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Abstract

We model contagion in financial networks using an equilibrium approach. Banks in the net-

works are risk averse and optimize loan holdings. Contagion can occur through the interbank

liabilities, and asset prices. Banks in the system are allowed to act as potential buyers buying

illiquid loans from troubled banks. We find that banks with low risk aversion, the aggressive

banks, can be helpful as good potential buyers and harmful as risk amplifiers. The system is

subject to greater risk when aggressive banks hold claims between each other, and when they

hold high risk loans as their prices are sensitive to shocks. When banks and loan markets are

separated into non-overlapping sectors based on their areas of expertise defined by the cost of

managing different types of loans, a shock in one sector is not transmitted to another sector

if there are not liability linkages and the cost is sufficiently high. We use this observation to

suggest a policy that separates banks during good times to limit unexpected contagion, and

allows them to act as secondary potential buyers to save their peers during bad times, creating

a self-rescue system that puts no burden on the taxpayers.
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1 Introduction

Asset fire sales can be a major cause of a financial crisis. When banks are hit by unexpected

shocks, either directly or indirectly through contagion channels, banks can become insolvent

and need to liquidate all of their assets, the major of which are illiquid loans. Banks that

survive but experience losses need to sell some of their assets to pay for the losses. Because

in general banks’ liquid assets are low-risk assets such as cash equivalents and banks’ illiquid

assets are high-risk assets such as loans, risk-averse banks do not sell only liquid assets, but

also part of their illiquid assets to re-optimize the risk-adjusted return of their portfolios after

the shocks.1 How much banks sell off their illiquid loans depends on the banks’ attitude toward

risk.2 If there are few potential buyers who are willing to pay for the assets, the fire sale prices

can be much worse (Shleifer and Vishny, 2011). The system that tends to keep some potential

buyers untouched from a result of a shock can be a solution to the fire sale problem. This

self-rescue feature avoids seeking for help from the outsiders such as the government or the

central bank, and thus reduces the burden on the taxpayers.

In this paper we present an equilibrium model of financial contagion in banking networks

that allows survival banks to act as potential buyers. Banks in our model are risk averse,

and hence they optimize their portfolios of cash and various types of illiquid loans based on

a risk-adjusted return basis. A bank with a low level of risk aversion, or an aggressive bank,

holds a larger portion of illiquid risky loans per unit of the bank’s equity. So when the equity

value of the bank decreases, it reduces its loan holding more aggressively than banks that are

more risk averse, or conservative banks. When a shock hits an aggressive bank, it can originate

fire sales of illiquid loans. On the other hand, if most aggressive bank are not affected by the

shock, they act as potential buyers who are willing to take a large amount of loans given a

small reduction in the price, and thus help save the network from asset fire sales.

Banks in our model are also linked through interbank liabilities. If an aggressive bank,

holding a large amount of loans, is hit by a large shock and becomes insolvent, the loss will be

propagated to its interbank creditors who will need to sell off some of their loans, if not all.

If those creditors are relatively more aggressive compared to the other banks in the network,

then the sales of illiquid loans can be huge, while the non-creditor banks, who are relatively

more conservative, require a deep discount in the prices in order to generate enough demand

to meet the huge supply of loans. In this case, both sellers and buyers amplify the fire sale

effects. On the other hand, if the creditors are the relatively more conservative banks, the loan

sales will be less and the non-creditor banks, which are relatively more aggressive, would take

all of the loans given just a small discount. Thus, the self-rescue ability of the network relies

1See Pyle (1971) for an example of banks using portfolio management to determine optimal allocation for the
banks’ assets.

2Ratti (1980) and Angelini (2000) provide evidence that banks are risk averse.
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partly on how conservative and aggressive banks are linked through the interbank liabilities.

When the loan markets and banks are divided into multiple sectors, the role of banks as

potential buyers can be significant during a crisis of a sector. In our model, different banks

have different expertise in managing different types of loans. Managing the loan type in their

expertise requires a low cost, while managing loans outside their expertise is costly. This

high cost creates a barrier for banks to hold loans outside their expertise and divides the

loan markets and banks into sectors. In this situation, our model shows that when a small

shock hits a bank in one sector, the other banks in the sector will act as the potential buyers

providing the self-rescue mechanism of the sector. However, when the sector is hit by a large

shock damaging many banks in the sector, it is difficult to avoid a sharp drop in the loan price

as banks do not play their role as helpful potential buyers. This can happen, for example, if

the default risk of the loans in the sector jumps up markedly, affecting the equity values of all

banks in the sector. If the loan price falls enough to outweight the high cost, then, and only

then, banks outside the failing sector will step in and act as the potential buyers to rescue the

failing sector when it is most needed.

Separating loan markets and banks into sectors helps create the secondary potential buyers,

and thus enhances the self-rescue mechanism of the system. When banks are separated into

loan sectors, a shock to one type of loans does not cause losses to banks outside the sector

through the asset price channel. Thus, it keeps those outside banks safe and ready to step in

to save the sector once the time comes. Each sector now acts as secondary potential buyers for

the other sectors. However, interbank liability linkages may exist between banks that belong

to different sectors. This channel of contagion weaken the role as the secondary potential

buyers of the outside banks as losses from the failing sector can be transmitted to the banks

outside the sector. Another factor that can weaken the secondary potential buyer role of the

outside banks is the default correlation. Default correlations between loans from different

sectors create negative hedging demands due to the substitution effect. That is, when outside

banks step in to buy loans from the failing sector, they reduce the holdings of the loans in their

sector as they are substitute goods, causing the price to drop. The negative hedging demand

is large when the correlation is high and the fire sale loans are attractive.

This result provides an interesting policy suggestion. The regulatory body can divide loan

markets into non-overlapping sectors, and require banks to choose an area of expertise (i.e. the

loan sector) in which the banks are allowed to run their businesses as usual.3 Banks running

the business outside their declared area of expertise are required to pay a large amount of

fee. This is to reduce the incentive of banks to create undesired contagion channel across the

sectors. As a result, banks from one sector act as the secondary potential buyers for the others.

The regulator should also set a limit for interbank liabilities between banks from different areas

3An area of expertise may consist of many types of loans. However, each area of expertise cannot overlap.
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of expertise. Once a crisis is about to happen in one sector in which the fire sale can bring

down the sector, the regulator may search for financially healthy sectors. If there is not any

healthy sector, then it might be better to keep the fee high to avoid a cross-sector contagion

and limit the losses. If there are financially healthy sectors, the regulator may choose to lower

the fee for the financially healthy sectors to allow the healthy banks to step in and save the

failing sector. The regulator can choose the fee level that does not cause a serious effect on

the healthy sectors. Once this happens; however, the healthy sectors are contaminated by the

failing sector, and the self-rescue system will not function for the next crisis. So the regulator

should use this as a temporary solution and try to bring the system back to normal soon before

the next crisis.

Our work is related to the literature of potential buyers during fire sales. Shleifer and

Vishny (1992) develop an equilibrium model of two firms to show that the price of an asset

in liquidation can fall below the value in best use because the depression causes one firm to

liquidate its asset, while the other firm in the same industry, who values the asset and is the

potential buyer, also has trouble raising fund during the depression period. The asset thus has

to be sold to the outsider who does not know how to manage, and is willing to pay at a lower

price. See also Shleifer and Vishny (2011) for the role of the firms inside the industry as the

potential buyers and when they do not function well during financial crises.

Acharya and Yorulmazer (2008) consider a system of banks and outside investors in which

the assets of the failed banks are auctioned to surviving banks and the outside investors. As the

number of failed banks increases, the number of surviving banks decreases and the surviving

banks do not have enough funds to buy all the assets, allowing the outside investors, who are

inefficient users of the assets, to purchase the assets. They show that a bail out policy gives

incentives for banks to herd ex-ante and in turn increases the risk of the bank failures. On

the contrary, providing capital to surviving banks to acquire the failed banks’ assets when the

number of failed banks is large leads banks to differentiate their loan exposures. Acharya et al.

(2011) extend the model and show that providing the support to surviving banks conditional

on their liquid asset holdings gives incentives for banks to hold more liquid assets. In contrast

to the earlier works, we propose a resolution of financial meltdown that relies on the capital

inside the system by keeping them separated when the economy is sound, but allowing them

to act as the secondary support when the primary potential buyers fail to rescue their sectors.

Modeling interbank liabilities linkages using network models has recently been of great

interests in the contagion literature. Eisenberg and Noe (2001) provide a model of debt clearing

among defaulted and non-defaulted firms, and show the existence and the condition for the

uniqueness of the repayment vector. Acemoglu et al. (2015) analyze the network stability

conditional on a shock, and show that when the shock is small, a more densely connected

network provides better stability due to risk-sharing benefits, while when the shock is large,

the dense connection creates fragility of the network by propagating shocks throughout the
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network. This is consistent with the experiment of Gai and Kapadia (2010) who report that

financial networks are robust-but-fragile. Demange (2016) develop a threat index that accounts

for firm’s characteristic and the links to the other firms in the network to identify optimal

intervention policies.

