED2023); Huggett and Parra (JPE2010)

#### ► We ask:



What is the optimal size of US Social Security in the long-run given its current design? ..... Zero!

Auerbach and Kotlikoff (AER1987); Hubbard, Judd (AER1987); Hong, Rios-Rull (JME2007); Imrohoroglu, Imrohoroglu, Joines (RED1999, QJE2003); Kumru, Thanopoulos (JEDC2008); Bagchi, Jeurgen (MD2023)  $\Rightarrow$  removing social secuirty  $\rightarrow$  aggregate capital  $\uparrow$ 

Can the design of Social Security be improved given its current size?

Yes: Golosov, Shourideh, Troshkin, Tsyvinski (AER2013); Jones and Li (RED2023); Huggett and Parra (JPE2010)

#### We ask:



What is the optimal size of US Social Security in the long-run given its current design? ..... Zero!

Auerbach and Kotlikoff (AER1987); Hubbard, Judd (AER1987); Hong, Rios-Rull (JME2007); Imrohoroglu, Imrohoroglu, Joines (RED1999, QJE2003); Kumru, Thanopoulos (JEDC2008); Bagchi, Jeurgen (MD2023)

Can the design of Social Security be improved given its current size?

Yes: Golosov, Shourideh, Troshkin, Tsyvinski (AER2013); Jones and Li (RED2023); Huggett and Parra (JPE2010)

#### ► We ask:



What is the optimal size of US Social Security in the long-run given its current design? ..... Zero!

Auerbach and Kotlikoff (AER1987); Hubbard, Judd (AER1987); Hong, Rios-Rull (JME2007); Imrohoroglu, Imrohoroglu, Joines (RED1999, QJE2003); Kumru, Thanopoulos (JEDC2008); Bagchi, Jeurgen (MD2023)

Can the design of Social Security be improved given its current size?

Yes: Golosov, Shourideh, Troshkin, Tsyvinski (AER2013);

Jones and Li (RED2023); Huggett and Parra (JPE2010)

#### ► We ask:

### Social security : Insurance vs. distortions

Introduction

#### 1. Social Security pensions insure longevity risk

#### $\Rightarrow$ mandated annuitization is undesirable if *annuity demand is low*

2. Social Security partially insures lifetime income risk

 $\Rightarrow$  redistribute through pensions

#### 3. Social Security distorts intertemporal choice

⇒ payroll taxes dictate how much and when to save for retirement

### Social security : Insurance vs. distortions

Introduction

- 1. Social Security pensions insure longevity risk
  - $\Rightarrow$  mandated annuitization is undesirable if *annuity demand is low*
- 2. Social Security partially insures lifetime income risk
  - $\Rightarrow$  redistribute through pensions
    - not enough : Golosov, Shourideh, Troshkin, Tsyvinski (2013); Huggett, Parra (2010); Jones and Li (2022)
    - □ limited due to income-mortality correlation : Coronado, Fullerton, Glass (2011); Goda, Shoven, Slavov (2011)
    - □ inefficient if *annuity demand is low*
- Social Security distorts intertemporal choice
   payroll taxes dictate how much and when to save f retirement

### Social security : Insurance vs. distortions

Introduction

- 1. Social Security pensions insure longevity risk
  - $\Rightarrow\,$  mandated annuitization is undesirable if annuity demand is low
- 2. Social Security partially insures lifetime income risk
  - $\Rightarrow$  redistribute through pensions
    - not enough : Golosov, Shourideh, Troshkin, Tsyvinski (2013); Huggett, Parra (2010); Jones and Li (2022)
    - □ limited due to income-mortality correlation : Coronado, Fullerton, Glass (2011); Goda, Shoven, Slavov (2011)

□ inefficient if *annuity demand is low* 

- 3. Social Security distorts intertemporal choice
  - ⇒ payroll taxes dictate how much and when to save for retirement
    - adversely affect young people with borrowing-constrain Hubbard and Judd (1987); Hurst and Willen (2007); Pries (2007)

| Introduction | data   | theory | model     | estimation | results     | Conclusions |
|--------------|--------|--------|-----------|------------|-------------|-------------|
| 0000000000   | 000000 | 000000 | 000000000 | 00000      | 00000000000 | 00          |
| What we do   | ?      |        |           |            |             |             |

Focus on the three key features:

- 1. Mandatory annuitization
- 2. Redistribution through pension benefits
- 3. Intertemporal distortions through payroll tax

► How changes in (1) – (3) affect the long-run welfare of Social Security program?

| Introduction | data   | theory | model     | estimation | results     | Conclusions |
|--------------|--------|--------|-----------|------------|-------------|-------------|
| 0000000000   | 000000 | 000000 | 000000000 | 00000      | 00000000000 | 00          |
| What we do   | ?      |        |           |            |             |             |

Focus on the three key features:

- 1. Mandatory annuitization
- 2. Redistribution through pension benefits
- 3. Intertemporal distortions through payroll tax
- ► How changes in (1) (3) affect the long-run welfare of Social Security program?

- *Increase* the size of Social Security program affects welfare through 4 channels:
  - 1. Annuitization distortion (+ or -)
  - 2. Income redistribution (+)
  - 3. Intertemporal distortions (-)
  - 4. Dynamic (in)efficiency (-)

#### Key feature: People have strong bequest motive

 $\Rightarrow$  low annuity demand (consistent with data)

1. When bequest motive is strong, removing social security has small effect on aggregate capital

2. Still, it is optimal to *remove* social security due to the large intertemporal distortion

3. Once removing the distortions and increasing redistribution, it is optimal to *expand the program (160%)* 

Introduction

Key feature: People have strong bequest motive

 $\Rightarrow$  low annuity demand (consistent with data)

### Key Findings (long-run):

Introduction

1. When bequest motive is strong, removing social security has small effect on aggregate capital

2. Still, it is optimal to *remove* social security due to the large intertemporal distortion

3. Once removing the distortions and increasing redistribution, it is optimal to *expand the program (160%)* 

Key feature: People have strong bequest motive

 $\Rightarrow$  low annuity demand (consistent with data)

