

Prize-linked Savings with Guaranteed Winners: Theory and Experiment

Paan Jindapon
University of Alabama
Pacharasut Sujarittanonta
Chulalongkorn University
Ajalavat Viriyavipart
American University of Sharjah

- Low household savings.
- The Government Lottery Office (GLO) sells 240 million lotteries every month = 9.60 billion THB
 - On average, each household spends 500 THB on LEGAL lotteries monthly
- One alternative instrument to encourage savings is prize-linked savings (PLS)
 - Depositor has a chance to win prize while keeping principal

- "สลากออมสินไม่กินทุน" สลากออมสินพิเศษงวดที่ 1 ราคาฉบับละ 2 บาท มี อายุ 5 ปี เมื่อฝากครบอายุ ได้ดอกเบี้ยฉบับละ 10 สตางค์ เริ่มรับฝากเมื่อวันที่ 3 มิถุนายน 2486
- ปัจจุบันธนาคารออมสินสามารถระดมเงินฝากผ่านสลากออมสินพิเศษ 3 ปี ได้ เกือบ 9 แสนล้านบาท
- สลากออมสินพิเศษอายุ 3 ปี งวดที่ 99 หน่วยละ 50 บาท อายุ 3 ปี มีสิทธิถูก รางวัลทุกเดือนเป็นเวลานานถึง 36 เดือน รางวัลที่ 1 มูลค่ารางวัลละ 10 ล้านบาท 3 รางวัล และรางวัลอื่นๆ อีกมากมาย ฝากครบอายุรับเงินต้นคืนพร้อมดอกเบี้ย หน่วยละ 50.60 บาท

- •นายอภิรมย์ สุขประเสริฐ ผู้จัดการ ธ.ก.ส. กล่าวว่า ในช่วงที่เหลือก่อนสิ้นปี 2560 ธนาคารเตรียมออกสลากออมทรัพย์ทวีสิน 3 ชุด มีวงเงินรวม 1.05 แสนล้านบาท (ข่าวจาก Post Today)
- •ธ.ก.ส. เตรียมจำหน่ายสลากชุด "เกษตรมั่นคง" เริ่มต้นหน่วยละ 500 บาท อายุ 3 ปี พร้อมลุ้นรางวัล สูงสุด 20 ล้านบาท ออกรางวัล 36 ครั้ง เริ่ม 17 ก.ค. 60 นี้
- •จะเปิดให้ซื้อที่ หน่วยละ 500 บาท โดยจะรับฝาก 7 หมวด หมวดละ 10 ล้านหน่วย รวมเป็น 70 ล้านหน่วย ซึ่ง สลากฯมีอายุรับฝาก 3 ปี โดยครบกำหนดไถ่ถอนคืนเงิน ฝากพร้อมกันในวันที่ 20 สิงหาคม 2563
- •ในส่วนของผลตอบแทน ธนาคารจะจ่ายดอกเบี้ยให้หน่วยละ 7 บาท เมื่อถือสลาก จนครบอายุ ซึ่งเฉลี่ยเท่ากับ ดอกเบี้ย 0.267 % ต่อปี

Theoretical Results:

- We prove existence and uniqueness of equilibrium.
- Under Expected Utility Theory, PLS cannot increase total savings
- We conduct experiment to study the effect of PLS on saving decisions.
 - Previous experimental literature on PLS (Filiz-Ozbay et al. 2015, Atalay et al. 2014, Dizon and Lybbert 2017) assume no strategic interaction
 - We design experiment as game with guaranteed winner
 - We test various types of PLS

- Two-period model with n risk-averse players
- Each player's utility function exhibits CARA.

$$u_i(c_{it}) = -\exp(-\alpha_i c_{it})$$

where c_{it} is player *i*'s consumption in period t and $\alpha_i > 0$.

• Player *i*'s Arrow-Pratt measure of risk aversion is α_i .

- In period 1, player i can choose to save
 - $x_i \ge 0$ in a traditional savings account and
 - $y_i \ge 0$ in a prize-linked savings (PLS) account.
- The traditional savings account pays interest in period 2 at rate *r*.
- The PLS account does not pay interest, but one of the account holders will be randomly chosen as the prize winner and paid *R* in period 2.
- The probability that player i wins the prize is

$$p_i = y_i / (y_i + Y_{-i})$$

where Y_{-i} is the sum of all other players' PLS.

• Each player chooses x_i and y_i to maximize his **expected utility** over the two periods.

$$U_{i}(x_{i}, y_{i}) = u_{i}(I_{i1} - x_{i} - y_{i}) + \beta_{i} p_{i} u_{i}(I_{i2} + x_{i}(1+r) + y_{i} + R) + \beta_{i} (1 - p_{i}) u_{i}(I_{i2} + x_{i}(1+r) + y_{i})$$

where I_{it} is player i's income in period t.

Proposition 1. Given *n* heterogeneous CARA players, the PLS game has a unique Nash equilibrium.

• Example 1: Consider a situation in which n=2, r=0.1, and R=1. Let $\alpha_1=1$ and $\alpha_2=1$.

• Example 2: Consider a situation in which n=2, r=0.1, and R=1. Let $\alpha_1=1$ and $\alpha_2=2$.

• Example 3: Consider a situation in which n = 5, r = 0.1, and 0 < R < 1. Let $\alpha_i = 1$, $\beta_i = 0.9$, $I_{i1} = 3$, and $I_{i2} = 0$ for all i.

