

1/23

Motivation ●00	Data and Methodology 0000	Risky Bond Issuance	Pricing of Risk 000	Search for Yield	Takeaways 00
Motiva	tion				

• The risk-taking channel of monetary policy has gained much attention since the GFC.

 \rightarrow Low rates encourage financial intermediaries to take on greater leverage and risks

- Some theories:
 - Impact on valuations, income and cash flows (Borio and Zhu, 2012)
 - Impact on lending profitabilty and capital (Adrian and Shin, 2010)
 - Search for yield (Rajan, 2006)
- A number of empirical evidence for banks (Maddaloni and Peydro, 2011; Jimenez et al., 2014; Ioannidou et al., 2015; Dell'Ariccia et al., 2017)
- BUT, evidence beyond the banking sector is rather scarce.
 - Focus on search-for-yield of institutional investors
 - Focus on the case of AEs

Motivation	Data and Methodology	Risky Bond Issuance	Pricing of Risk	Search for Yield	Takeaways
0●0	0000	00000	000		00
Related	Literature				

[1] Bank risk-taking Channel of Monetary Policy

- Bank Level: Altunbas et al. (2014)
- Loan Level: Jimenez et al. (2014); Ioannidou et al. (2015); Paligorova and Santos (2017); Dell'Ariccia et al. (2017); Bonfim and Soares (2018); Ratanavararak and Ananchotikul (2018)
- Country Level: Maddaloni and Peydro (2011)

[2] Search for yield

- Money Funds: Di Maggio and Kacperczyk (2017); Chodorow-Reich (2014)
- Equity Funds: Hau and Lai (2016);
- Pension Funds: Kim and Olivan (2015); Andonov et al. (2017)
- Individuals: Lian et al. (2019); Daniel et al. (2021)
- Treasury Markets: Hanson and Stein (2015)

[3] Search for yield in Bond Markets

 Becker and Ivashina (2015); Czech and Roberts-Sklar (2017); Choi and Kronlund (2018)

Motivation Data and Methodology 00● 0000		Risky Bond Issuance	Pricing of Risk 000	Search for Yield	Takeaways 00
This Pa	aper				

Examine the risk-taking channel of monetary policy in the context of Thai corporate bond market

 \rightarrow The first to explore evidence of the risk-taking channel outside banks for EMs.

Research Questions

[1] Do low interest rates contribute to higher ex-ante risks of newly-issued bonds?

 \rightarrow The first to uncover this relationship

[2] How do low rates impact the pricing of risks?

 \rightarrow Among the first to uncover this relationship

[3] Are any corporate bond investors prone to the search-for-yield behavior?

 \rightarrow Expand the set of bond investors beyond institutional investors

 Data and Methodology
 Risky Bond Issuance
 Pricing of Risk
 Search for Yield
 Takeaways

 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <td

Data

ThaiBMA

2001Q1 to 2020Q2

Information on newly-issued non-financial corporate bonds: issue/issuer characteristics

Focus on bonds with fixed coupon

A total of 2526 bonds from 247 companies during 20 years

Classify credit ratings into 4 groups:

- A Group
- BBB Group
- Non-investment Grade
- Unrated

Debt Securities Holding Database 2013Q1 to 2020Q2

Focus on bond holdings at the issuance month

Classify bondholders into 8 groups from 24 original bondholder types:

- Pension and provident funds
- Mutual funds (except MMF)
- Insurances
- Commercial banks & SFI
- Cooperatives and MMF
- Corporates
- Individuals
- Government agencies and others

Motivation 000	Data and Methodology 0●00	Risky Bond Issuance	Pricing of Risk 000	Search for Yield	Takeaways 00
Stylized	l Facts				

- Bond markets have become a more popular source of financing for Thai businesses over times.
- Risky bonds, especially unrated ones, have also been issued in greater number.

Figure 1: Corporate Bond Issuance by Risk Ratings

 Motivation
 Data and Methodology
 Risky Bond Issuance
 Pricing of Risk
 Search for Yield
 Takeaways

 000
 0000
 0000
 0000
 0000
 0000
 00
 0000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Stylized Facts (Cont.)

Bonds from the property sector outnumber those of other sectors, accounting for almost one-third of total issues and more than half of risky bonds.

Individuals hold most of the risky bonds, indicating both their risk preference and limited institutional and regulatory constraints.

Figure 3: Bond Holding across 8 Investor Groups

(a) Holding Amount By Ratings

(b) Holding Share by Ratings

Data and Methodology Risky Bond Issuance റെറ്ററ

Pricing of Risk

Search for Yield

Takeaways

Impact of Low Rates on Risky Bond Issuance: Method

Impact on Credit Risks

Multinomial Logistic Framework:

$$ln(\frac{p(rating_{i,t} = s)}{p(rating_{i,t} = A)}) = c + \beta r_t + \theta bond_{i,t} + \mu macro_t + \epsilon_{i,t}, \quad (1)$$

where
$$s \in \{BBB, non - IG, unrated\}$$

Impact on Maturity Risks

OLS Regression of Bond Maturity $(mat_{i,k,t})$:

$$mat_{i,k,t} = c + \beta r_t + \theta bond_{i,k,t} + \mu macro_t + u_k + \epsilon_{i,k,t},$$
 (2)

- r_t = monetary policy measure
- Issue characteristics $(bond_{i,k,t})$: issue size, dummy for callable bonds, dummy for secured bonds, maturity, ratings
- Macro conditions (macro_t): GDP growth, stock market volatility, bank loan spread, 2Y-5Y spread

- The endogeneity between monetary policy and business cycles \rightarrow include GDP growth
- Disentangling investor risk-taking (bond demand) from changes in the pool of borrowers (bond supply)
 → include issue characteristics
- Ex-ante risk measures

 \rightarrow use credit ratings, but issuer ratings may slowly adjust

Impact on Probability of Risky Bond Issuance

- The issuance probability of unrated and non-investment-grade bonds are significantly higher when rates are low.
- This comes at the expense of A-group bonds

Figure 4: Marginal Effects of Low Rates on Prob. of Bond Issuance by Ratings

Note: Marginal effects derived from estimates of a multinomial logistic regression. Bands represent 95% confidence intervals.