#### Key Findings (long-run):

Introduction

- 1. When bequest motive is strong, removing social security has small effect on aggregate capital
- 2. Still, it is optimal to *remove* social security due to the large intertemporal distortion
- 3. Once removing the distortions and increasing redistribution, it is optimal to *expand the program (160%)*

Key feature: People have strong bequest motive

 $\Rightarrow$  low annuity demand (consistent with data)

### Key Findings (long-run):

Introduction

- 1. When bequest motive is strong, removing social security has small effect on aggregate capital
- 2. Still, it is optimal to *remove* social security due to the large intertemporal distortion
- 3. Once removing the distortions and increasing redistribution, it is optimal to *expand the program (160%)*

### 1. Long-run welfare effects of removing Social Security:

#### - optimal to remove

Auerbach, Kotlikoff (1987); Hong, Rios-Rull (2007); Hubbard, Judd (1987); Imrohoroglu, Imrohoroglu, Joines (1999, 2003), Kumra, Thanopoulos (2008), Bagchi, Jeurgen (2023)

#### - optimal to have

Imrohoroglu, Imrohoroglu, Joines (1995); Harenberg, Ludwig (2019); Fuster, Imrohoroglu, Imrohoroglu (2003)

- 2. Optimal design of Social Security benefits: Golosov, Shourideh, Troshkin, Tsyvinski (2013); Jones, Li (2022); Huggett, Parra (2010)
- Intertemporal distortions in social security: Hubbard, Judd (1987); Hurst, Willen (2007); Pries (2007)

| Introduction  | data       | theory | model     | estimation | results     | Conclusions |
|---------------|------------|--------|-----------|------------|-------------|-------------|
| 00000000●     | 000000     | 000000 | 000000000 | 00000      | 00000000000 | 00          |
| Outline of th | ne present | ation  |           |            |             |             |

#### Motivating facts

- Theoretical illustration
- Quantitative model

#### Estimation

#### Results

| Introduction | data   | theory | model     | estimation | results     | Conclusions |
|--------------|--------|--------|-----------|------------|-------------|-------------|
| 0000000000   | ●00000 | 000000 | 000000000 | 00000      | 00000000000 | 00          |
| Motivating   | facts  |        |           |            |             |             |

#### #1 Large fraction of borrowing-constraint people

- $\Rightarrow$  payroll tax is distortive
- #2 Low annuity demand
  - ⇒ mandatory annuitization is distortive

# Introduction data theory model estimation results Conclusion color Fact 1: percentage of the hand-to-mouth (net worth, PSID)



• Median wealth = 0  $\Rightarrow$  yet, mandated to save for retirement

non-housing wealth



#### ⇒ Hardly, anyone buys private annuities

This might be due to market frictions.

Jang, Pashchenko, and Porapakkarm



⇒ Hardly, anyone buys private annuities

This might be due to market frictions.

Jang, Pashchenko, and Porapakkarm

# Introduction data theory model estimation results Fact 2: low annuity demand (public annuities, HRS)

| Claiming age    | 62  | 63    | 64    | 65 (FRA) | 66     | 67   | 68     | 69   | 70     |
|-----------------|-----|-------|-------|----------|--------|------|--------|------|--------|
| % full benefits | 80% | 86.7% | 93.3% | 100%     | 106.5% | 113% | 119.5% | 126% | 132.5% |

Social security benefits by claiming age (upto 1937 cohort)

#### Delay SS benefits claiming = buy public annuities

# Introduction data theory model estimation results OOOOOO OOOOOO OOOOOO OOOOOO OOOOOO OOOOOOO Fact 2: low annuity demand (public annuities, HRS)

| Claiming age    | 62  | 63    | 64    | 65 (FRA) | 66     | 67   | 68     | 69   | 70     |
|-----------------|-----|-------|-------|----------|--------|------|--------|------|--------|
| % full benefits | 80% | 86.7% | 93.3% | 100%     | 106.5% | 113% | 119.5% | 126% | 132.5% |

Social security benefits by claiming age (upto 1937 cohort)

#### Delay SS benefits claiming = buy public annuities

Fact 2: low annuity demand (public annuities, HRS)



2/3 in each cohort claim before FRA

More than 40% claim as early as possible

 $\Rightarrow$  Low demand for public annuities

Jang, Pashchenko, and Porapakkarm

Fact 2: low annuity demand (public annuities, HRS)



2/3 in each cohort claim before FRA

More than 40% claim as early as possible

⇒ Low demand for public annuities

Jang, Pashchenko, and Porapakkarm

| Introduction | data      | theory | model     | estimation | results     | Conclusions |
|--------------|-----------|--------|-----------|------------|-------------|-------------|
| 0000000000   | 00000●    | 000000 | 000000000 | 00000      | 00000000000 | 00          |
| Outline of t | he presen | tation |           |            |             |             |

#### Data facts

#### ▶ 1<sup>st</sup> Part : Theoretical illustration

### ▶ 2<sup>nd</sup> Part : Quantitative model

#### Estimation

#### Results



- OLG structure ( population growth = n )
- Two stages of the life-cycle:
  - Working period: t <= R
  - Retirement period:  $R+1 \leq t \leq T$

#### Ex-ante heterogeneity:

- Labor income:  $y_{it} = \epsilon_i \lambda_t$ ,  $\epsilon_i \sim F(\epsilon_i)$  for  $t \leq R$
- Survival probability :  $heta_i \sim G( heta_i)$  for t > R+1
- $\epsilon_i$  and  $\theta_i$  can be correlated:  $\Rightarrow$   $H(\epsilon, \theta)$

Saving: liquid asset  $(a_{it} \ge 0)$  and illiquid retirement account



- OLG structure ( population growth = n )
- Two stages of the life-cycle:
  - Working period: t <= R
  - Retirement period:  $R+1 \leq t \leq T$

#### Ex-ante heterogeneity:

- Labor income:  $y_{it} = \epsilon_i \lambda_t$ ,  $\epsilon_i \sim F(\epsilon_i)$  for  $t \leq R$
- Survival probability :  $heta_i \sim G( heta_i)$  for t > R+1
- $\epsilon_i$  and  $\theta_i$  can be correlated:  $\Rightarrow$   $H(\epsilon, \theta)$