The literature on the financial networks of cross-liability has been extended to include the

contagion channel due to asset prices. Cifuentes et al. (2005) propose a network model of

interconnected financial institutions that are subject to regulatory solvency constraints. In

their model, the institutions may have to sell off their illiquid assets after being hit by a

shock to satisfy the constraints. As the assets are illiquid, the asset sales cause the prices

to drop and further reduce the mark-to-mark values of the institutions’ capital, triggering

another round of asset sales. They model the price changes in response to the asset sales using

an inverse demand function, and hence implicitly assume that assets are sold to institutions

outside the network. Cecchetti et al. (2016) and Feinstein (2017) extend the work of Cifuentes

et al. (2005) to include multiple illiquid assets and provide a proof of the existence of an

equilibrium. Following the framework of Cifuentes et al. (2005), Chen et al. (2016) study the

interaction between the contagion channels through the liability linkages and the asset prices.

They conclude that illiquidity channel has a great potential to cause systemic-wide contagion.

Greenwood et al. (2015) study the effect of fire sales in banking networks but do not consider

interbank liability linkages. They assume that banks sell assets to adjust the leverage ratios

back to their target levels after being hit by negative shocks. Their study shows that the

systemic risk of a banking system is large if the volatile and illiquid assets are held by the

most levered banks, and they suggest that illiquid assets with low volatility should be isolated

from the risky ones so that they are not contaminated by those assets.

All of these works share the same assumptions embedded in the model of Cifuentes et al.

(2005). That is, they assume that financial institutes sell assets purely due to the liquidity

constraints or the target leverage, and the assets are sold to outsiders using an assumed inverse

demand function. This differs from our model in which the financial institutes make decision

on asset holdings based on a risk-adjusted returns utility, reflecting the profit-seeking and risk-

averse nature of financial firms.4 In addition, the assets in our model are sold to the institutions

inside the network, and the asset prices are determined endogenously. This allows us to study

a more complete picture of fire sales which are originated from the unbalance between the low

demand and high supply. For a recent review of other related financial contagion literature,

we refer the reader to Glasserman and Young (2016).

The rest of this paper is organized as follows: Section 2 outlines the banking network

model with two channels of contagion: interbank liabilites and asset prices. Section 3 derives

4Aldasoro et al. (2016) consider banking networks that incorporate three channels of contagion: liquidity hoarding,
interbank liabilities and fire sales. Similar to ours, they assume that banks are risk averse and maximize the expected
utility of the banks’ profits. However, they do not consider buyers as in our model.

5



the optimal asset holdings of banks. This characterizes the demands of banks which are crucial

to understand the roles of banks as sellers and buyers of illiquid assets. Section 4 provides

analysis of equilibrium prices before and after shocks hit the system. We conclude in Section

5.

2 Financial Network Model

2.1 Setup

Consider a three-period (t = 0, 1, 2) financial system with N banks. At time 0, each bank i

holds a liquid asset or cash with value ci and a portfolio of illiquid assets or loans. There are

K types of loans which are for non-bank borrowers such as auto loans and credit card loans.

These loans mature at time 2 with random payoffs, and do not pay intermediate payments.

Each bank i is endowed with θi,k units of type-k loans at time 0. Banks do not create new

loans after time 0. In our model, cash represents a liquid asset portion of a bank that normally

provides low return with minimal risk (zero risk and zero return in our setting). On the other

hand, illiquid loans represent a majority portion of the bank’s asset that are typically riskier

and have higher returns.

In addition to cash and loans made for non-bank borrowers, banks are endowed with

shorter-term interbank loans between each other. These interbank loans mature at time 1.

Let li,j denote the claim of bank j on the asset of bank i at the maturity of the interbank loan.

The interbank claims at time 1 can be summarized by matrix L = [li,j ] where li,i = 0. We

assume that no new interbank loans are created after time 0.

At time 0, each bank i is also financed by deposits of di. We assume that the interbank

liabilities and deposits are of equal seniority, and that interest rate is normalized to zero. So

cash and deposits earn no interest. To summarize, the asset side of the balance sheet of each

bank consists of cash, illiquid loans, and interbank loans, while the debt side of the bank

consists of deposits and interbank liabilities. The equity value of the bank is equal to the asset

value minus the debt value. We assume that each bank has positive equity at time 0; that is,

all banks are solvent.

At time 1, the system is subject to unexpected shocks, which can be in various forms. A

shock can be a bank shock that comes in as a surprise expense of one particular bank, reducing

the bank’s net worth. Such shocks could be due to frauds, litigation costs, or settlements of

lawsuits.5 A shock can also be categorized as an asset shock such as an increase in the default

probability of one type of loans. An adverse shock to the default probability causes the loan

price to drop. We model that mechanism below. After shocks are realized, banks settle their

5For example, the fraud in the Barings Bank caused it to collapse in 1995. The 2016 annual report of the Royal
Bank of Scotland reports the loss of over 5.8 billion pounds for litigation and conduct costs.
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interbank liabilities by using cash or repayments obtained from their interbank claims, or by

selling their illiquid loans, or a combination of them.

Suppose that after the shocks the market price of type-k illiquid loan is pk, k = 1, . . . ,K.

Let xi,j denote the amount that bank i repays its interbank liability to bank j for j 6= i. If

the value of the total asset of bank i is less than the value of its total debt, then the bank is

insolvent and must liquidate all of its assets and distribute the proceeds to all of its creditors

proportional to the face values. Otherwise, bank i repays the interbank liability in full. Let

Li = di +
∑N

u6=i li,u denote the total debt of bank i. Then the amount that bank i repays to

bank j is equal to

xi,j =
li,j
Li

min

Li, ci +
K∑
k=1

pkθi,k +
N∑
u6=i

xu,i − vi

 (1)

We assume that each bank carries over its cash and deposits from time 0 to time 1. Given

all the shocks and the market prices of illiquid loans p = [p1, . . . , pK ]′, the collection of [xi,j ]

for i 6= j that satisfies (1) for each i = 1, . . . , N simultaneously is said to be an equilibrium

repayment at the price vector p.

Let

ei = max

0, ci +

K∑
k=1

pkθi,k +

N∑
u6=i

xu,i − vi − di −
N∑
u6=i

li,u

 (2)

denote the equity value of bank i. Banks that are solvent (ei > 0) can now adjust their asset

portfolio by buying or selling illiquid loans. We assume that each solvent bank chooses a

portfolio of liquid and illiquid assets to maximize its risk-adjusted return on equity based on a

mean-variance utility. Let θ̂i,k denote the number of units of tyep-k loan held by bank i after

the adjustment, and R̃i,k(θ̂i,k) denote the values of the bank i’s portfolio of the type-k illiquid

loans realized at time 2. The change in the equity value from time 1 to time 2 comes from

the change in the value of illiquid loans, and the cost of managing the loans. So the return on

equity of bank i is

ROEi =

K∑
k=1

(R̃i,k(θ̂i,k)− θ̂i,kpk − θ̂i,kfi,k)

ei
(3)

where fi,k is the cost of managing one unit of type-k loan of bank i. The cost matrix F = [fi,k]

is used to define expertise of banks for different types of loans. Now the optimization problem
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of bank i is given by

[θ̂i,1, . . . , θ̂i,K ] = arg max
{
E[ROEi]−

γi
2
V ar(ROEi)

}
(4)

subject to the budget constraint

K∑
k=1

pkθ̂i,k ≤ ei + di (5)

where γi denotes the risk-aversion parameter of bank i. Note that banks are not allowed to

hold short positions on loans and hence we also need the no-short-position constraint

θ̂i,k ≥ 0, k = 1, . . . ,K. (6)

We provide the details of R̃i,k(θi,k) below.

We assume that illiquid loans are traded inside the financial system with N banks. So the

loan prices are determined endogenously based on the market clearing condition. That is, the

price vector p = [p1, . . . , pK ]′ is said to be an equilibrium price if the demand and supply of

each loan type are equal:

N∑
i=1

θi,k =
N∑
i=1

θ̂i,k, k = 1, . . . ,K. (7)

2.2 Default correlations and loan payoff distribution

There are K types of illiquid loans. At time 2, a loan of type k repays the creditor the full

amount of $1 with probability 1− λk or defaults and pays nothing to the creditor with proba-

bility λk for λk ∈ (0, 1). We assume that loan defaults are correlated and we model the default

correlation with a Gaussian copula model. Specifically, let Mk =
∑N

i=1 θk denote the total

number of type-k loans that are available in the system, and r̃m,k denote the payoff of loan m

in type k, m = 1, . . . ,Mk. The Gaussian copula framework models default correlation through

common factors. Let Z̃0, Z̃1, . . . , Z̃K be independent standard normal random variables such

that Z̃0 represents the market factor, and Z̃k represents type-k factor for k = 1, . . . ,K. For

each loan m of type k, let

Ỹm,k = αZ̃0 + βkZ̃k +
√

1− α2 − β2k ε̃m,k (8)

where ε̃m,k’s are i.i.d. standard normal random variables for m = 1, . . . ,Mk, k = 1, . . . ,K and

are independent of Z̃0, . . . , Z̃K . The parameters α and βk are such that α ≥ 0, βk > 0 and

α2 + β2k < 1. Observe that each Ỹm,k is also a standard normal random variable, and they

are correlated. The correlations between Ỹm,k’s are used to determine the default correlations
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between loan payoffs r̃m,k’s based on the following relationship:

r̃m,k = 0 if and only if Ỹm,k ≤ Φ−1(λk)

where Φ(y) is the cumulative distribution function of standard normal distribution at y. So

loan m in type k defaults if and only if Ỹm,k ≤ Φ−1(λk). Note that from the standard normal

distribution of Ỹm,k, the default probability is P (Ỹm,k ≤ Φ−1(λk)) = λk, as it must.

