Econ Conference

August 17, 2016

เวลา 09:00 - 16:15 น.

ณ ห้องประชุมภัทรรวมใจ ธนาคารแห่งประเทศไทย

กระแสสังคมกับการตัดสินใจส่วนบุคคล

(Effects of "the Wisdom of Crowds" on Individual Decision: An Experimental Evidence on Guesswork)

ธานี ชัยวัฒน์
ศูนย์เศรษฐศาสตร์พฤติกรรมและการทดลอง
จุฬาลงกรณ์มหาวิทยาลัย

Presentation Outline

- Introduction
- Objectives
- Experimental Design
- Preliminary Results
- Conclusive Remarks

Introduction (1)

- Aristotle is widely credited as the <u>first</u> person to write about the 'Wisdom of the crowd' in his work titled 'Politics'.
- The term "crowd" refers to any group of people, such as a corporation, a group of students, or simply the entire general public, which they may or may not know each other.
- Classic example of wisdom-of-the-crowds: At a 1906 country fair in Plymouth, eight hundred people participated in a contest to estimate the weight of a slaughtered and dressed ox. Statistician Francis Galton observed that the median guess, 1207 pounds, was accurate within 1% of the true weight of 1198 pounds. (Galton, 1907 in wikipedia)

Introduction (2)

- Vul and Pashler (2008): "What percentage of the world's airports are in the United States?"
 [Hourihan and Benjamin (2010) and Rauhut and Lorenz (2011)]
- Surowiecki (2004) observed "Who Wants to Be a Millionaire" game show and found that experts can correctly answered 65% but group of people 91% >> "Collectively Smart"
- However, weight of ox, proportion of airports or questions in game show are simple and clue in.
- What will happen if more complex question?
 - Individual knows that it's difficult for crowd to guess correct value.

Objectives

- To investigate effects of the wisdom of crowds in the case of more complex and without clue among familiar / unfamiliar issues.
- 2. To prioritize the aspects of the wisdom of crowds on individual decision.

Experimental Design

Device / Setting / Subject / Payment

Device

Now, "Chula Clicker" App on Smartphone

- The experiment requires
 - Anonymous
 - Collect data and process result real-time

 Use real clicker by Turning TechnologyTM

Setting

Step 1: Pre- Guess

Step 2: Wisdom of Crowds

Step 3: Post- Guess

•••

Subject

- College Students / Major in Economics / Higher than 3rd year
- Trained how to use Chula Clicker App
- Run Experiments in Chulalongkorn University
 - Total 70 students
 - Skip Walailuk University in this presentation

#1 Objective

To investigate effects of the wisdom of crowds familiar / unfamiliar issues

Game 1: Familiar Guesswork

"How many students are there in Chulalongkorn University?" (A.Y.2015)

Step 1: Pre- Guess

- Each student was assigned to answer individually.
- They cannot talk to each other.
- The answer was limited at 5 digits.
- 30 seconds was provided.
- Then the individual answers were collected and not provided.

Period 2: the Wisdom of Crowds

- The answer was still limited at 5 digits.
- Each student was assigned to answer digit by digit starting from the ten thousand digit.

- "Mode" of number in each digit was chosen as a wisdom of crowd.
- The biggest number is 99,999 students.
- All subjects always know this number.

Period 2: the Wisdom of Crowds

- For example of the first digit, 60% 0, 30% 1, 5% 2, 2% 3, ...
- Put _O_ __ __ __

The biggest number changes to 09,999 students.

- The second digit, 20% 0, 50% 1, 20% 2, 5% 3, ...

The biggest number changes to 01,999 students.

Period 3: Post- Guess

- Each student was assigned to answer individually (again).
- They cannot talk to each other.
- The answer was still limited at 5 digits.
- 30 seconds was provided.
- Then the individual answers were collected again.

Observe

How much individuals adjust their guess

Game 2: Unfamiliar Guesswork

"How far is it from Chulalongkorn University to Colosseum (in km)?"

(Everyone knows Colosseum.)

Step 1: Pre- Guess

Step 2: the Wisdom of Crowds

Step 3: Post- Guess

Payment

- The payment is important to guarantee rationality and effort of students to play the game.
- Punishment Points are assigned to guarantee the subjects putting efforts on their guess and calculated from the summation of
 - Mistake 1 = | Correct Answer Pre-Individual Guess |
 - Mistake 2 = | Correct Answer Post-Individual Guess |.
- Due to class experiment, it is prohibited to spend the "real" money.
- Every student will be assigned a probability to sing and dance in front of their friends relatively to their punishment points.
 - More punishment points, higher probability to sing and dance.