Saving: liquid asset  $(a_{it} \ge 0)$  and illiquid retirement account



$$V_{i}(\epsilon,\theta) = \max_{\substack{a_{it+1} \ge 0, c_{it} \ge 0, \gamma_{it}, \alpha_{i} \in [0,1] \\ \beta^{R} \left[ u(c_{iR+1}) + \sum_{t=R+2}^{T} (\beta\theta_{i})^{t-R-1} \left( u(c_{it}) + \frac{1-\theta_{i}}{\theta_{i}} v(beq_{it}) \right) + \beta^{T-R} \theta_{i}^{T-R-1} v(beq_{iT+1}) \right]}$$

retirement stage



$$V_{i}(\epsilon,\theta) = \max_{\substack{a_{it+1} \ge 0, c_{it} > 0, \gamma_{it}, \alpha_{i} \in [0,1] \\ \beta^{R} \left[ u(c_{iR+1}) + \sum_{t=R+2}^{T} (\beta\theta_{i})^{t-R-1} \left( u(c_{it}) + \frac{1-\theta_{i}}{\theta_{i}} v(beq_{it}) \right) + \beta^{T-R} \theta_{i}^{T-R-1} v(beq_{iT+1}) \right]}$$

retirement stage

$$c_{it} = \begin{cases} y_{it}(1 - \gamma_{it}) + a_{it}(1 + r) - a_{it+1} & ; \text{ if } t \le R \\ (1 - \alpha_i) PW_i + d_i + a_{it}(1 + r) - a_{it+1} & ; \text{ if } t = R + 1 \\ d_i + a_{it}(1 + r) - a_{it+1} & ; \text{ if } t > R + 1 \end{cases}$$

$$PW_i = \sum_{t=0}^{R} (1+r)^{R-t+1} \gamma_{it} y_{it} \quad \Rightarrow \quad d_i = \frac{\alpha_i PW_i}{q}$$

| Introduction | data   | theory | model     | estimation | results     | Conclusions |
|--------------|--------|--------|-----------|------------|-------------|-------------|
| 0000000000   | 000000 | 0●0000 | 000000000 | 00000      | 00000000000 | 00          |
| Setup (cont. | )      |        |           |            |             |             |

$$V_{i}(\epsilon,\theta) = \max_{\substack{a_{it+1} \ge 0, c_{it} > 0, \gamma_{it}, \alpha_{i} \in [0,1] \\ \beta^{R} \left[ u(c_{iR+1}) + \sum_{t=R+2}^{T} (\beta\theta_{i})^{t-R-1} \left( u(c_{it}) + \frac{1-\theta_{i}}{\theta_{i}} v(beq_{it}) \right) + \beta^{T-R} \theta_{i}^{T-R-1} v(beq_{iT+1}) \right]}$$

retirement stage

$$c_{it} = \begin{cases} y_{it}(1 - \gamma_{it}) + a_{it}(1 + r) - a_{it+1} & ; \text{ if } t \le R \\ (1 - \alpha_i)PW_i + d_i + a_{it}(1 + r) - a_{it+1} & ; \text{ if } t = R + 1 \\ d_i + a_{it}(1 + r) - a_{it+1} & ; \text{ if } t > R + 1 \end{cases}$$

$$PW_i = \sum_{t=0}^{R} (1+r)^{R-t+1} \gamma_{it} y_{it} \quad \Rightarrow \quad d_i = \frac{\alpha_i PW_i}{q}$$

| Introduction | data   | theory | model     | estimation | results     | Conclusions |
|--------------|--------|--------|-----------|------------|-------------|-------------|
| 0000000000   | 000000 | 0●0000 | 000000000 | 00000      | 00000000000 | 00          |
| Setup (cont. | )      |        |           |            |             |             |

$$V_{i}(\epsilon,\theta) = \max_{\substack{a_{it+1} \ge 0, c_{it} \ge 0, \gamma_{it}, \alpha_{i} \in [0,1] \\ \beta^{R} \left[ u(c_{iR+1}) + \sum_{t=R+2}^{T} (\beta\theta_{i})^{t-R-1} \left( u(c_{it}) + \frac{1-\theta_{i}}{\theta_{i}} v(beq_{it}) \right) + \beta^{T-R} \theta_{i}^{T-R-1} v(beq_{iT+1}) \right]}$$

retirement stage

$$c_{it} = \begin{cases} y_{it}(1 - \gamma_{it}) + a_{it}(1 + r) - a_{it+1} & ; \text{ if } t \le R \\ (1 - \alpha_i)PW_i + d_i + a_{it}(1 + r) - a_{it+1} & ; \text{ if } t = R + 1 \\ d_i + a_{it}(1 + r) - a_{it+1} & ; \text{ if } t > R + 1 \end{cases}$$

$$PW_i = \sum_{t=0}^{R} (1+r)^{R-t+1} \gamma_{it} y_{it} \quad \Rightarrow \quad d_i = \frac{\alpha_i PW_i}{q}$$
| Introduction | data   | theory | model     | estimation | results     | Conclusions |
|--------------|--------|--------|-----------|------------|-------------|-------------|
| 0000000000   | 000000 | 00●000 | 000000000 | 00000      | 00000000000 | 00          |
| Definitions  |        |        |           |            |             |             |

Using FOCs :,

►  $a_{it+1} \Rightarrow$  Saving wedge at age  $t \leq R$ :

wedge<sup>s</sup><sub>it</sub> = 
$$u'_{it} - \beta(1+r)u'_{it+1}$$

( + if borrowing constraint is binding )



wedge<sub>i</sub><sup>a</sup> = 
$$u'_{iR+1} q - MU_i^{Ret}$$
,

( + if no annuity demand ), ( - if annuity demand >  $PW_i$  )

 $MU_i^{Ret}$ : marginal utility of consumption (retirement):