The correlations between loans depend on parameters α, β1, . . . , βK . For loans m and m′

in the same type k, the correlation between Ỹm,k and Ỹm′,k is α2 + β2k, while for loans m and

m′ of different types k and k′, correlation between Ỹm,k and Ỹm′,k′ is α2. In other words,

loans of different types are less correlated than loans of the same types, and the difference

is determined by βk. With different values in β1, . . . , βK , we can have loan types that have

higher default correlation, such as corporate loans within a particular sector, and loan types

that have lower default correlation, such as student loans. We have the following results:

Proposition 1 Let R̃i,k(θ) =
∑θ

m=1 r̃m,k and R̃i,k′(θ
′) =

∑θ′

m=1 r̃m,k′ denote the payoffs at

time 2 of the portfolio of θ units of type-k loans, and portfolio of θ′ units of type-k′ loans,

respectively. We have

E
[
R̃i,k(θ)

]
= θ(1− λk) (9)

V ar
(
R̃i,k(θ)

)
= θ2[ψk − (1− λk)2] + θ[1− λk − ψk] (10)

Cov
(
R̃i,k(θ), R̃i,k′(θ

′)
)

= θθ′[Ψk,k′ − (1− λk)(1− λk′)], k 6= k′ (11)

where

ψk = Φ2(Φ
−1(1− λk),Φ−1(1− λk);α2 + β2k)

Ψk,k′ = Φ2(Φ
−1(1− λk),Φ−1(1− λk′);α2)

and Φ2(y1, y2; ρ) is the bivariate cumulative distribution function at (y1, y2) of standard normal

random variables with correlation ρ.6

The expected value in (9) is simply the number of loans multiplied by the probability that

a type-k loan does not default. The variance in (10) has two terms. The first term is quadratic

in the number of loans, while the second term is linear. To understand this, note first that the

variance of the payoff of one unit of a type-k loan is λk(1− λk). This variance is broken into

ψk − (1−λk)2 and 1−λk −ψk, the sum of which is λk(1−λk). When the term ψk − (1−λk)2

at the loan level is aggregated to the portfolio level, it gives a quadratic function of θ, while

6Note that we have assumed that θ is an integer, but we will rely on the same formulas (9) - (11) even when θ is
real. The error from rounding the number should not change the conclusions of the consequent analyses.
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the term 1 − λk − ψk gives rise to a liner function at the portfolio level. As the value of ψk

increases from (1−λk)2 when loan defaults are independent to 1−λk when they are perfectly

correlated, we can view ψk − (1− λk)2 as a variance-based measure of how loans are close to

perfect correlation, and view 1−λk−ψk as a variance-based measure of how loans are close to

independence. So the portfolio variance given by (10) suggests that the higher the correlation,

the stronger the quadratic term, and the weaker the linear term. Finally, if loans of different

types default independently (α = 0), then Ψk,k′ = (1 − λk)(1 − λk′) and thus the covariance

between the values of loan portfolios in (11) is zero. It is positive if the defaults of loans of

different types are positively correlated.

3 Banks’ optimal portfolios

When an adverse bank shock, such as an unexpected litigation cost, hits a bank, it reduces

the bank’s net worth. The bank may use cash or cash equivalents to pay for the cost, reducing

the liquid asset portion in the bank’s balance sheet. Because liquid assets such as cash and

cash equivalents are considered as risk-free or low-risk assets, this results in the bank’s asset

portfolio that overweights the risky loans, increasing the risk of the bank’s portfolio relative

to the smaller equity value. Likewise, when an adverse asset shock hits the bank, the value

of the risky loans and hence the equity value reduce, making the risk profile of the bank’s

portfolio deviate from the optimal level. Banks are risk-averse but profit-seeking institutions.

So the changes in the proportion of risk-free/risky assets relative to its equity require banks

to re-adjust their asset holdings to achieve a better risk-return trade-off.

In this section we consider the banks’ optimization problems and their optimal portfolios

of liquid and illiquid assets. We start with the simplest case with one type of loans. Then we

study the interaction between types of loans from the case of two types of loans.

3.1 One loan type

Assume that there is only one type of illiquid loans (K = 1). From (3) - (4) and (9) - (10),

the objective of bank i is to maximize the following risk-adjusted return on equity

Vi(θ) =
θ(1− λ)− θp− θfi

ei
− γi

2

(
θ2[ψ − (1− λ)2] + θ[1− λ− ψ]

e2i

)
(12)

subject to the budget constraint θp ≤ ei + di and no-short-position constraint θ ≥ 0 where we

have dropped the subscript k for simplicity.

To understand the optimal number of loans held by the bank, let’s suppose for the mo-

ment that the constraints are not binding, and let θ̄i denote the optimal solution for the

10



unconstrained problem derived from the first order condition:

θ̄i =
ei
γi

[
(1− λ)− p− fi
ψ − (1− λ)2

]
− 1

2

[
1− λ− ψ
ψ − (1− λ)2

]
=
ei
γi

[
(1− λ)− p− fi

λ(1− λ)

](
λ(1− λ)

ψ − (1− λ)2

)
− 1

2

[
1− λ− ψ
ψ − (1− λ)2

]
. (13)

Observe that θ̄i has two components. The first component has the mean-variance spirit. It

suggests that the bank should hold more loans if it has large equity value (large ei), low risk

aversion (small γi), or if each loan has high expected profit after cost (high (1− λ)− p− fi),
and low variance (low λ(1 − λ)). This mean-variance term is scaled up by a factor of λ(1 −
λ)/[ψ − (1− λ)2] ≥ 1. Given a fixed default probability λ, this factor increases as the default

correlation decreases (smaller ψ − (1 − λ)2). This is intuitive as a lower correlation provides

better risk-return trade-off and hence increases the demand for loans. That is, banks should

hold more loans if each loan provides a good risk-adjusted return (mean-variance term), and

the portfolio has low risk as loan defaults are less correlated (scaling factor term).

This first component of the optimal loan holding comes from two effects. The first effect is

the wealth effect through the equity value ei. The more equity the bank has, the larger the loan

demand. The second effect is the price effect in the expected profit. When the price increases,

the expected return decreases, reducing the loan demand. What is interesting is that banks

also hold loans. So as the price increases, the equity values of banks increase and create more

demands for loans due to the wealth effect. On the other hand, the price effect reduces the

demands. The combination of these two effects from all banks in the system determines the

final price at an equilibrium, as discussed in Section 4.

The second component of the optimal holding is a downward adjustment. Its value depends

on how correlated loan defaults are. The lower the correlation, the higher the size of the

adjustment. When the equity values of banks are large (e.g. millions or billions of dollars),

the effect of the second component is minimal. However, when banks are close to insolvency,

the second component can be relatively significant.

Now let us bring back the budget and no-short-position constraints. Because the objective

function (4) is quadratic in θ, it is easy to obtain the optimal solution with the constraints

from the solution of the unconstrained problem. The following proposition gives the result.

Proposition 2 The optimal loan holding for bank i when there is one type of loans is

θ̂i =


0 if θ̄i ≤ 0

θ̄i if 0 < θ̄i < (ei + di)/p

(ei + di)/p if θ̄i ≥ (ei + di)/p

. (14)

So when the bank is close to insolvency (the second downward adjustment component
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dominates), or when it has higher cost of managing loans (fi > 1 − λ − p), it is optimal for

the bank not to hold any loans. In contrast, when loans are very attractive, the number of

loans held is capped by the budget constraint. This implies that the bank does not hold cash.

However, such a situation rarely occurs because the equity decreases when the price decreases

as the bank holds loans. With a large leverage ratio in the banking industry (di � ei), the

constraint is unlikely to be binding.