Preliminary Results

Former names Royal Pages School, Civil

Service College of King

Chulalongkorn

Motto • Knowledge with Virtue

(official)

Honour of Chula is the

Honour of Serving the

Public (unofficial)

Established March 26, 1917

Type Public (National) research

university

President Professor Pirom Kamol-

Ratanakui, M.D.

Students 38,456^[1]

Undergraduates 25,007

Correct Answer = 38,546 km

	Mean (PRE)	Crowd	Mean (POST)	%∆ POST⊸ PRE	%∆ POST- CROWD	SD (PRE)	SD (POST)
Inter	45,971	39,910	44,667	2.92	10.65	14,266	8,617
Thai	48,204	37,550	45,318	6.37	17.41	18,764	10,837

- observe SMALL change between PRE and POST
- so individuals attach more on themselves
 - in FAMILIAR issue
- Moreover, SD decreases 40%.

Correct Answer = 11.312 km

	Mean (PRE)	Crowd	Mean (POST)	%∆ POST⊸ PRE	%∆ POST- CROWD	SD (PRE)	SD (POST)
Inter	18,512	20,953	19,979	7.34	4.87	6,973	1,005
Thai	13,538	16,743	16,481	17.86	1.59	5,783	1,616

- observe BIG change between PRE and POST
- value between POST and CROWD is relatively CLOSE
 - even if crowd values is farther than correct value
- so individuals attach more on crowd
 - in UNFAMILIAR issue
- Moreover, SD decreases 80%.
 - Crowd can reduce dispersed decision to well-organized.

Crowd Effects on Individual Decision

	Familiar case	Unfamiliar case
INTER	21.51%	60.12%
THAI	27.08%	91.82%

$$Crowd_effect = \frac{|PRE - POST|}{|PRE - Crowd|}$$

- If individual is confident in his answer, he changes little.
 - | Pre Post | is low relatively to | Pre Crowd |
 - Crowd effect is low.
- If individual is not confident in his answer (he trusts in crowd decision), he changes much.
 - | Pre Post | is high relatively to | Pre Crowd |
 - Crowd effect is high.

Conclusion of #1 Objectives

- To investigate effects of the wisdom of crowds in the case of more complex and without clue among familiar / unfamiliar issues.
- Crowd affects individual decision in case of UNFAMILIAR higher than FAMILIAR one, no matter what the correct answer is.
 - BANDWAGON effect holds, especially in unfamiliar case.
- Also Crowd can organize how people decide, especially in unfamiliar issue.
 - GROUPTHINK phenomenon also holds, especially in unfamiliar case.
- So the wisdom of crowd holds, both how people think and organize groupthink.

#2 Objective

To prioritize the aspects of the wisdom of crowds on individual decision.

Game 3: Aspects of Bandwagon Effects

"What is the area of Swaziland (in sq.km)?"

- Step *: Before the first guess, students answer
 - Relative to other students in high school class, what is your ranking of 50 students in Geography subject? >> Expert
- Step 1: Pre- Guess (5 digits)
- Step *: Answer
 - Rate your confidence (between 1-9) that your value is in range +/-5% from correct answer. >> Confidence
- Step 2: Aspects of the Wisdom of Crowd
 - A. Mean from Crowd
 - B. Mean from Experts (who ranks less than 3)
 - C. Mean from Confident Students (who ranges more than 8)
- Step 3: Post- Guess
 - Choose between A, B, C or their answer

Choices of 70 students

Correct Answer is 17,364 sq.km.

Conclusion of #2 Objectives

- To prioritize the aspects of the wisdom of crowds on individual decision.
- Inside Bandwagon effect, there are several aspects, then people can choose some to believe.
- They believe in the confidents > crowd > themselves > the experts.
- "crowd > themselves" means that Bandwagon effect still holds.
- "the confidents > the experts" proposes LEMON PROBLEM in Bandwagon effects because people tend to believe in confidence higher than capacity.
- In the real world, LEMON problem is worse in term of ADVERSE SELECTION because confidence is easier to be observed than capacity.

Conclusive Remarks

- The wisdom of crowds, even cannot identify who's who, can affect individual decision (how people choose) and group organized (how guess varies), no matter what answer is correct or not.
 - Bandwagon effect and Groupthink phenomenon hold, especially in the unfamiliar case.
- Each aspect of crowd data influences decision differently.
 - "Confidence > Crowd > Themselves > Capacity" suggests LEMON problem (Adverse Selection).
- We can think about how to achieve good democracy which no one know the correct answer, so role of media, rumour, social trend, Hyde Park, ... play role as a Wisdom of Crowd and can affect the way how citizens make decision.
 - Moreover, <u>citizens may "wholeheartedly" follow the confidents in the wrong way to good democracy</u>, even if the crowd or the experts suggest opposite.

Thank you