 $MU_{i}^{Ret} = u_{iR+1}' + \sum_{t=R+2}^{T} (\beta \theta_{i})^{t-R-1} u_{i}'$ 



Using FOCs :,

►  $a_{it+1} \Rightarrow$  Saving wedge at age  $t \leq R$ :

wedge<sup>s</sup><sub>it</sub> = 
$$u'_{it} - \beta(1+r)u'_{it+1}$$
  
( + if borrowing constraint is binding )

•  $\alpha_i \Rightarrow$  Annuitization wedge at age R + 1:

$$wedge^a_i = u'_{iR+1} q - MU^{Ret}_i,$$

( + if no annuity demand ), ( - if annuity demand >  $PW_i$  )

 $MU_i^{Ret}$ : marginal utility of consumption (retirement):

$$MU_{i}^{Ret} = u_{iR+1}' + \sum_{t=R+2}^{T} (\beta \theta_{i})^{t-R-1} u_{it}'$$

Jang, Pashchenko, and Porapakkarm

Social Security



Using FOCs :,

►  $a_{it+1} \Rightarrow$  Saving wedge at age  $t \leq R$ :

wedge<sup>s</sup><sub>it</sub> = 
$$u'_{it} - \beta(1+r)u'_{it+1}$$
  
( + if borrowing constraint is binding )

•  $\alpha_i \Rightarrow$  Annuitization wedge at age R + 1:

$$wedge^a_i = u'_{iR+1} q - MU^{Ret}_i,$$

( + if no annuity demand ), ( - if annuity demand >  $PW_i$  )

 $MU_i^{Ret}$ : marginal utility of consumption (retirement):

$$MU_{i}^{Ret} = u_{iR+1}' + \sum_{t=R+2}^{T} (\beta \theta_{i})^{t-R-1} u_{it}'$$

Jang, Pashchenko, and Porapakkarm

Social Security

Introduce pay-as-you-go pension system ...

theory 000000

Fixed contribution rate : 
$$\gamma_{it} = \tau$$
 for  $t \leq R$ 

$$PW_{i}^{ss} = \sum_{t=0}^{R} (1+n)^{R-t+1} \tau y_{it}$$

Pensions are fully annuitized (*α<sub>i</sub>* = 1) and redistributive (*A* ∈ [0, 1])

$$\Delta_i = rac{oldsymbol{A} \cdot P W_i^{ss} + (1 - oldsymbol{A}) \cdot \overline{PW}^{ss}}{q^{ss}}$$

$$c_{it} = \begin{cases} y_{it}(1-\tau) + a_{it}(1+r) - a_{it+1} & ; \text{ if } t \le R \\ \Delta_i + a_{it}(1+r) - a_{it+1} & ; \text{ if } t > R \end{cases}$$

Introduce pay-as-you-go pension system ...

theory 000000

Fixed contribution rate : 
$$\gamma_{it} = \tau$$
 for  $t \leq R$ 

$$PW_{i}^{ss} = \sum_{t=0}^{R} (1+n)^{R-t+1} \tau y_{it}$$

Pensions are fully annuitized (*α<sub>i</sub>* = 1) and redistributive (*A* ∈ [0, 1])

$$\Delta_i = rac{oldsymbol{A} \cdot PW^{ss}_i + (1 - oldsymbol{A}) \cdot \overline{PW}^{ss}}{q^{ss}}$$

$$c_{it} = egin{cases} y_{it}(1- au) + a_{it}(1+ au) - a_{it+1} & ; ext{ if } t \leq R \ \Delta_i + a_{it}(1+ au) - a_{it+1} & ; ext{ if } t > R \end{cases}$$

data

• Ex-ante welfare: 
$$W = \int V_i \, dH(\epsilon, \theta)$$

theory 000000

• Lifetime wealth at R + 1:

$$LW_i(\hat{r}) = \sum_{t=1}^{R} y_{it}(1+\hat{r})^{R+1-t}$$

How does welfare change with the pension size?

$$\frac{\partial W}{\partial \tau} = -\beta^{R} \int u'_{iR+1} \left( LW_{i}(r) - LW_{i}(n) \right) dH(\theta_{i}, \epsilon_{i})$$

$$\xrightarrow{\text{dynamic (in)efficiency (-)}} -\int \sum_{t=1}^{R} (\beta(1+r))^{t-1} wedge_{it}^{s} \widetilde{PE}_{it} dH(\theta_{i}, \epsilon_{i})$$

$$\xrightarrow{\text{intertemporal distortions (-)}} -\frac{\beta^{R}}{q^{ss}} \int LW_{i}(n) wedge_{i}^{a} dH(\theta_{i}, \epsilon_{i})$$

$$\xrightarrow{\text{annuitization distortions (+,-)}} -\frac{\beta^{R}}{q^{ss}} (1-A) cov \left( LW_{i}(n), MU_{i}^{Ret} \right)$$

data

• Ex-ante welfare: 
$$W = \int V_i \, dH(\epsilon, \theta)$$

theory 000000

• Lifetime wealth at R + 1:

$$LW_i(\hat{r}) = \sum_{t=1}^{R} y_{it}(1+\hat{r})^{R+1-t}$$

How does welfare change with the pension size?

$$\frac{\partial W}{\partial \tau} = \underbrace{-\beta^{R} \int u_{iR+1}' \left( LW_{i}(r) - LW_{i}(n) \right) dH(\theta_{i}, \epsilon_{i})}_{\text{dynamic (in)efficiency (-)}} \qquad ( \text{wedge def.} )$$

$$= \underbrace{-\int \sum_{t=1}^{R} (\beta(1+r))^{t-1} wedge_{it}^{s} \widetilde{PE}_{it} dH(\theta_{i}, \epsilon_{i})}_{\text{intertemporal distortions (-)}} - \underbrace{-\frac{\beta^{R}}{q^{ss}} \int LW_{i}(n) wedge_{i}^{s} dH(\theta_{i}, \epsilon_{i})}_{\text{annultization distortions (+, -)}} - \underbrace{-\frac{\beta^{R}}{q^{ss}} (1 - A) cov} \left( LW_{i}(n), MU_{i}^{Ret} \right)}_{\text{redistribution (+)}}$$

data

• Ex-ante welfare: 
$$W = \int V_i \, dH(\epsilon, \theta)$$

theory 000000

• Lifetime wealth at R + 1:

$$LW_i(\hat{r}) = \sum_{t=1}^{R} y_{it}(1+\hat{r})^{R+1-t}$$

How does welfare change with the pension size?

