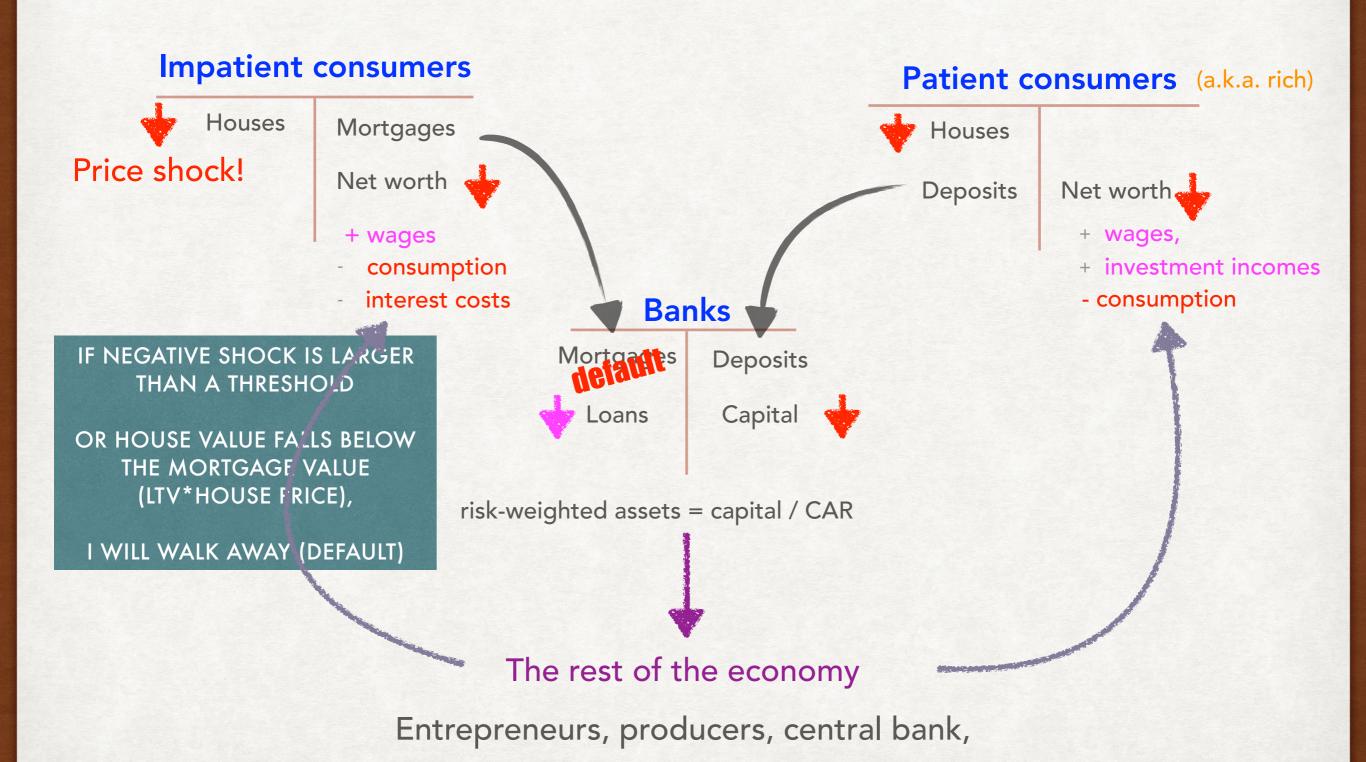
DISCUSSION ON

MORTGAGE DEFAULTS, FINANCIAL DISINTERMEDIATION, AND MACROPRUDENTIAL POLICIES

PIPAT LUENGNARUEMITCHAI


BOT RESEARCH WORKSHOP

JULY 2017

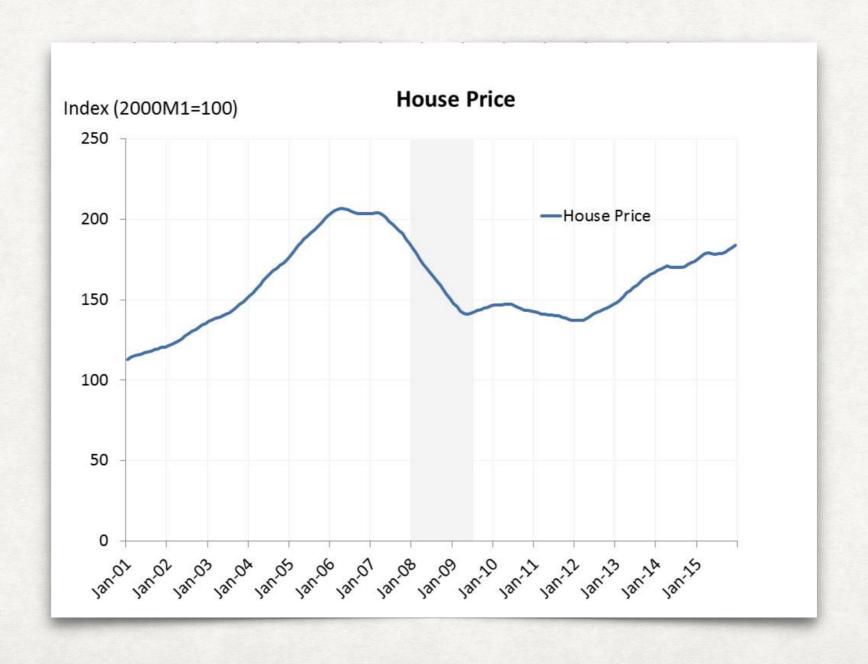
GENERAL IMPRESSIONS

- A complete (and long) article
- Interesting insights from standard DSGE/NK models with banks and the mortgage sector
- Add the mortgages defaults
- Nice and elegant results
- Policy analysis on macroprudential policies: LTV caps, CCC, state contingent LTV?

(OVER) SIMPLIFYING THE MODEL

QUESTIONS

- Are patient consumers "patient" or are they just rich?
- Do impatient consumers really "smooth" consumption?


Table 2: Important Rates and Ratios at the Steady State

	Description	Value
$F(\omega)$	Mortgage default probability	2.007 %
m^{I}	Loan-to-value ratio	70.00 %
r	Deposit interest rate (p.a.)	3.673 %
r^{I}	Mortgage interest rate (p.a.)	6.800 %
r^E	Business loan interest rate (p.a.)	7.736 %
$rac{b^I}{b^I + b^E}$	Proportion of mortgages	57.26 %
$\frac{b^I}{Y}$	Mortgages to output	170.1 %
$\frac{b^E}{Y}$	Business loans to output	197.0 %
$\frac{c^P}{Y}$	Patient household consumption to output	52.96 %
$\frac{c^I}{Y}$	Impatient household consumption to output	19.24 %
$\frac{c^E}{Y}$	Entrepreneur consumption to output	10.95 %
$\frac{i}{Y}$	Investment to output	16.59 %
$\frac{\Theta G(\omega)q^hh^I}{Y}$	Monitoring cost to output	0.523 %