3.2 Two loan types

Assume that there are two types of loans (K = 2). The bank i’s problem is to maximize the

following objective function

Vi(θ1, θ2) =

2∑
k=1

(
θk(1− λk)− θkpk − θkfi,k

ei

)

− γi
2

K∑
k=1

(
θ2k[ψk − (1− λk)2] + θk[1− λk − ψk]

e2i

)
− γi

(
θ1θ2[Ψ1,2 − (1− λ1)(1− λ2)]

e2i

)
subject to the budget constraint θ1p1 + θ2p2 ≤ ei + di and no-short-position constraint θk ≥
0, k = 1, 2. Again, we first consider the case without constraints. The first order condition

yields the following optimal solution for the unconstrained problem:[
θ∗i,1

θ∗i,2

]
=

1

1− η1,2[Ψ1,2 − (1− λ1)(1− λ2)]

[
θ̄i,1 − η1,2(ψ2 − (1− λ2)2)θ̄i,2
θ̄i,2 − η1,2(ψ1 − (1− λ1)2)θ̄i,1

]
(15)

where

η1,2 =
Ψ1,2 − (1− λ1)(1− λ2)

(ψ1 − (1− λ1)2)(ψ2 − (1− λ2)2)

and θ̄i,k is θ̄i given by (13) in the one-type case with subscript k for the type-k loans. The term

η1,2 contains the correlation between defaults of type-1 loans and type-2 loans. Its value is zero

when type-1 loans and type-2 loans are independent (α = 0) and goes up as the correlation

goes up (but keeping α2 + β2k constant). To see the interaction between the two types of

loans on the loan demand, let us focus on the demand of type-1 loans, or θ∗i,1. There are two

components in θ∗i,1. The first one is the optimal holding from the one-type case θ̄i,1 and the

second component represents the hedging demand between the two types of loans. Suppose

that θ̄i,1, θ̄i,2 and θ∗i,1 are positive. If type-1 and type-2 loans are independent, the second term

disappears as η1,2 = 0, and in this case θ∗i,k = θ̄i,k. When the correlation is positive, the second

component creates a negative hedging demand on type-1 loans. The hedging demand depends

12



on how attractive the type-2 loans are. The more attractive they are (large θ̄i,2), the more

negative the hedging demand, given everything else constant. That is, there is a substitution

effect between the two loan types if the correlation is positive.

This substitution effect plays an important role on the cross-asset contagion channel. Sup-

pose that a fire sale of type-1 loans from one bank reduces the price of the loans, making them

more attractive (price effect), which in turn reduces the demand of type-2 loans of other banks

due to the larger (more negative) hedging demand (substitution effect). This may trigger a

fire sale on type-2 loans, and hence a contagion across the two loan types. The outcome can

be much worse as there are interbank liability and common holding of type-1 loans channels

that can transmit losses to other banks, following the fire sales of type-1 and type-2 loans.

Lower equity values further reduces the loan demands (wealth effect) and reinforce the asset

fire sales. We discuss the effect of contagion through different channels and their interaction

in the subsequent sections.

To finish this section, we consider the cases when one or both of the no-short-position

constraints are binding. Similar to the case of one type of loan, the budget constraint is

unlikely to be binding at any equilibrium given sufficiently large leverage ratios. With the

Lagrange multiplier technique, we obtain the following optimal holdings of the portfolio of

loans:

Proposition 3 Suppose the budget constraint is not binding for the case of two loan types.

Then the optimal loan holdings for bank i is

(θ̂i,1, θ̂i,2) =


(θ∗i,1, θ

∗
i,2) if θ∗i,1 > 0 and θ∗i,2 > 0

(θ̄i,1, 0 ) if θ∗i,1 > 0 and θ∗i,2 ≤ 0

( 0 , θ̄i,2) if θ∗i,1 ≤ 0 and θ∗i,2 > 0

( 0 , 0 ) if θ∗i,1 ≤ 0 and θ∗i,2 ≤ 0

. (16)

We now show that the negative demand always reduces the optimal holdings. Consider the

case when θ∗i,1 is positive. From (15), it must be that

θ̄i,1 > η1,2(ψ2 − (1− λ2)2)θ̄i,2.

Hence, for η1,2 > 0, we have

θ∗i,2 =
θ̄i,2 − η1,2(ψ1 − (1− λ1)2)θ̄i,1

1− η1,2[Ψ1,2 − (1− λ1)(1− λ2)]

<
θ̄i,2 − η1,2(ψ1 − (1− λ1)2)

(
η1,2(ψ2 − (1− λ2)2)θ̄i,2

)
1− η1,2[Ψ1,2 − (1− λ1)(1− λ2)]

= θ̄i,2.
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Similarly, if θ∗i,2 > 0, we have θ̄i,1 > θ∗i,1. Thus, when θ∗i,1 and θ∗i,2 are both positive, the optimal

holding of the type-k loans is θ̂i,k = θ∗i,k ≥ θ̄i,k where the inequality holds if, and only if, the

loans of different types have zero default correlation, or η1,2 = 0. Thus, the hedging demand

always reduces the optimal loan holdings.

4 Equilibrium Analysis

Prior literature on fire sales in financial networks typically assumes an inverse demand function

characterizing the price change as a function of the aggregate sales. This implicitly suggests

that fire sale assets are sold to buyers outside the financial system. This contradicts to the fact

that a large portion of the bank assets are loans which are costly to manage by non-bankers.

So it is wiser for banks to sell their assets to other banks that are more efficient buyers who

are willing to pay higher prices for the assets. This situation is reasonable particularly when

a shock hits one bank, and the remaining banks have sufficient funds to buy the troubled

bank’s assets. When there is an adverse asset shock to one type of loans, demands for the

loans from banks holding that type of loans will decrease due to the wealth effect, but other

banks that do not hold that loan type can be potential buyers, willing to pay for the loans,

and hence help reduce the effect of the fire sale. We study the effect of potential buyers in the

banking networks by allowing the prices of illiquid loans to be determined endogenously. We

first provide the formal definition of our equilibrium.

Definition 1 Given the banks’ balance sheets (c = [ci], θ = [θi,k], d = [di], L = [li,j ]), banks’

characteristics (γ = [γi], F = [fi,k]), and the illiquid loans default distribution (λ = [λk], α, β =

[βk]), an equilibrium triplet of repayments, holdings, and prices (X = [xi,j ], θ̂ = [θ̂i,k], p = [pk])

at time 1 is such that

1. Repayment equilibrium: Equations (1)-(2) hold for all banks i = 1, . . . , N ,

2. Bank optimization: Each bank i maximizes mean-variance utility (4) subject to con-

straints (5)-(6), i = 1, . . . , N .

3. Market clearing: Equation (7) holds.

To study the effect of shocks and roles of banks on transmitting and absorbing shocks, we

assume that without shocks to the system, there is an equilibrium in which all the interbanks

liabilities are fully repaid at time 1. That is, without shocks, all banks are solvent (xi,j = li,j).

In other words, there is a price vector p = [pk] and a loan holding matrix θ̂ = [θ̂i,k] such that

the triplet (L, θ̂, p) is an equilibrium triplet for the network at time 1.
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4.1 One loan type

This section considers a network with one type of loans (K = 1), and hence we drop subscript

k that refers to the loan type. We consider three scenarios: before shocks, after a bank shock,

and after an asset shock.

4.1.1 Before shocks

Consider the case of no shocks with an equilibrium triplet (L, θ̂, p) for which all banks are

solvent. Let

c̄i = ci +
N∑
j 6=i

lj,i − di −
N∑
j 6=i

li,j

denote the excess cash position over the deposit after the repayment settlement of bank i. This

value is typically negative as cash ci is much smaller than deposit di, and interbank liabilities

li,j ’s are relatively small. The equity value of bank i is the sum of the value of the loan portfolio

and its excess cash:

ei = θip+ c̄i > 0. (17)

We assume further that none of the banks is close to be insolvent (ei � 0), and that all

banks are equally good at managing loans and thus have the same managing cost fi ≡ f <

1 − λ − p.7 So it follows from (13) that θ̂i = θ̄i > 0, i = 1, . . . , N . Now consider the total

demand of loans in the system. From (13) and (17), we have the total loan demand is

ΘD =
N∑
i=1

{
ei
γi

[
(1− λ)− p− f
ψ − (1− λ)2

]
− 1

2

[
1− λ− ψ
ψ − (1− λ)2

]}

=

N∑
i=1

{(
θip+ c̄i
γi

)[
(1− λ)− p− f
ψ − (1− λ)2

]
− 1

2

[
1− λ− ψ
ψ − (1− λ)2

]}

= −

(
N∑
i=1

θi
γi

)
p2

ψ − (1− λ)2
+

(
N∑
i=1

θi
γi

(1− λ− f)−
N∑
i=1

c̄i
γi

)
p

ψ − (1− λ)2

+

(
N∑
i=1

c̄i
γi

)[
1− λ− f
ψ − (1− λ)2

]
− N

2

[
1− λ− ψ
ψ − (1− λ)2

]
. (18)

As we can see, the total demand in (18) is a concave quadratic function of p. This is due to

7We use the differences in the managing costs in the case of multiple loan types to consider the effect of banks’
expertise on the stability of the network.
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the combination of the wealth effect and the price effect. It is easy to see that

p̄ =
1

2
(1− λ− f − ζ)

is the price at which the price effect and the wealth effect of the total demand are equal

(∂ΘD/∂p = 0) where

ζ =

∑N
i=1 c̄i/γi∑N
i=1 θi/γi

. (19)

When the price is lower than p̄, an increase in the price increases the loan demand as the

wealth effect dominates the price effect. When the price is higher than p̄, an increase in the

price lowers the loan demand as the price effect dominates the wealth effect. This demand

behavior applies to each individual bank’s loan demand in (13) as well. Precisely, the price at

which both price and wealth effects equal for the demand of bank i is

p̄i =
1

2

(
1− λ− f − c̄i

θi

)
.

