Sheepskin Effects in Thailand

Sasiwimon Warunsiri Paweenawat University of the Thai Chamber of Commerce

Robert McNown

University of Colorado at Boulder

PIER Research Workshop: Labour and Human Capital August 10th, 2017

Introduction

- Sheepskin effects in returns to education
 - » Earnings associated with the degree completion
 - » Individuals received degree will earn more than those didn't
- **Empirical works testing the existence of sheepskin effects**
 - » US (Hungerford and Solon, 1987); Canada (Ferrer and Riddell, 2002)
 - » Philippines (Schady, 2003); China (Xiu and Gunderson, 2013)

Introduction (cont'd)

- Several studies on the returns to education in Thailand, but none of these studies explicitly focus on the sheepskin effects
- Most studies do not account for "ability bias" (Card, 1999) as a result of omitted ability from estimated equation
- **One exception is Warunsiri and McNown (2010)**

Objectives

- **Estimating the sheepskin effects in returns to education in Thailand**
- **Addressing the "ability bias" in the sheepskin effect estimation**
- **Investigating the sheepskin effects across education levels and gender**

Data and Variables

National Labor Force Survey (LFS) from the National Statistical Office of Thailand (NSO)

- » The 3rd quarter of each survey year (1985-2016)
- **The main variables used in the estimation**
 - » Natural log of real hourly wage (in Thai currency, Baht)
 - » Years of education: No education (=0) to Bachelor level (=16)
 - » Degree: Primary, Lower Secondary, Upper Secondary, Bachelor
 - » Age (19-65) in the year 1985-2016

Sample Set

- Full-time workers in private sector, government, and state-owned enterprise
- **Two sample sets:**
 - » Sub-sample set Individuals reporting their parental educations
 - 44,824 observations
 - » Whole sample set Individuals constructed as synthetic cohorts
 - 372,744 individuals sampled from 32 years of survey
 - 16 year-of-birth cohorts (born in 1951 to 1966)
 - 512 cohort-year observations (=16*32)

Methodology

The Fundamental Equation of Human Capital Theory

» Mincerian regression - find relation between the wage and year of education (Mincer, 1974)

$$\ln w_{it} = \gamma + \beta_1 S_{it} + \beta_2 X_{it} + \beta_3 X_{it}^2 + u_{it}$$

where $\ln w_{it}$ is a natural log of hourly wage rate of individual *i* at time *t*, S_{it} and X_{it} represent years of education and age

Methodology (cont'd)

- **The Sheepskin Effects Equation (Cross-sectional regression)**
 - » The discontinuous spline function (Hungerford and Solon, 1987)

$$\ln w_{it} = \gamma + \beta_1 S_{it} + \beta_2 X_{it} + \beta_3 X_{it}^2 + \beta_4 D6_{it} + \beta_5 [(S_{it} - 6) * D6_{it}] + \beta_6 D9_{it} + \beta_7 [(S_{it} - 9) * D9_{it}] + \beta_8 D12_{it} + \beta_9 [(S_{it} - 12) * D12_{it}] + \beta_{10} D16_{it} + \alpha_i + u_{it}$$

where $D6_{it}$, $D9_{it}$, $D12_{it}$, $D16_{it}$ are dummy variables for individual *i* at time *t*, who completed 6, 9, 12, 16 years of education, respectively

Methodology (cont'd)

- **Two solutions**
 - 1) Schady (2003) uses parental education as another <u>control variable</u> to partially control for ability bias.
 - Warunsiri and McNown (2010) use the <u>pseudo-panel approach</u> (Deaton, 1985) to deal with unobserved heterogeneity.
 - Define a set of *C* (*c*=1,...,*C*) cohorts based on year-of-birth
 - Then, averaging over cohort members to obtain average equation.

Methodology (cont'd)

The Sheepskin Effects Equation (Pseudo-Panel Regression)

$$\overline{\ln w_{ct}} = \gamma + \beta_1 \overline{S_{ct}} + \beta_2 \overline{X_{ct}} + \beta_3 \overline{X_{ct}^2} + \beta_4 \overline{D6_{ct}} + \beta_5 [(\overline{S_{ct}} - 6) * \overline{D6_{ct}}] + \beta_6 \overline{D9_{ct}} + \beta_7 [(\overline{S_{ct}} - 9) * \overline{D9_{ct}}] + \beta_8 \overline{D12_{ct}} + \beta_9 [(\overline{S_{ct}} - 12) * \overline{D12_{ct}}] + \beta_{10} \overline{D16_{ct}} + \overline{\alpha_c} + \overline{u_{ct}}$$

where $\overline{\ln w_{ct}}$ is mean of $\ln w$ over sample obs. in cohort *c* at time *t*, $\overline{S_{ct}}$ is mean of years of education for those in the cohort *c* at time *t*, $\overline{D6_{ct}}$ is proportion of cohort that received at least 6 years of education.

Sheepskin Effects in Sub-sample

VARIABLES	OLS	OLS	
		w/ Parental Education	
Primary(D6)	0.222***	0.229***	
	(0.0169)	(0.0169)	
Lower Secondary(D9)	-0.0116	-0.00911	
	(0.0230)	(0.0229)	
Upper Secondary(D12)	0.330***	0.335***	
	(0.0941)	(0.0938)	
Bachelor(D16)	0.0900***	0.0868***	
	(0.00948)	(0.00945)	

The Rate of Returns to Education

The rate of returns to education	OLS	OLS	
		w/ Parental Education	
The first 5 years of primary	0.0482	0.0436	
The 6 th year of education	0.2702	0.2726	
The first 2 years of lower secondary	0.1011	0.0978	
The 9 th year of education	0.0895	0.0886	
The first 2 years of upper secondary	-0.0009	-0.0052	
The 12 th year of education	0.3291	0.3298	
The first 3 years of bachelor	0.1641	0.1598	
The 16 th year of education	0.2541	0.2466	

Sheepskin Effects in Whole Sample

	(1)	(2)	(3)	(4)	
VARIABLES	OLS	OLS w/ Sheepskin	Pseudo	Pseudo w/ Sheepskin	
Year of schooling(S)	0.135***	0.0651***	0.147***	0.121**	
	(0.000175)	(0.00145)	(0.00793)	(0.0505)	
Primary(D6)		0.182***		0.335***	
		(0.00524)		(0.124)	
Lower_Secondary(D9)		0.130***		0.319	
_ ,		(0.00921)		(0.318)	
Upper_Secondary(D12)		0.192***		0.427	
		(0.0464)		(0.909)	
Bachelor(D16)		0.128***		0.815***	
		(0.00391)		(0.133)	
D6*(S-6)		0.0323***		0.0471	
		(0.00246)		(0.0370)	
D9*(S-9)		-0.0655***		-0.375	
		(0.0156)		(0.278)	
D12*(S-12)		0.116***		0.289	
		(0.0155)		(0.280)	
				Pa	

Results from OLS Regression

Page 14

Results from Pseudo-Panel Regression

Men VS Women

Key Takeaways

- This study addresses "ability bias" by using
 (1) parental education as a control variable
 (2) pseudo-panel approach
- **OLS estimations give downward-biased results**
- There exist the sheepskin effects in Thailand, especially for the primary degree and the bachelor degree

Thank You

