Discussion on Bubbles in a World Asset: the Case of Cryptocurrencies

Sarita Bunsupha Harvard University

PIER Research Workshop

19 July 2019

Popularity of cryptocurrencies

	Cryptocurrency	Commodity money Gold	Fiat money Currency
Fixed global supply	\checkmark	\checkmark	Х
Non-zero fundamental value	Х	\checkmark	Х
Medium of exchange	\checkmark	\checkmark	\checkmark
Store of value	?	\checkmark	\checkmark
Unit of account	?	\checkmark	\checkmark

This paper

- Theoretical model to study rational bubbles in cryptocurrencies
- Two properties emphasized in the paper
 - Fixed positive supply

Limited issue ¹ Unlimited

issue

Brand	Limit of issue	Already issued	Brand
Bitcoin	21 million	79%	Ethereum
Litecoin	84 million	63%	Ethereum Classic
Ripple	100 billion	100%	NEM

Traded internationally with minimal transaction costs

 Results: oscillatory bubbly equilibrium dynamic is common for a wide range of parametrization, especially low asset's supply and large income inequality

¹Data from October 2017

Model setup

- 2-country, 2-generation Overlapping Generation (OLG) model
- $e_{j,t}^i$: endowment of generation j in country i at time t when $i,j \in \{1,2\}$
- m_t^i : bubble demand of country *i* at time *t*
- p_t: price of bubble at time t
- Nⁱ: price of bubble at time t
- M: fixed supply of cryptocurrencies
- B: subjective discount factor
- π : probability of bubble bursting, i.e.

	$p_{t} > 0$	$p_t = 0$
$p_{t+1} > 0$	$1-\pi$	0
$p_{t+1}=0$	π	0

• Agents choose consumption $c_{j,t}$ to maximize their expected utility functions

$$u(c_{1.t}^i) + \beta \mathbb{E}_t u(c_{2,t+1}^i)$$

s.t. budget constraints and market clearing conditions

$$c_{1,t}^{i} + p_{t}m_{t}^{i} = e_{j,t}^{i}$$

$$c_{2,t+1}^{i} = p_{t+1}m_{t}^{i}$$

$$N^{1}m_{t}^{1} + N^{2}m_{t}^{2} = M$$

Proposition 1

For every price of bubble p_t , there is a unique bubble demand m_t^i such that equilibrium spending on bubble $p_t m_t^i$ exists

Proposition 2

If the following assumptions hold

- Agents in both countries have relative risk aversion coefficient of more than one, i.e. $\frac{-cu^{'}(c)}{u^{'}(c)} > 1$
- 2 Agents of both countries are prudent, i.e. $\frac{-u^{\prime\prime\prime}(c)}{u^{*}(c)} > 1$

Then, there are three possible characteristics of the steady state dynamics.

- The deviation of bubble price from its equilibrium value will be corrected over time and returned to its equilibrium
- 2 The deviation of bubble price from its equilibrium value will aggravate over time
- The deviation of the bubble price will be constant over time

Numerical Parametrization and Experimentation

- The effect of amount of cryptocurrencies: the higher level of supply will lead to more oscillating. That is, the bubble will be more volatile and less suitable in transferring value over time
- The effect of endowment gap: the smaller wealth gap leads to more volatile cryptocurrency prices
- The effect of populations: the higher the population in any country, the more stable the bubbly equilibrium
- The effect of discount factor: the more oscillating the bubbly equilibrium
- The effect of the degree of risk aversion: the more risk averse, the more oscillating the bubbly equilibrium
- The effect of the probability of bubble bursting: the higher chance of bubble bursting, the more stable the bubbly equilibrium

Discussion

- Intuitions on comparative statics?
- Model validation: can the proposed model explain prices and volatility of cryptocurrencies?
 - It would be useful to see the price dynamics of the two bubbly equilibria
- Model calibration: what are the parameters needed to match the price dynamics of real-world cryptocurrencies?
 - Are the implied parameters realistic? Do they match with previous literature?
- Welfare analysis: policy implications?
- Behavioral bubbles: usually offer more insights on dynamics of bubbles
 - Extrapolation: Greenwood and Shleifer (2014), Barberis et al. (2015)
 - Overconfidence: Harrison and Kreps (1978), Scheinkman and Xiong (2003)
 - Natural expectation: Fuster et al. (2010)
 - Delayed overshooting: Gourinchas and Tornell (2004)