• Ex-ante welfare: 
$$W = \int V_i \, dH(\epsilon, \theta)$$

theory 000000

• Lifetime wealth at R + 1:

$$LW_i(\hat{r}) = \sum_{t=1}^{R} y_{it}(1+\hat{r})^{R+1-t}$$

How does welfare change with the pension size?

$$\frac{\partial W}{\partial \tau} = \underbrace{-\beta^{R} \int u_{iR+1}^{\prime} \left( LW_{i}(r) - LW_{i}(n) \right) dH(\theta_{i}, \epsilon_{i})}_{\text{dynamic (in)efficiency (-)}}$$

$$\underbrace{-\int \sum_{t=1}^{R} (\beta(1+r))^{t-1} wedge_{it}^{s} \widetilde{PE}_{it} dH(\theta_{i}, \epsilon_{i})}_{\text{intertemporal distortions (-)}} -\underbrace{-\frac{\beta^{R}}{q^{ss}} \int LW_{i}(n) wedge_{i}^{a} dH(\theta_{i}, \epsilon_{i})}_{\text{annuitization distortions (+,-)}} -\underbrace{-\frac{\beta^{R}}{q^{ss}}(1-A)cov\left(LW_{i}(n), MU_{i}^{Ret}\right)}_{\text{redistribution (+)}}$$

| Introduction | data      | theory  | model     | estimation | results     | Conclusions |
|--------------|-----------|---------|-----------|------------|-------------|-------------|
| 0000000000   | 000000    | 00000●  | 000000000 | 00000      | 00000000000 | 00          |
| Outline of t | he preser | ntation |           |            |             |             |

## Data facts

- Theoretical illustration
- Quantitative LFC model

### Estimation

### Results

| Introduction | data       | theory     | model     | estimation | results     | Conclusions |
|--------------|------------|------------|-----------|------------|-------------|-------------|
| 0000000000   | 000000     | 000000     | ●00000000 | 00000      | 00000000000 | 00          |
| Model: Indiv | vidual's r | preference |           |            |             |             |

People derive utility from

- consumption  $(c_t)$
- leisure  $(\widetilde{l_t})$
- bequests  $(k_{t+1})$

• Epstein-Zin preferences  $\Rightarrow$  Risk aversion  $\neq \frac{1}{IFS}$ 

| Introduction  | data   | theory | model     | estimation | results     | Conclusions |
|---------------|--------|--------|-----------|------------|-------------|-------------|
| 0000000000    | 000000 | 000000 | O●OOOOOOO | 00000      | 00000000000 | 00          |
| Life-cycle mo | odel   |        |           |            |             |             |

- Three life-cycle stages
  - 25-61 $\rightarrow$  work
  - 62-69 $\rightarrow$  can work/retire, and decide when to claim (FRA=65)
  - 70-99 $\rightarrow$  retired
- People face uncertainty in:
  - Health  $\{G, B\}$  and survival
  - Labor productivity
  - Out-of-pocket medical and nursing home expenses

#### Income-mortality correlation

Two fixed productivity  $\{\xi_{low}, \xi_{high}\} \Rightarrow$  health transitions

| Introduction  | data   | theory | model     | estimation | results     | Conclusions |
|---------------|--------|--------|-----------|------------|-------------|-------------|
| 0000000000    | 000000 | 000000 | O●OOOOOOO | 00000      | 00000000000 | 00          |
| Life-cycle mo | odel   |        |           |            |             |             |

- Three life-cycle stages
  - 25-61 $\rightarrow$  work
  - 62-69 $\rightarrow$  can work/retire, and decide when to claim (FRA=65)
  - 70-99 $\rightarrow$  retired
- People face uncertainty in:
  - Health  $\{G, B\}$  and survival
  - Labor productivity
  - Out-of-pocket medical and nursing home expenses
- Income-mortality correlation

• Two fixed productivity  $\{\xi_{low}, \xi_{high}\} \Rightarrow$  health transitions

 $\Rightarrow$  health  $\Rightarrow$  labor productivity, survival

## Model: individuals younger than earliest claiming age (25-61)

model 000000000



## Introduction data theory model estimation results Conclusion Conclusion Model: individuals younger than earliest claiming age (25-61)



## Introduction data theory model estimation results Conclusions Conclusions Model: individuals younger than earliest claiming age (25-61)

Consumption-saving problem

$$W_{t}(\mathbb{S}_{t}|l_{t}, x_{t}^{h}) = \max_{c_{t}, k_{t+1}} \left\{ \begin{array}{c} \left(c_{t}^{\chi} \widetilde{l}_{t}^{1-\chi}\right)^{1-\gamma} + \\ \beta \left[\theta_{t}^{h} \mathcal{E}_{t} \left(V_{t+1}(\mathbb{S}_{t+1})\right)^{1-\psi} + (1-\theta_{t}^{h})\eta \left(k_{t+1}+\phi\right)^{1-\psi}\right]^{\frac{1-\gamma}{1-\psi}} \end{array} \right\}^{\frac{1}{1-\gamma}}$$

subject to

$$\widetilde{l_t} = 1 - l_t - \phi_w^B \mathbf{1}_{\{l_t > 0 \ \cap \ h_t = B\}}$$

$$k_t (1 + r) + z_t^h \cdot l_t + T^{SI} + Beq(\xi) - x_t^h - Tax = k_{t+1} + c_t$$

theory 000000000 Model: individuals (62-69) who still didn't claim benefits

model



28 / 50









| Introduction | data   | theory | model     | estimation | results     | Conclusions |
|--------------|--------|--------|-----------|------------|-------------|-------------|
| 0000000000   | 000000 | 000000 | 000000●00 | 00000      | 00000000000 | 00          |
| Production   | sector |        |           |            |             |             |

