

Discussion on

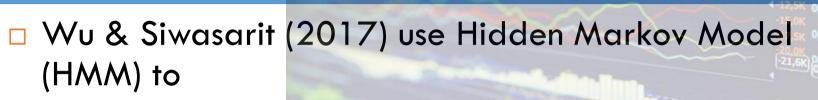
Capturing the Order Imbalance with Hidden Markov Model: A Case of SET50 and KOSP150 by Po-Lin Wu and Wasin Siwasarit

Discussant: Surapap Rayanakorn

King Mongkut's University of Technology

PIER RESEARCH WORKSHOP JULY 22, 2017

Summary



Forecast price movements of liquid stocks (by avg. turnover) in SET 50 and KOSPI 50. (OIR as input)

Generate algorithmic trading signals.

🗆 Data

- Data: intraday (5-min, 10-min, 30-min).
- Training period: Aug to Sept 2016.
- Testing period: Nov 2016 to Jan 2017.

Summary and Main Findings

- Hidden Markov Model (HMM)
 - 3-5 States (unobserved) of asset prices
 - Overvalued, Equilibrium, Undervalued
 - Other hidden states
 - Emissions (observed)
 - (+) or (0, -) movement
 - **Discrete** & Continuous Implementation
 - Major findings from discrete case
 - Continuous case distributions not captured by normal mixture model.

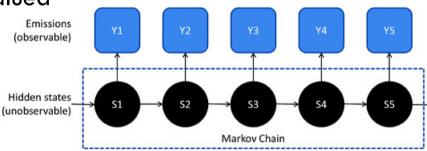


Image Source: Komorowski (2016)

Summary and Main Findings

- Major Findings:
 - Generated signals achieve up to 84% hit ratio (5-min, 5 states)
 - hit ratio = # correct positive signals # total signals generated
 - SET 50 stocks: hit ratios between 71% (PTTEP) to 89% (BCP)
 - KOSPI 50 stocks: hit ratios between 54% (LG Display Co., Ltd.) to 81% (LG Chem Co., Ltd.)
 - **D** Predictability \downarrow as frequency \downarrow and liquidity \uparrow .

Summary and Main Findings

- 5
- Major Findings:
 - Profitability measured by Jensen's alpha, assuming 0.05% transaction cost
 - SET 50 stocks: α = 0.029 to 0.047
 - **KOSPI 50 stocks:** $\alpha \approx 0$
 - Profitability has a similar pattern to predictability.
 Profitability \$\geq\$ as frequency \$\geq\$.

Contribution – Academia

- Provides empirical evidence consistent with
 - Predictability: Chordia, Goyal, and Jegadeesh (2016JFQA) and other Chordia et al. papers.
 - Price efficiency: Rosch, Subrahmanyam, and van Dijk (2016RFS).
 - Components of price impact (inventory-risk, asymmetric information): Muravyev (2016JF).

Contribution – Practitioners' Side

- Algo trading pioneered by IBM researchers in 2001.
- □ Algo trading is on the rise.
- Example:
 - FX algorithmic trading volume is about 70% of that of dealer-related volume.

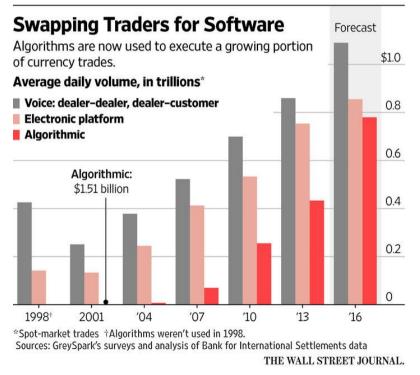


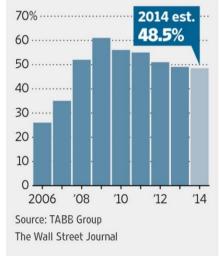
Image Source: Wall Street Journal (2015)

Contribution – Practitioners' Side

- High-frequency trading (HFT) is here to stay.
- Equity volume executed by HFT is about 50% of the total in the US.
- HF trading firms have a 500-microsecond lead for NASDAQ in 2015.

High Gear

Percentage of U.S. stock trading done by high-frequency firms:



Possible Extensions/Suggestions

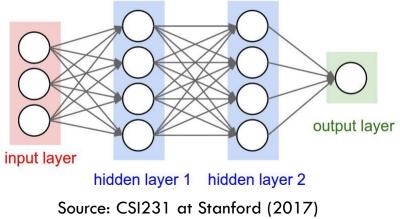
- Ensemble Learning (combination of techniques)
 - Zamora-Martinez et al. (Pattern Recognition, 2014) find a combination of Neural Networks (NNs) and HMMs improve the performance.
- May allow more trading signal generation in difficult cases (liquid stocks, less frequent data points)

Possible Extensions/Suggestions

Deep Learning?

10

Di Lena et al. (Bioinformatics, 2012) report that Recurrent Neural Networks (RNNs) outperform HMMs and Support Vector Machine (SVM).



Possible Extensions/Suggestions

- Data possible fine-tuning for performance.
 - Tick data could improve performance.
 - Small-cap stocks.
 - Continuous case
 - Would expanding the training period (currently 2 months) mitigate the coin toss issue?
 - Data challenge: stocks with no trading during selected intervals (5-min, 10-min, 30-min).