• y^e = equilibrium prize-linked savings

Proposition 2

	У ^е
r	-
R	+
n	-

- x^e = optimal traditional savings
- x° = optimal traditional savings when PLS is not available
- $\Delta x = x^e x^o$

Proposition 3. $\Delta x < 0$.

	Δχ
r	+
R	+
n	+

- y^e = equilibrium prize-linked savings
- x^e = optimal traditional savings
- x° = optimal traditional savings when PLS is not available

•
$$\Delta s = x^e + y^e - x^o$$

Proposition 4. $\Delta s < 0$.

	Δs
r	+
R	-
n	+

- PLS is a substitute for traditional savings.
- Introducing PLS will discourage total savings.
- ยกเลิกสลากออมสินและสลาก ธกส. จะทำให้การออมรวมในประเทศเพิ่มขึ้น จริงหรือไม่
 - Lottery purchases?
 - Non-EU decision makers:
 - Utility of winning?
 - Prospect Theory?

Experimental Design

- 80 undergrad students from Chulalongkorn University
 - 40 subjects per session
- Allocate 300 THB in 49 independent scenarios
 - One of them for actual payment
- Receive money via bank transfer 2 weeks and 26 weeks after experiment
 - 100 THB show-up fee (50 THB in 2 weeks and the rest in 26 weeks)
- Experiments takes approximately 1.5 hours

5 Baseline Scenarios

5 Baseline scenarios with traditional savings' interest rates of 0.25, 0.50, 0.75, 1.00 and 1.25%

PLS (1/5) Scenarios

In PLS (1/5), 1 out of 5 subjects wins the prize. Interest rates are 0.25, 0.50, 0.75, 1.00 and 1.25%. Two PLS prizes, high and low, for each interest rate.

PLS (1/20) Scenarios

In PLS (1/20), 1 out of 20 subjects wins the prize. Interest rates are 0.25, 0.50, 0.75, 1.00 and 1.25%. Two PLS prizes, high and low, for each interest rate.

PLS (4/20) Scenarios

In PLS (1/20), 4 out of 20 subjects wins the prize. Interest rates are 0.25, 0.50, 0.75, 1.00 and 1.25%. Two PLS prizes, high and low, for each interest rate.

Experimental Results

Availability of PLS Increases Total Savings

Savings type
PLS
Traditional

PLS (1/5) increases savings rate in all cases Paired sample t-test confirms this finding

Impact of PLS on Total Savings

Variable	(1)	(2)	
PLS (1/5)	0.245**	0.245**	
	(0.025)	(0.011)	
PLS (1/20)	0.247**	0.247**	DIC(1/F) DIC (1/20) DIC (4/20)
	(0.025)	(0.011)	Arr PLS(1/5) = PLS (1/20) > PLS (4/20)
PLS (4/20)	0.223**	0.223**	
	(0.025)	(0.011)	
Interest rate = 0.5%	0.028	0.028**	
	(0.020)	(0.009)	
Interest rate = 0.75%	0.053**	0.053**	
	(0.020)	(0.009)	Total savings are increasing in interest rate
Interest rate = 1%	0.077**	0.077**	
	(0.020)	(0.009)	
Interest rate = 1.25%	0.111**	0.111**	
	(0.020)	(0.009)	
High PLS (#/#) prize	0.032*	0.032**	Higher PLS (#/#) prize leads to more total savings
	(0.016)	(0.007)	J
Session dummy	-0.151**	-	
·	(0.012)		 There is strong subject heterogeneity
Subject fixed effects	No	Yes	
R-squared	0.086	0.807	
Obs.	3,920	3,920	
Note: ** and * indicate	10/ and F0)/ cian;fica	

Note: ** and * indicate 1% and 5% significance levels, respectively.

Substitute-complement

PLS does not decrease traditional savings when interest rate is low.

Paired-sample t-test confirms this result

Individual Characteristics

Variable	Marginal effect on total savings	Marginal effect on change in total savings
Female	0.434** (0.025)	-0.021 (0.025)
Cognitive score	0.020* (0.011)	-0.019 (0.012)
Switching point (degree of risk-loving)	-0.047*** (0.011)	0.076*** (0.012)
Has bought PLS	-	0.087*** (0.031)

Note: ***, ** and * indicate 1%, 5% and 10% significance levels, respectively.

Strong gender effect on total savings
PLS is effective in inducing PLS-experienced and
less risk-averse individuals

Allocation Decisions

	Percent of Decisions			
Allocation	Baseline	PLS (1/5)	PLS (1/20)	PLS (4/20)
Consumption = 0%	20.8	53.0	54.0	51.5
Consumption = 100%	29.3	18.3	15.8	18.6
Number of Observations	400	800	800	800

With PLS, more decisions without consumption With PLS, less decisions with positive savings

Rejecting Expected Utility Theory

Parameter	(1)	(2)
	X ^o	$x^e + y^e$
α	0.021*	0.051**
	(0.005)	(0.012)
β	0.991*	1.014**
·	(0.001)	(0.005)
R-squared	0.584	0.759
Scenarios	Baseline	PLS (1/5), PLS (1/20)
		and PLS (4/20)
Obs.	400	2,400

In model 2, β > 1: subjects discount early payment rather than future payment. Alternative model should be offered.

Conclusion

- We theoretically and experimentally investigate saving behavior when PLS is available
- In contrast to the standard theory, subjects increase total savings significantly in the lab experiment
- The effect of PLS on total savings is stronger with
 - Subjects who have experienced with PLS before
 - Less risk-averse subjects
- With low interest rates, PLS does not decrease traditional savings

THANK YOU