Production function:

$$Y = AK^{\nu}L^{1-\nu}.$$

Factor prices:



$$w = \underbrace{(1-\nu)A\left(\frac{K}{L}\right)^{\nu}}_{MPL}$$

# Introduction data theory model estimation results Conclusions Conc

 $\Rightarrow$  Regular government budget balance:

$$\int \left( \mathsf{Tax}_t - \mathsf{T}_t^{\mathsf{SI}} \right) \mathcal{M}(\boldsymbol{s}_t) = \mathsf{G}$$

 $\Rightarrow$  Social Security budget:

$$\int \left(\tau_{ss} \min(z_t^h I_t, \overline{y}_{ss}) + Tax^{ET}\right) \mathcal{M}(s_t) = \int ss \mathcal{M}(s_t)$$

| Introduction  | data       | theory | model     | estimation | results     | Conclusions |
|---------------|------------|--------|-----------|------------|-------------|-------------|
| 0000000000    | 000000     | 000000 | 00000000● | 00000      | 00000000000 | 00          |
| Outline of th | ne present | ation  |           |            |             |             |

## Data facts

- Theoretical illustration
- Quantitative model





| Introduction | data   | theory | model     | estimation | results     | Conclusions |
|--------------|--------|--------|-----------|------------|-------------|-------------|
| 0000000000   | 000000 | 000000 | 000000000 | ●0000      | 00000000000 | 00          |
| Data         |        |        |           |            |             |             |

- We use three datasets
- 1 MEPS: medical spending
- 2 HRS: claiming behavior, nursing home costs
- 3 PSID: wealth, labor income, employment

| Introduction | data   | theory | model     | estimation | results     | Conclusions |
|--------------|--------|--------|-----------|------------|-------------|-------------|
| 0000000000   | 000000 | 000000 | 000000000 | 0●000      | 00000000000 | 00          |
| Exogenous s  | hocks  |        |           |            |             |             |

| parameters                      |                                | sources                |
|---------------------------------|--------------------------------|------------------------|
| Health transition probability : | $\mathcal{H}(h_{t+1} h_t,\xi)$ | PSID                   |
| Survival probability :          | $\theta^h_t$                   | HRS and SS life tables |
| Labor productivity :            | $z_t^h$                        | PSID                   |
| OOP medical expenses:           | $x_t^h$                        | MEPS                   |
| Nursing home costs:             | xn <sup>h</sup> <sub>t</sub>   | HRS                    |



| Introduction | data   | theory | model     | estimation | results     | Conclusions |
|--------------|--------|--------|-----------|------------|-------------|-------------|
| 0000000000   | 000000 | 000000 | 000000000 | 00●00      | 00000000000 | 00          |
|              |        |        |           |            |             |             |

#### Estimated parameters and model fit

| 1/IES                                              | γ                | 1.403               |
|----------------------------------------------------|------------------|---------------------|
| Risk aversion                                      | $\psi$           | 3.847               |
| Bequest strength                                   | $\{\phi, \eta\}$ |                     |
| - Beq threshold                                    |                  | \$4,172             |
| <ul> <li>Marginal propensity to Bequest</li> </ul> |                  | 0.97                |
| Discount factor                                    | $\beta$          | 0.948               |
| Disutility if working after claiming ( $< 65$ )    | $\phi_{\rm ss}$  | 11% of endowed time |





| Introduction | data   | theory | model     | estimation | results     | Conclusions |
|--------------|--------|--------|-----------|------------|-------------|-------------|
| 0000000000   | 000000 | 000000 | 000000000 | 000●0      | 00000000000 | 00          |
|              |        |        |           |            |             |             |

#### Model fit: external validation





| Introduction                | data   | theory | model     | estimation | results     | Conclusions |  |
|-----------------------------|--------|--------|-----------|------------|-------------|-------------|--|
| 0000000000                  | 000000 | 000000 | 000000000 | 0000●      | 00000000000 | 00          |  |
| Outline of the presentation |        |        |           |            |             |             |  |

## Data facts

- Theoretical illustration
- Quantitative model

## Estimation

## Results



### Welfare measure: \$transfer in each period ...

R1. Optimal size of social security program given its current design (baseline)

$$\int \left(\tau_{ss} \times \min\left(wz_{t}^{h} I_{t}, \overline{y}_{ss}\right) + Tax^{ET}\right) \mathcal{M}\left(s_{t}\right) = b_{scale} \times \int ss \mathcal{M}\left(s_{t}\right)$$

R2. Optimal size of social security program + changing SS featureR2.1 No mandatory annuitization

R2.2 More redistributive pensions

R2.3 No intertemporal distortions



#### R1: Ex-ante welfare from eliminating Social Security



|                    | K    | Ν    | r  | 147   | Bequests |       | -    |
|--------------------|------|------|----|-------|----------|-------|------|
|                    | n    |      |    | vv —  | ξL       | ξн    | - Ty |
| Baseline           | 3.95 | 0.54 | 2% | 1.178 | 0.033    | 0.166 | 0.13 |
| No Social Security | 4.10 | 0.56 | 2% | 1.180 | 0.027    | 0.133 | 0.16 |







R1. Ex-ante welfare when changing SS size (baseline)

$$\int \left(\tau_{ss}\min\left(wz_{t}^{h}l_{t},\overline{y}_{ss}\right)+\mathsf{Tax}^{\mathsf{ET}}\right)\mathcal{M}\left(\boldsymbol{s}_{t}\right)=b_{scale}\times\int ss\,\mathcal{M}\left(\boldsymbol{s}_{t}\right)$$

R2. Ex-ante welfare when changing SS size + changing SS feature R2.1 Mandated annuitization :  $\alpha = 1 \rightarrow \rightarrow 0$ 

R2.2 More redistributive pensions :  $ss(AE, j^R) \rightarrow \rightarrow$  uniform

R2.3 Less intertemporal distortions :  $\tau_{ss} = 0$  (younger people)



R1. Ex-ante welfare when changing SS size (baseline)

$$\int \left(\tau_{ss}\min\left(wz_{t}^{h}l_{t},\overline{y}_{ss}\right)+\mathsf{Tax}^{\mathsf{ET}}\right)\mathcal{M}\left(\boldsymbol{s}_{t}\right)=b_{scale}\times\int ss\,\mathcal{M}\left(\boldsymbol{s}_{t}\right)$$