Let

ΘS =
N∑
i=1

θi

denote the total number of units of loans available in the system. This represents the total

supply of loans. The market clearing condition (7) dictates that the demand and supply are

equal at each equilibrium: ΘD = ΘS . Since the total supply is fixed and the total demand is

a concave quadratic function of p, we have the following result:

Theorem 1 Suppose none of the banks is insolvent and the repayment matrix is X = L in

the case of one loan type. Then an equilibrium price exists if, and only if,

(1− λ− f + ζ)2 ≥ 4

[
(ψ − (1− λ)2)ΘS + N

2 (1− λ− ψ)∑N
i=1 θi/γi

]
, (20)

and in that case the equilibrium prices are given by

p =
1

2
(1− λ− f − ζ)± 1

2

{
(1− λ− f + ζ)2 − 4

[
(ψ − (1− λ)2)ΘS + N

2 (1− λ− ψ)∑N
i=1 θi/γi

]}1/2

.

(21)

The equilibrium price is unique if, and only if, the inequality in (20) is binding and the equi-

librium price is p = (1− λ− f − ζ)/2.
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To further investigate the equilibrium prices given by (21), we apply the first-order Taylor

approximation for the function of the form f(x) = (a2−x)1/2 around the point x = 0 to the last

term in (21): f(x) ≈ |a|−x/2|a| where a is a constant. From the inequality in (17) and (19), it

is clear that ζ > −p. From the assumption that θ̄i > 0, (13) implies that 1−λ− f − p > 0. So

we have 1−λ−f + ζ > 0. Thus, the Taylor approximation gives the following two equilibrium

prices:

ph ≈ 1− λ− f −
(ψ − (1− λ)2)ΘS + N

2 (1− λ− ψ)
N∑
i=1

θi
γi

(1− λ− f) +

N∑
i=1

c̄i
γi

(22)

pl ≈ −

N∑
i=1

c̄i
γi

N∑
i=1

θi
γi

+
(ψ − (1− λ)2)ΘS + N

2 (1− λ− ψ)
N∑
i=1

θi
γi

(1− λ− f) +
N∑
i=1

c̄i
γi

. (23)

Note that ph > p̄ > pl > 0.

As it will become clear later that an asset fire sale may occur at the equilibrium price ph,

but not at pl, we will focus on ph. From (22), the equilibrium price ph is equal to the expected

payoff after cost, or 1−λ−f , minus the premium. The premium is the expected profit required

by the banks for holding the risky loans. This premium depends on the riskiness of the loan

U = (ψ − (1− λ)2)ΘS +
N

2
(1− λ− ψ). (24)

This riskiness U is the combination of the variance component measuring the closeness to the

perfect correlation φ − (1 − λ)2 and the variance component measuring the closeness to the

independence 1− λ− ψ. When the number of loans available in the system is large, the first

term is important. On the other hand, the second becomes large when the number of banks

in the system is large. The risk premium is high when the loan has high level of riskiness.

The premium also depends on the risk-aversion-adjusted wealth of the banking system. To

see this recall that equity of bank i is

ei = θip+ c̄i.

As ph is an approximated price, we replace p by its expected payoff after cost, which is 1−λ−f .

This gives

ei ≈ θi(1− λ− f) + c̄i.
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Each equity value is scaled by the bank’s risk aversion parameter γi as the one unit of equity

of a more risk-averse bank (high γ) is worth less than that of a less risk-averse bank (low γ)

in terms of the loan demand (see (13)). Then we sum over all banks to get the risk-aversion-

adjusted wealth

N∑
i=1

ei
γi
≈

N∑
i=1

θi
γi

(1− λ− f) +

N∑
i=1

c̄i
γi
.

When the risk-aversion-adjusted wealth of the system is high, banks have more cash to pay

for the loans, pushing the price up, and thus a lower premium. In the subsequent sections, we

can explain changes in the equilibrium price ph based on the changes in the expected payoff

and/or the premium (risk and wealth).

4.1.2 After a bank shock

Let us first focus on the equilibrium price ph, and study the change in the equilibrium price ph

in response to a bank shock. As mentioned earlier, ph > p̄ so the price effect of the aggregate

demand is stronger than the wealth effect. If c̄i/θi is close to ζ, this is true for the individual

bank’s demand too. For the discussion below, we assume that the price effect is stronger than

the wealth effect for each individual bank’s demand at the equilibrium price ph.

Suppose there is an adverse bank shock of size vj hitting bank j. Let θ̄j(vj) denote the

value of θ̄j after an adverse shock of size vj on bank j. This notation is used similarly for the

other variables. If vj is sufficiently small so that bank j still has positive holding in the loans,

or θ̄j(vj) > 0, then the value of the excess cash of bank j after the shock is c̄j(vj) = c̄j − vj .
Thus the new equilibrium price is

ph(vj) ≈ 1− λ− f −
(ψ − (1− λ)2)ΘS + N

2 (1− λ− ψ)
N∑
i=1

θi
γi

(1− λ− f) +

N∑
i=1

c̄i
γi
− vj
γj

. (25)

So after a small bank shock vj , the equilibrium price becomes lower due to a lower risk-

aversion-adjusted wealth. What is interesting is that the effect of a shock of the same size on

the equilibrium price depends on the risk-aversion parameter of the bank being hit. A small

shock hitting a conservative bank (high γ) yields a smaller impact on the equilibrium price

than a shock of the same size hitting an aggressive bank (low γ). This is due to the lower

sensitivity of the loan demand to a one-unit decrease in the equity value, which can be seen

in (13). Since everything remains the same for all other banks j′ 6= j except all banks see the

new equilibrium price, each bank adjusts its loan holding based purely on the price change.

As the price effect dominates the wealth effect at ph, all of the other banks j′ 6= j act as the

potential buyers and increase their loan holdings in response to the lower price. Thus, bank j
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has to hold fewer loans at the new equilibrium. Note that without the shock, the price effect

of bank j is stronger than the wealth effect. But since the external shock vj reduces the equity

value in addition to the effect from the lower equilibrium price, it results in a loan sell-off for

bank j.

Let us consider a larger shock. Suppose that vj is large enough to make ej(vj) < 0, but not

enough to make the other banks insolvent. So bank j sells all of its loans at a fire sale price.

In addition, it spreads the loss to its neighbor banks (the banks that hold interbank claims on

the assets of bank j) through the interbank liability linkages. The loss to bank j′ 6= j due to

the direct interbank liability with bank j is

lj,j′ min

{
vj − (θjp

h(vj) + c̄j)

Lj
, 1

}
.

The new equilibrium price is

ph(vj) ≈ 1− λ− f

−
(ψ − (1− λ)2)ΘS + N

2 (1− λ− ψ)
N∑
i 6=j

θi
γi

(1− λ− f) +
N∑
i 6=j

c̄i
γi
−

N∑
i 6=j

lj,i
γi

min

{
vj − (θjp

h(vj) + c̄j)

Lj
, 1

} . (26)

The contagion through the interbank liability channel reduces the equity values of neighbor

banks that hold claims on the asset of bank j. The reduction in the equity values lowers their

demands for loans, and causes the price to drop further. The impact on the price depends on

the neighbor bank j′’s ratio lj,j′/γj′ . The impact is large if the neighbor bank has a large claim

on the asset of bank j and it is an aggressive bank (small γ). This suggests that interbank

liabilities between aggressive banks amplify the fire sale effect in the network.

Now consider pl. When there is a small bank shock of size vj on bank j, the new equilibrium

price is

pl(vj) ≈ −

N∑
i=1

c̄i
γi
− vj
γj

N∑
i=1

θi
γi

+
(ψ − (1− λ)2)ΘS + N

2 (1− λ− ψ)
N∑
i=1

θi
γi

(1− λ− f) +
N∑
i=1

c̄i
γi
− vj
γj

which is higher than the equilibrium price before the shock, or pl, where, similar to the case

of ph, we have assumed that all of the banks are solvent after this small shock. Assuming

that at pl the wealth effect dominates the price effect for all banks, we have the increase in

the price results in higher demands for loans for all other banks j′ 6= j. As we can see this

equilibrium does not correspond to a fire sale as the selling price increases after a shock arrives.

In addition, banks should agree to choose the equilibrium with the higher price to maximize
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their net worth. So we will focus on ph from now on.

4.1.3 After an asset shock

This section considers the effect of an asset shock on the equilibrium price. Suppose the default

probability of each loan increases from λ to λ′ and none of the banks are insolvent after the

shock. It can be shown that the terms ψ − (1 − λ)2 and 1 − λ − ψ are increasing in λ for

λ ∈ (0, 0.5) but are decreasing in λ for λ ∈ (0.5, 1).8 Since the typical values of λ are less

than 0.5, ph decreases as the default probability increases (see (22)). When the price effect

is stronger than the wealth effect as we assume here, each bank should tend to increase its

holdings in the loans following the shock. However, as the expected value declines and the

risk rises, the worsen loan characteristic reduces the loan demands and this brings the price

to the new equilibrium. When the price drops, so do banks’ equity values. Once the default

probability is large enough, it may trigger a default of a bank, and the losses are transmitted

through the interbank liability linkages, further reducing the equity of other banks. This

reinforces the fire sale in the network.