$\frac{q^h h^P}{Y}$	Patient household's housing demand to output	1164 %
$\frac{q^h h^I}{Y}$	Impatient household's housing demand to output	247.1%
k^B	Bank capital ratio	8.000 %

GENERAL COMMENTS

- "Patient" consumers are assumed to be better endowed (otherwise they would not be able to afford a house to begin with).
- Relative prices of house and other consumption goods are supposed to be large. Would it make sense to model a "rent-vs-buy" decision?
- The role of credit market outside banks?
- **Default rule?** Consumers may not decide to default even if the house price fell if he expects house prices to rebound?
- The role of the "bubble"? The house price shocks are assumed to random and iid. But crises are often preceded by bubbles (e.g. autocorrelated shocks?). How would that change the decision?
- Sensitivity to different parameter assumptions?
- Regulatory capital as a constraint?

RANDOM HOUSE PRICE SHOCKS?

POLICY ISSUES

- Macroprudential measures and the shadow banking. What if the central bank can control only a fraction of the credit to the economy? For example, securitization, WMP, and AM and coop and SFI. Regulatory arbitrage?
- The role of market leverage and the amplification of shocks.
 CDO/CDS
- Other macroprudential measures? LTV-based RW? Debt service ratio? Debt to income limits?
- Transmission of monetary policy.