R2. Ex-ante welfare when changing SS size + changing SS feature R2.1 Mandated annuitization :  $\alpha = 1 \rightarrow \rightarrow 0$ 

R2.2 More redistributive pensions :  $ss(AE, j^R) \rightarrow \rightarrow uniform$ 

R2.3 Less intertemporal distortions :  $\tau_{ss} = 0$  (younger people)



R1. Ex-ante welfare when changing SS size (baseline)

$$\int \left(\tau_{ss}\min\left(wz_{t}^{h}l_{t},\overline{y}_{ss}\right)+Tax^{ET}\right)\mathcal{M}\left(\boldsymbol{s}_{t}\right)=b_{scale}\times\int ss\,\mathcal{M}\left(\boldsymbol{s}_{t}\right)$$

R2. Ex-ante welfare when changing SS size + changing SS feature R2.1 Mandated annuitization :  $\alpha = 1 \rightarrow 0$ R2.2 More redistributive pensions :  $ss(AE, i^R) \rightarrow 0$  uniform

R2.3 Less intertemporal distortions :  $\tau_{ss} = 0$  (younger people)



#### R2.1: Lower mandated annuitization

- $\alpha =$ fraction of annuitized benefits
- $(1 \alpha)$  of SS benefits is paid as one-time payment

$$LS\left(AE, j^{R}\right) = (1 - \alpha) ss\left(AE, j^{R}\right) \sum_{m=j^{R}}^{T} \frac{\overline{\theta}_{m|j^{R}}}{(1 + r)^{m-j^{R}}}$$



#### R2.1: Lower mandated annuitization (cont.)



Fixed SS size (GE)



#### R2.1: Lower mandated annuitization (cont.)



#### People are still better off without Social Security



## R2.2: Increasing redistribution



More redistributive pensions:

$$A * ss(AE, j^R = FRA) + (1 - A) * \overline{ss}$$






Fixed SS size (GE)

uniform + non-annuitization





#### People are still better off without Social Security

uniform + non-annuitization

Jang, Pashchenko, and Porapakkarm

Social Security



#### R2.3: Less intertemporal distortions

### Many young workers

- Have high expected income growth
- Would prefer to delay saving for retirement
- Young people are exempt from payroll tax

 $au_{ss} = 0$  if  $t \leq age_{exempt}$ 

| Introduction | data   | theory | model     | estimation | results     | Conclusions |
|--------------|--------|--------|-----------|------------|-------------|-------------|
| 0000000000   | 000000 | 000000 | 000000000 | 00000      | 00000000●00 | 00          |
|              |        |        |           |            |             |             |

The effects of changing maximum exemption age



Fixed SS size (GE)

#### Exemption age that maximizes welfare: 41 years old

Introduction data theory model estimation results Conclusions

The effects of changing maximum exemption age



Fixed SS size (GE)

#### Exemption age that maximizes welfare: 41 years old



# R2.3: Less intertemporal distortions (cont.)



Payroll tax exemption upto 41 yrs old,

- the optimal size is 60% of BS





#### R2: Combine all three policies



Optimal to increase the size of Social Security





- Study how optimal size of Social Security depends on its design features
- Focus on the three design features:
  - Mandatory annuitization
  - Insurance against lifetime income risk (redistributive benefits)
  - Intertemporal distortions through payroll tax
- Key findings (long-run)
  - ⇒ Social Security produces large ex-ante welfare losses due to its design features
  - ⇒ It is welfare improving only if addressing the intertemporal distortions from payroll taxes



- Study how optimal size of Social Security depends on its design features
- Focus on the three design features:
  - Mandatory annuitization
  - Insurance against lifetime income risk (redistributive benefits)
  - Intertemporal distortions through payroll tax
- Key findings (long-run)
  - ⇒ Social Security produces large ex-ante welfare losses due to its design features
  - $\Rightarrow$  It is welfare improving only if addressing the intertemporal distortions from payroll taxes



- Study how optimal size of Social Security depends on its design features
- Focus on the three design features:
  - Mandatory annuitization
  - Insurance against lifetime income risk (redistributive benefits)
  - Intertemporal distortions through payroll tax
  - Key findings (long-run)
    - Social Security produces large ex-ante welfare losses *due to its design features*
    - ⇒ It is welfare improving only if addressing the intertemporal distortions from payroll taxes
    - $\Rightarrow\,$  Correcting all the design flaws makes it optimal to expand the program (160% of current size)

# THANK YOU !!

### Fact 1: percentage of the hand-to-mouth (non-housing wealth)





# Model: individuals (62-69) who still didn't claim benefits

Consumption-saving if he chooses to claim SS

$$W_{t}^{E}(\mathbb{S}_{t}|l_{t}, i_{t}^{C} = 1, x_{t}^{h}) = \max_{c_{t}, k_{t+1}} \left\{ \begin{array}{c} \left(c_{t}^{\chi} \tilde{l}_{t}^{1-\chi}\right)^{1-\gamma} + \\ \beta \left[\theta_{t}^{h} E_{t} \left(V_{t+1}^{C}(\mathbb{S}_{t+1}, j^{R})\right)^{1-\psi} + (1-\theta_{t}^{h})\eta \left(k_{t+1} + \phi\right)^{1-\psi}\right]^{\frac{1-\gamma}{1-\psi}} \right\}^{\frac{1}{1-\gamma}}$$

subject to

$$\tilde{l}_{t} = 1 - l_{t} - \phi_{w}^{B} \mathbf{1}_{\{l_{t} > 0 \ \cap \ h_{t} = B\}} - \phi_{ss} \mathbf{1}_{\{l_{t} > 0 \ \cap \ i^{C} = 1 \ \cap \ t < 65\}}$$

$$k_{t}(1+r) + z_{t}^{h} l_{t} + \left( ss(AE_{t}, t) - Tax_{\{t < 65 \ \cap \ z_{t}^{h} l_{t} > \overline{y}^{ET} \}}^{ET} \right) + T^{SI} + Beq(\xi) - x_{t}^{h} - Tax = k_{t+1} + c_{t}$$

$$j^{R} = \begin{cases} t+1 & ; \text{ if } Tax^{ET} \ge 0.5 \ ss(AE_{t}, t) \\ t & ; \text{ otherwise} \end{cases}$$