Let p∗(i) denote the price at which bank i’s equity reaches zero due to the increase in the

default probability. We have

p∗(i) = ph − ei
θi

where ph and ei are the equilibrium price and the bank’s equity before the shock, respectively.

Let us call p∗(i) the critical price of bank i. When the default probability rises, the bank

that has the highest critical price can be insolvent first. As we can see, that critical bank is

the bank that initially holds the largest number of loans per one unit of its equity value. If

all banks initially hold the loans at the optimal holding level as suggested by (13), the most

aggressive bank with the lowest risk aversion parameter tends to be insolvent first when the

default probability increases. If the critical bank has large liabilities with other aggressive

banks in the network, the contagion effect is much larger once it becomes insolvent.

4.2 Two loan types with equal costs

We now consider the case with two types of loans (K = 2). Here we assume that all banks

have the same level of expertise in managing loans, and hence the same managing costs. That

is, we assume that fi,k ≡ fk < 1 − λk, for k = 1, 2 and i = 1, . . . , N . Again we consider

the equilibrium prices before shocks, after a bank shock, and after an asset shock. The main

difference between the one-type and two-type cases we consider here is that when there are

8This can be seen from the fact that ∂ψ
∂λ = −2Φ

(
Φ−1(1− λ)

√
1−ρ
1+ρ

)
where ρ = α2 + β2.
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two types of loans, the demands of the loans of different types interact through the hedging

demand and the wealth effect, causing the cross-asset contagion.

4.2.1 Before shocks

Let (L, θ̂, p) denote the equilibrium triplet at time 1 before shocks, and assume that at the

equilibrium all banks hold both types of loans, or θ̂i,k = θ∗i,k > 0 for all i = 1, . . . , N and

k = 1, 2. From (15), this implies that θ̄i,k > 0 for all i and k. Using the optimal holding

condition (15) and the clearing condition (7), it can be shown that the equilibrium price

vector p = [p1, p2]
′ satisfies the following system of equations:

U1 = (1− λ1 − f1 − p1)

[(
N∑
i=1

θi,1
γi

)
p1 +

(
N∑
i=1

θi,2
γi

)
p2 +

N∑
i=1

c̄i
γi

]
(27)

U2 = (1− λ2 − f2 − p2)

[(
N∑
i=1

θi,1
γi

)
p1 +

(
N∑
i=1

θi,2
γi

)
p2 +

N∑
i=1

c̄i
γi

]
(28)

where

U1 = (ψ1 − (1− λ1)2)ΘS,1 +
N

2
(1− λ1 − ψ1) + (Ψ1,2 − (1− λ1)(1− λ2))ΘS,2

U2 = (ψ2 − (1− λ2)2)ΘS,2 +
N

2
(1− λ2 − ψ2) + (Ψ1,2 − (1− λ1)(1− λ2))ΘS,1

and ΘS,k =
∑N

i=1 θi,k denotes the total number of type-k loans available in the system. The

quantity Uk captures the risk of type-k loans similar to U given by (24) for the one-type case.

The difference is that Uk contains an additional term due to the risk from the hedging demand,

which is zero if the default correlation between the two types of loans is zero.

Observe from (27) - (28) that the loan prices at the equilibrium have linear relationship:

1− λ1 − f1 − p1
U1

=
1− λ2 − f2 − p2

U2
. (29)

This relationship suggests that the expected profits per unit risk of the two loan types are

equal at each equilibrium. Solving (27) - (28), we obtain the following results:

Theorem 2 Suppose none of the banks is insolvent and the repayment matrix is X = L in

the case of two loan types with fi,k = fk for all i = 1, . . . , N, k = 1, 2. Then an equilibrium

price vector exists if, and only if,

(1− λk − fk + ζk)
2 ≥

4U2
k(∑N

i=1 θi,k/γi

)
Uk +

(∑N
i=1 θi,k′/γi

)
Uk′

, (30)
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for k, k′ = 1, 2 and k 6= k′, and in that case the equilibrium price vectors p = [p1, p2]
′ are given

by

p1 =
1

2
(1− λ1 − f1 − ζ1)±

1

2

(1− λ1 − f1 + ζ1)
2 − 4U2

1(∑N
i=1 θi,1/γi

)
U1 +

(∑N
i=1 θi,2/γi

)
U2


1/2

(31)

where

ζ1 =

N∑
i=1

θi,2
γi

[U1(1− λ2 − f2)− U2(1− λ1 − f1)] +

N∑
i=1

c̄i
γi

N∑
i=1

θi,1
γi
U1 +

N∑
i=1

θi,2
γi
U2

(32)

and the corresponding p2 can be determined from the linear relationship (29).

As mentioned, we focus on the price vector at which the fire sales may occur after a shock.

Using the first-order Taylor approximation as in the one-type case, the interested equilibrium

price vector ph = [ph1 , p
h
2 ]′ is given by

phk ≈ 1− λk − fk −
Uk

N∑
i=1

θi,1
γi

(1− λ1 − f1) +

N∑
i=1

θi,2
γi

(1− λ2 − f2) +

N∑
i=1

c̄i
γi

(33)

for k = 1, 2. This is similar to ph of the one-type case given by (22). However, the denominator

of the premium term now contains the expected payoff after cost of both types of loans. In

addition, the numerator in the premium term, or Uk, has an extra hedging demand component

which links the default probability of one type of loans to the price of the other type of loans.

We discuss the implications below.

4.2.2 After a bank shock

Consider a small adverse bank shock on bank j of size vj . Assume that this shock does not

cause any insolvency in the banking system. The equilibrium price changes from ph = [ph1 , p
h
2 ]′

as given by (33) to

phk(vj) ≈ 1− λk − fk −
Uk

N∑
i=1

θi,1
γi

(1− λ1 − f1) +
N∑
i=1

θi,2
γi

(1− λ2 − f2) +
N∑
i=1

c̄i
γi
− vj
γj

.

As we can see, the effect is similar to the one-type case; that is, the prices of both types of

loans reduce due to the lower wealth in the system, and the effect is large if the bank being
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hit is an aggressive bank. However, comparing the reduction in the prices, we can see that the

price of the loan type that has higher level of riskiness (larger Uk) reduces more. We can also

see this from taking the difference due to the shock on both sides of (29) to get

ph1 − ph1(vj)

U1
=
ph2 − ph2(vj)

U2
⇒ ph1(vj)− ph1 =

U1

U2
(ph2(vj)− ph2).

So the price of the loan with a higher level of riskiness is more sensitive to a bank shock, and

the effect is large if the shocks hit an aggressive bank.

Now if the shock is large enough to make bank j become insolvent, but all the other banks

are not, the result is similar to the one-type case as given in (26). That is, the intetbank

liabilities of the insolvent bank transmit losses to its neighbor banks, and the impact to the

loan prices is large if the liabilities are large and the neighbor banks are aggressive banks.

4.2.3 After an asset shock

In this section we focus on how a shock in the default probability of one type of loans causes

the change in the price of the other type of loans. Let us assume for the moment that defaults

of different types of loans are independent (α = 0). Now suppose the default probability of the

type-1 loan increases from λ1 to λ′1. As mentioned earlier in the one-type case, ψ1 − (1− λ1)2

and 1−λ1−ψ1 are increasing in λ1 when λ1 < 0.5. Thus, U1 increases as the default probability

λ1 increases. We assume further that the increase in the default risk does not cause any banks

to become insolvent. Based on (33) for k = 1, it is clear that, the equilibrium price of type-1

loan decreases. This is due to the lower expected payoff, higher level of riskiness, and lower

wealth in the system. The higher default risk of the type-1 loans also reduces the price of

the type-2 loans as can be seen in (33) for k = 2. This cross-asset contagion comes from the

wealth effect in the denominator of the type-2 loan’s premium term.

Note that the cross-asset contagion always occurs as the term
∑N

i=1 θi,1/γi in the equilib-

rium price ph2 is always positive. To see how this happens, we note that when the defaults of the

two types of loans are uncorrelated (α = 0), η1,2 = 0 and thus the loan demand is θ̂i,k = θ̄i,k,

which is assumed to be positive for all i = 1, . . . , N and k = 1, 2. Now consider θ̄i,k as given by

(13) with the subscript k = 1, 2. Let us assume that ei � 0 so that the negative adjustment

term in (13) is insignificant. As λ1 increases, the type-1 loan characteristic becomes worsen as

the risk (ψ1− (1−λ1)2) rises and the expected payoff (1−λ1) declines. This makes θ̄i,1 lower.

So the demand for the type-1 loans decreases, and consequently the price of the type-1 loans

has to drop to make the expected profit go up to bring the demand back to the balance. But

once the price of the type-1 loans decreases, the equity value of each bank holding the type-1

loans decreases, and this reduces demand θ̄i,2 for the type-2 loans due to the wealth effect. As

a result, the price of the type-2 loans has to drop to make the expected profit higher and bring

the demand back to the balance.
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Now consider a little more extreme case in which the banks are divided into two non-

overlapping groups, one holding only the type-1 loans and the other holding only the type-2

loans at time 0. The cross-asset contagion still occurs in this case as long as each bank has a

demand for both types of the loans at time 1 before the shock. The magnitude of the effect

of the cross-asset contagion from type-1 loans to type-2 loans depends, however, on the initial

banks’ holdings of type-1 loans at time 0, which is
∑N

i=1 θi,1/γi. If initially the majority of

the type-1 loans are held by aggressive banks (low γ), the impact of the cross-asset contagion

from type-1 to type-2 is large, while the impact is smaller if most of the type-1 loans are held

by conservative banks. The latter is unlikely if banks try to hold optimal number of loans

at time 0 as aggressive banks tend to hold more loans. In Section 4.3, we discuss the cases

where banks may hold only one type of loans at an equilibrium before a shock due to different

expertise. In that case, the results can be different.

When the default correlation between the two types is not zero (α > 0), the hedging

demand term Ψ1,2− (1−λ1)(1−λ2) in U2 can transmit the effect of the increase in the default

probability of type-1 loans to the price of type-2 loans. However, the relationship between

Ψ1,2 − (1 − λ1)(1 − λ2) and λ1 is not monotone for typical values of λ1, λ2 and α. So it is

possible that the hedging demand term can strengthen or weaken the contagion effect.

4.3 Two loan types with bank expertise

In this section we assume that each bank has its own expertise in managing one particular

type of loans. Let Nk denote the set of banks that have an expertise in managing type-k loans,

k = 1, 2. We assume that each bank belongs to either N1 or N2, but not both. We call banks

that are in Nk as type-k expert banks and those that are not in Nk as type-k non-expert banks.

So the banking industry is divided into two sectors defined by N1 and N2. The cost associated

with managing the loans of type k for type-k expert banks is zero, while the cost for every

type-k non-expert bank is fk > 0, which is the same for all non-expert banks. Let Nk denotes

the number of banks in Nk. We assume that there is at least one bank for each sector, or

Nk > 0 for both k = 1, 2.

We assume further than the cost of managing loans of type k is so large that it is not

optimal for type-k non-expert banks to hold type-k loans in their portfolios at an equilibrium

before a shock. We also assume that the initial holdings of type-k loans for type-k non-expert

banks are zero due to the high managing cost, or θj,k = 0 for all j /∈ Nk. We are interested in

how the loan sectors play a role on contagion risk in the banking network. Again, we consider

the equilibrium prices before shocks, after a bank shock, and after an asset shock.
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4.3.1 Before shocks

Because we assume that banks in sector k do not hold loans of the other types at an equilibrium

before shocks, it must be that θ∗j,k ≤ 0 for j /∈ Nk. From (16), we have θ̂i,k = θ̄i,k and θ̂i,k′ = 0

for i ∈ Nk and k′ 6= k. Thus, the clearing condition (7) gives

ΘS,k =

∑
i∈Nk

θi,k
γi

 pk +
∑
i∈Nk

c̄i
γi

( 1− λk − pk
ψ2
k − (1− λk)2

)
− Nk

2

(
1− λk − ψk
ψ2
k − (1− λk)2

)

for k = 1, 2. Note that we have used the fact that θi,k = 0 for i /∈ Nk. As we can see, the

equilibrium price for each type of loans can be determined independently as the equations

for k = 1, 2 are decoupled. Thus, as long as banks do not have demands for loans outside

their expertise, the equilibrium price of each loan type is determined based on the banks in

the sector. This reduces the problem into two independent one-asset equilibrium problems.

Hence, we have the equilibrium price of type-k loans is

phk ≈ 1− λk −
(ψk − (1− λk)2)ΘS,k + Nk

2 (1− λk − ψk)∑
i∈Nk

θi,k
γi

(1− λk) +
∑
i∈Nk

c̄i
γi

.

As we can see, the price of type-1 loans does not depend on the default probability of

type-2 loans, nor the default correlation. It does not depend on the information about the

banks in sector 2 either. This holds true as long as θ∗i,2 ≤ 0 for all i ∈ N2. So the contagion

across banks and loan types is different from the one considered in Section 4.2.

4.3.2 After a bank shock

Suppose there is an adverse small bank shock of size vj on bank j in sector 1. We assume that

after the shock none of the banks are insolvent, and that the price is still high for the banks in

sector 2 to buy type-1 loans. In this case, the new equilibrium price for type-1 loans reduces

to

ph1(vj) ≈ 1− λ1 −
(ψ1 − (1− λ1)2)ΘS,1 + N1

2 (1− λ1 − ψ1)∑
i∈N1

θi,1
γi

(1− λ1) +
∑
i∈N1

c̄i
γi
− vj
γj

while the price of type-2 loans remains the same. That is, there is no contagion from sector

1 to sector 2. The price of type-1 loans reduces because the shock reduces the equity value

of bank j, causing the bank to sell off some of the loans, pushing the price down to make it

more attractive for the other type-1 expert banks to increase their demands. This is the same

as the one-type case.

Now let’s assume that the shock vj is large enough to make bank j insolvent, but not
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any other banks in the system. Assume further that at the new equilibrium prices, it is not

optimal for banks in one sector to buy loans in the other sector. Under these conditions,

the new equilibrium price of the type-1 loans is similar to (26) in the one-type case in which

the impact on the price depends on the sizes of the interbank liabilities and the risk aversion

parameters of the neighbor banks. That is, the new equilibrium is

ph1(vj) ≈ 1− λ1

−
(ψ1 − (1− λ1)2)ΘS,1 + N1

2 (1− λ1 − ψ1)∑
i∈N1,i 6=j

θi,1
γi

(1− λ1) +
∑

i∈N1,i 6=j

c̄i
γi
−

∑
i∈N1,i 6=j

lj,i
γi

min

{
vj − (ph1(vj)θj,i + c̄j)

Lj
, 1

} .

As we can see, only the parameters describing the banking network inside sector 1 are involved.

Let us look at the price of type-2 loans. Only if there is a bank in sector 2 that is an inter-

bank creditor of bank j, the loss of bank j can be transmitted to sector 2 through the interbank

channel. This transmitted loss reduces the wealth in the sector, causing the equilibrium price

for the type-2 loans to drop. The new equilibrium type-2 price is

ph2(vj) ≈ 1− λ2 −
(ψ2 − (1− λ2)2)ΘS,2 + N2

2 (1− λ2 − ψ2)∑
i∈N2

θi,2
γi

(1− λ2) +
∑
i∈N2

c̄i
γi
−
∑
i∈N2

lj,i
γi

min

{
vj − (ph1(vj)θj,i + c̄j)

Lj
, 1

} .

In addition to the liability sizes lj,i and the risk aversion parameters γi of the interbank

creditors i in sector 2, the reduction in the type-2 loan price depends also on the price of the

type-1 loans after the shock or ph1(vj). So the more sensitive ph1(vj) to the shock, the higher

the impact the shock has on ph2(vj). Because the new equilibrium price ph1(vj) depends on

the information of all the banks in sector 1, the contagion effect from sector 1 to sector 2

depends on the information of all banks in sector 1 and how they are related. For example,

if the insolvent bank j has two interbank creditors, which are bank i in sector 1 and bank i′

in sector 2. Given the shock vj , the change in the price of the type-2 loans depends not only

on the information about bank j and the liability link between bank j and bank i′ in sector

2, but also the liability link between bank j and bank i in sector 1 as well as the risk aversion

parameter of bank i.

When this type of shock gets larger, and more type-1 expert banks become insolvent, the

losses from sector 1 can be transmitted to sector 2 via the interbank liabilities between the

insolvent banks in sector 1 and the banks in sector 2. So even if there is no direct interbank

liability from bank j to any bank in sector 2, the loss originated from the shock on bank j may

eventually affect the price of the type-2 loans if there is a liability path starting from bank j

to a bank in sector 2.