Model: individuals (63-69) who claimed benefits at age  $j^R$ 



Model: individuals (63-69) who claimed benefits at age  $j^R$ 



1

# Model: individuals (63-69) who already claimed at age $j^R$

Consumption-savings problem

$$W_{t}^{C}(\mathbb{S}_{t}, j^{R}|l_{t}, x_{t}^{h}) = \max_{c_{t}, k_{t+1}} \left\{ \begin{array}{c} \left(c_{t}^{\chi} \widetilde{l}_{t}^{1-\chi}\right)^{1-\gamma} + \\ \beta \left[\theta_{t}^{h} E_{t} \left(V_{t+1}^{C}(\mathbb{S}_{t+1}, \widetilde{j}^{R})\right)^{1-\psi} + (1-\theta_{t}^{h})\eta \left(k_{t+1}+\phi\right)^{1-\psi}\right]^{\frac{1-\gamma}{1-\psi}} \right\}^{\frac{1}{1-\gamma}}$$

subject to

$$\widetilde{l_t} = 1 - l_t - \phi_w^B \mathbf{1}_{\{l_t > 0 \ \cap \ h_t = B\}} - \phi_{ss} \mathbf{1}_{\{l_t > 0 \ \cap \ l_t^C = 1 \ \cap \ t < 65\}}$$

$$k_t (1+r) + z_t^h l_t + \left( ss(\overline{AE}, j^R) - Tax_{\{t < 65 \ \cap \ z_t^h l_t > \overline{y^{\varepsilon T}}\}}^{\mathsf{ET}} \right) + T^{\mathsf{SI}} + Beq(\xi) = k_{t+1} + c_t + x_t^h + Tax$$

$$\widetilde{j^R} = \begin{cases} j^R & ; \text{ if } Tax^{ET} < 0.5 \times ss(\overline{AE}, j_R) \\ j^R + 1 & ; \text{ otherwise} \end{cases}$$

# Model: individuals (70up)

Consumption-savings problem

$$W_{t}^{R}(\mathbb{S}_{t}^{R}; x_{t}^{h}, \mathbf{x}_{t}^{h}) = \max_{c_{t}, k_{t+1}} \left\{ \begin{array}{c} c_{t}^{\chi(1-\gamma)} + \\ \beta \left[ \theta_{t}^{h} E_{t} \left( V_{t+1}^{R}(\mathbb{S}_{t+1}^{R}) \right)^{1-\psi} + (1-\theta_{t}^{h}) \eta \left( k_{t+1} + \phi \right)^{1-\psi} \right]^{\frac{1-\gamma}{1-\psi}} \end{array} \right\}^{\frac{1}{1-\gamma}}$$

subject to

$$k_t (1+r) + ss(\overline{AE}, j^R) + T^{SI} = k_{t+1} + c_t + Tax + x_t^h + xn_t^h$$

#### Health transition and survival probability



Health transition probability by  $\xi$ 

Survival probability by health

#### Health transition and survival probability



Health transition probability by  $\xi$ 

#### Stochastic processes estimated outside the model

• Health-dependent labor income process  $(z_t^h)$ 

$$z_{it}^{h} = \lambda_{t}^{h} \exp(\nu_{t}) \exp(\xi)$$
$$\nu_{t} = \rho \nu_{t-1} + \varepsilon_{t}; \quad \varepsilon_{it} \sim iid \ N\left(0, \sigma_{\varepsilon}^{2}\right)$$



$$\hat{y}_{it} = \hat{d}^{y}_{age} D^{age}_{it} imes D^{h}_{it} + \hat{d}^{y}_{j^{c}} (D^{c}_{i} = 1937) + \hat{\epsilon}^{y}_{it},$$

•  $\hat{y}_{it}$  is used to compute  $\lambda_t^h$ 

• 
$$\rho = 0.984, \ \sigma_{\varepsilon}^2 = 0.02, \ \sigma_{\xi}^2 = 0.242$$

Jang, Pashchenko, and Porapakkarm

# Age-dependent labor productivty : $\lambda_t^h$



Health-dependent total medical expenses  $(x_t^h)$ 

 $\blacktriangleright$   $x_t^h$  is directly estimated from MEPS





# Nursing home expense shock $(xn_t^h)$



#### Estimated parameters and model fit (cont.)

| Consumption floor                 | ī          | \$2,401               |
|-----------------------------------|------------|-----------------------|
| Disutility from work (bad health) | $\phi_W^B$ | 14.4% of endowed time |



% working individuals



# R1: Ex-ante welfare from eliminating Social Security



|                    | К    | Ν    | r  | w -   | Bequests |       | -    |
|--------------------|------|------|----|-------|----------|-------|------|
|                    |      |      |    |       | ξL       | ξн    | - Ty |
| Baseline           | 3.95 | 0.54 | 2% | 1.178 | 0.033    | 0.166 | 0.13 |
| No Social Security | 4.10 | 0.56 | 2% | 1.180 | 0.027    | 0.133 | 0.16 |



Jang, Pashchenko, and Porapakkarm

### Wealth profiles: with and without Social Security



# R2.2: uniform benefit + no annuitization (cont.)



# People are still better off without Social Security

### R2.2: uniform benefit + no annuitization (cont.)



People are still better off without Social Security

# R2: Ex-ante welfare (fixed SS size)



| CEV (fixed Social Security size as in baseline) |       |       |              |  |  |
|-------------------------------------------------|-------|-------|--------------|--|--|
|                                                 | All   | ξlow  | $\xi_{high}$ |  |  |
| No mandatory annuitization                      | 0.50% | 2.23% | -2.8%        |  |  |
| Uniform benefits                                | 1.85% | 4.21% | -0.63%       |  |  |
| $	au_{ss}=0$ upto 40yrs old                     | 3.50% | 5.09% | 6.12%        |  |  |

### R3: Combining all three policies