Now let us consider another possible outcome from the shock vj . Assume that after the
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shock, none of the banks is insolvent and the resulting equilibrium price of the type-1 loans is

low enough to make it attractive to bank i′ in sector 2 to hold some positive number of type-1

loans, but it is not attractive enough for the other banks in sector 2. Suppose for the moment

that the defaults of type-1 and type-2 loans are uncorrelated, and thus η1.2 = 0. From (15)

and (16) we have the optimal loan holdings of bank i′ are (θ̂i′,1, θ̂i′,2) = (θ̄i′,1, θ̄i′,2). That is,

bank i′ does not change the holding in type-2 loans, but increases the holding of type-1 loans

from zero to θ̄i′,1. As a consequence, the market for type-2 loans is not affected by the shock,

resulting in the same equilibrium price for the type-2 loans. On the other hand, there is a loss

in the equity of bank j in sector 1 and an additional demand for type-1 loans from bank i′

originally from sector 2. Thus the new equilibrium price of the type-1 loans satisfies

ΘS,1 =

∑
i∈N1

θi,1
γi

 p1 +
∑
i∈N1

c̄i
γi
− vj
γj

( 1− λ1 − p1
ψ2
1 − (1− λ1)2

)
− N1

2

(
1− λ1 − ψ1

ψ2
1 − (1− λ1)2

)

+

[(
θi′,2
γi′

)
p2 +

c̄i′

γi′

](
1− λ1 − f1 − p1
ψ2
1 − (1− λ1)2

)
− 1

2

(
1− λ1 − ψ1

ψ2
1 − (1− λ1)2

)

=

∑
i∈N1

θi,1
γi

 p1 +
∑
i∈N1

c̄i
γi
− vj
γj

+

(
θi′,2
γi′

)
p2 +

c̄i′

γi′

( 1− λ1 − p1
ψ2
1 − (1− λ1)2

)

− N1 + 1

2

(
1− λ1 − ψ1

ψ2
1 − (1− λ1)2

)
−
[(

θi′,2
γi′

)
p2 +

c̄i′

γi′

](
f1

ψ2
1 − (1− λ1)2

)
Using the first-order Taylor approximation as in the one-type case, we have the new equilibrium

price for type-1 loans is

ph1(vj) ≈ 1− λ1 −
(ψ2

1 − (1− λ1)2)ΘS,1 +
N1 + 1

2
(1− λ1 − ψ1) +

[(
θi′,2
γi′

)
p2 +

c̄i′

γi′

]
f1∑

i∈N1

θi,1
γi

 (1− λ1) +
∑
i∈N1

c̄i
γi
− vj
γj

+

[(
θi′,2
γi′

)
p2 +

c̄i′

γi′

] . (34)

It is easy to show that the additional demand from bank i′ for the type-1 loans helps reduce

the effect of the shock on the type-1 loan price given that it is optimal for the type-2 expert

bank i′ to enter into sector 1. Moreover, as loan defaults are uncorrelated, this does not hurt

the price of the type-2 loans. To further understand this situation, let us identify the bank in

sector 2 that actually is bank i′. To do this, consider a type-2 expert bank i. We can rewrite
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(13) for bank i after the shock as follows:

θ̄i,1(vj) =

(
θi,2p2 + c̄i

γi

)[
(1− λ1)− ph1(vj)− f1

ψ1 − (1− λ1)2

]
− 1

2

[
1− λ1 − ψ1

ψ1 − (1− λ1)2

]
. (35)

As ph1(vj) decreases, the value of θ̄i,1(vj) increases as there is no wealth effect for bank i

in sector 2. So the bank that has the largest θ̄i,1(vj) for i ∈ N2 is the bank i′. It is easy to

see from (35) that it is the bank with the largest equity to risk aversion parameter ratio (e/γ)

among the type-2 expert banks as all the banks in sector 2 has the same managing cost of f1.

Now if loan defaults are correlated, or η1,2 > 0, the demand for type-1 loans from bank

i′ will lead to a decline in the demand for type-2 loans from bank i′ due to the negative

hedging demand. As the price effect is stronger than the wealth effect at the equilibrium we

are interested in, the price of the type-2 loans must drop to bring the type-2 loan demand

up to meet the total supply. Hence this creates a cross-asset contagion purely through the

hedging demand. We do not require any interbank liabilities, nor do we require a bank to hold

both types of loans at time 0 to act as a channel to transmit the effect from one type of loans

to the other type of loans through the reduction in the equity value of the bank.

Now consider another alternative outcome. Suppose that the shock vj causes a bank in

sector 1 to become insolvent, and the insolvent bank has interbank liabilities with some type-2

expert banks. The resulting equilibrium prices depends on these liabilities. If banks that

hold claims on the insolvent bank j are the ones with low e/γ ratios, then it is possible that

the type-2 expert banks with the largest e/γ ratio will find the drop in the type-1 loan price

attractive enough to buy them into the bank’s balance sheet, reducing the effect on the new

equilibrium price of the type-1 loans, but at the same time causing the contagion to the price

of the type-2 loans due to the negative hedging demand. On the contrary, if banks that hold

claims on the insolvent bank j are the ones with highest e/γ ratios, the reduction in the equity

values of those type-2 expert banks could reduce the possibility for them to be the potential

buyers of type-1 loans. This results in a worse outcome for the price of the type-1 loans as no

new buyers from sector 2. This suggests that interbank liabilities of this type weaken the role

as the potential buyers of the banks with largest e/γ.

4.3.3 After an asset shock

Suppose the default probability of the type-1 loan increases from λ1 to λ′1. As long as the new

equilibrium price of the type-1 loans does not fall enough to attract type-2 expert banks to

buy type-1 loans, and there are no losses transmitted through the liability linkages to banks

in sector 2, this does not affect the equilibrium price of the type-2 loans. But once one of

those scenarios occurs, the price of the type-2 loans reduces due to either the negative hedging

demand, provided that η1,2 > 0, or the reduction in the equity values of some type-2 expert
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banks similar to the case of a bank shock discussed above.

The above discussion leads to an interesting policy implication. Suppose that the costs of

managing loans are low, but the regulator would like to separate banks and loan markets into

non-overlapping sectors to limit the effect of contagion. As a consequence, the regulator may

allow banks to choose their areas of expertise or sectors where they can run their businesses

as usual. However, banks need to pay a huge regulatory fee to do the business outside their

selected areas of expertise. When a sector is hit by a small shock, the banks in the sector

can function as potential buyers to self-rescue the sector from fire sales. When the shock is

large, and there are not many banks in the sector that can function as the potential buyers,

the regulator can initiate the self-rescue mission by allowing the secondary potential buyers

from the other healthy sectors to step in and buy the assets, reducing the effect of fire sales in

the failing sector. The regulator can choose the right value of fi,k to allow enough funds from

other sectors to flow into the failing sector, providing support to the loan price in the failing

sector. At the same time the regulator needs to avoid the unintended contagion effects due to

the negative hedging demands.

Once the cross-sector rescue mission has been accomplished, the healthy sector is now

contaminated by the fire sale loans, and cannot function as secondary potential buyers for the

next crisis. So the regulator should use this as a temporary solution to reduce the effect of fire

sales, and start to bring everything back to normal and be ready for the next crisis.

5 Conclusion

When an adverse shock hits a bank, causing it to become insolvent, the bank needs to sell

all of its assets, the majority of which are illiquid loans. This can cause the loan prices to

drop, reducing the mark-to-market values of other banks holding the same types of loans.

The loss of the insolvent bank can also be transmitted to other banks through the interbank

liability linkages, reducing the net worth of its neighbor banks. The banks affected by these

two channels of contagion will re-adjust their portfolios in response to lower equity values, and

start to sell more illiquid loans into the markets. If banks are highly connected either through

the liability linkages or the common loan holdings, then most of the banks in the system will

suffer from the losses and cannot function as the potential buyers, reducing the self-rescue

ability of the system.

We study a financial system in which banks in the system may create self-rescue ability.

We find that aggressive banks can become good potential buyers if they are not affected by

a shock as they are willing to buy a large amount of loans given a small discount. At the

same time, they can become fire sale initiators even if they are hit by a relatively small shock.

Interbank liabilities between these aggressive banks can also amplify the contagion effect and

the effect of fire sales as they adjust the portfolios markedly following losses in their equity

29



values. So it is better to avoid having interbank liabilities between those aggressive banks. We

also find that prices of loans that have higher risk are more sensitive to a shock in the system.

So having aggressive banks holding these high risk loans would accelerate the contagion effect,

once it occurs. Unfortunately, aggressive banks tend to hold a large amount of loans, including

the high risk loans, so we need some regulatory policies to help reduce the potential damages

caused by these aggressive banks.

Contagion across loan types can occur from many channels. A shock to one particular bank

may trigger a fire sale of one loan type, lowering the loan price. Banks that hold the same type

of loans will lose their equity values and start to sell loans of other types in their portfolios

to re-adjust their portfolios’ risk-adjusted returns. This creates the cross-asset contagion.

Alternatively, a drop of the price of one loan type makes it more attractive to healthy banks

to buy the loans. As loan defaults are positively correlated, the substitute effect creates a

negative hedging demand, requiring the banks to reduce the holdings of certain types of loans

in their portfolios upon buying another type of loans.

Finally, we study the system in which banks and loan markets are separated into sectors

based on their areas of expertise defined by the cost of managing loans. We find that small

shocks in one sector do not cause contagion to the others as long as the interbank liabilities

between the sectors are not available and the cost for entering an area outside of the banks’

expertise is sufficiently high. In this case, the banks in the sector experiencing a small shock

need to act as potential buyers for their own sectors. Once the shock is large, causing the

price to drop enough, then banks from other sectors may function as potential buyers for the

failing sector. Based on this observation, we propose a policy that separates banks and loans

into sectors, limiting the contagion effects between groups of banks and types of loans. At the

same time, we create secondary potential buyers that are ready to step in and save the failing

sector when it is most needed. This type of policy can be achieved by imposing regulatory

fees that keep them separated during good times, and allow them to rescue their peers during

bad times, creating a self-rescue system.
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