The relationship is more pronounced for bonds from the property sector.

Figure 5: Marginal Effects of Low Rates on Prob. of Bond Issuance by Ratings (cont.)

Motivation	Data and Methodology	Risky Bond Issuance	Pricing of Risk	Search for Yield
000	0000	0000●	000	

Impact on Bond Maturity

Low interest rates lead to the issuance of bonds with longer maturity. In particular, it is mainly risky bonds that have lengthened maturity.

Full Sample		A-group	BBB-group	NonIG	Unrated
0.0902***		0.0758*	0.0325	0.600***	0.438***
(0.0309)	-0.0898***	(0.0416)	(0.0404)	(0.0596)	(0.0859)
	(0.0220)				
-0.183**	-0.173**				
(0.0819) -0.290*** (0.106)	(0.0817) -0.280*** (0.106)				
-0.419***	-0.408***				
(0.106) 0.0412** (0.0172)	(0.106) 0.0394** (0.0173)	0.0258	0.0602**	0.103	0.0470
0.251***	0.243***	0.441***	0.257**	0.152	-0.125*
(0.0697) -0.0881 (0.0915)	(0.0683) -0.0727 (0.0929)	(0.0999) -0.307** (0.138)	(0.117) 0.263 (0.208)	(0.110) -0.288** (0.126)	(0.0681) 0.146 (0.0963)
Yes	Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes	Yes
2,526	2,526	1,463	629 0.073	74 0 304	360 0.117
	Full S 0.0902*** (0.0309) -0.183** (0.0309) -0.290*** (0.106) -0.412** (0.0697) -0.05151 Yes 2.556	Full Sample 0.0902*** -0.0898*** (0.0309) -0.0898*** -0.0133** -0.173** (0.010) (0.0817) -0.290*** -0.280*** (0.106) (0.106) 0.012** 0.394** (0.106) (0.106) 0.0412** 0.394** (0.057) (0.073) 0.251*** 0.243*** (0.0697) (0.0683) -0.0881 -0.0727 (0.0915) (0.0292) Yes Yes Yes Yes 2.526 2.526 0.053 0.060	$ \begin{array}{ c c c c } \hline \mbox{Full Sample} & \mbox{A-group} \\ \hline 0.0902^{***} & 0.0758^{*} \\ (0.0309) & (0.0228) \\ \hline \\ -0.0898^{***} & (0.0228) \\ \hline \\ -0.183^{**} & -0.173^{**} \\ (0.0819) & (0.0817) \\ -0.290^{***} & -0.280^{***} \\ (0.106) & (0.106) \\ -0.419^{***} & -0.408^{***} \\ (0.106) & (0.106) \\ 0.0412^{**} & 0.0394^{**} \\ (0.067) & (0.0633) & (0.0258) \\ (0.0172) & (0.0173) & (0.0251) \\ 0.251^{***} & 0.243^{***} & 0.441^{***} \\ (0.0697) & (0.0633) & (0.0999) \\ -0.0881 & -0.0727 & -0.307^{**} \\ (0.0915) & (0.0229) & (0.138) \\ \hline \mbox{Yes} & Yes & Yes \\ Yes & Yes & Yes & Yes \\ 2.526 & 2.526 & 1.463 \\ 0.053 & 0.060 & 0.067 \\ \hline \end{array} $	Full Sample A-group BBB-group 0.0902*** 0.0758* 0.0325 (0.0309) -0.0988*** (0.0416) (0.0404) -0.0898*** (0.0416) (0.0404) -0.183** -0.173** (0.0416) (0.0404) -0.290*** -0.280*** (0.0106) (0.0106) 0.0106) (0.106) (0.0258) 0.0602*** (0.0106) (0.0106) (0.0254) 0.0254** (0.0172) (0.0173) (0.0253) (0.0264) 0.251*** 0.243*** 0.411*** 0.257*** (0.0697) (0.0683) (0.0999) (0.117) -0.0881 -0.0727 -0.307** 0.263 (0.0915) (0.0290) (0.128) (0.2091) (0.0811) -0.307** 0.263 (0.208) (0.0917) (0.0829) (0.117) 0.263 (0.0915) (0.0929) (0.117) 0.263 (0.0915) (0.0929) (0.128) (0.208) (0.0915) <td< td=""><td>Full Sample A-group BBB-group NonIG 0.0902*** 0.0758* 0.0325 0.600*** (0.0309) (0.0416) (0.0404) (0.0596) -0.0998*** (0.0228) (0.0416) (0.0404) (0.0596) -0.183** -0.173** (0.0416) (0.0404) (0.0596) -0.020*** -0.200*** (0.016) (0.017) (0.028) (0.106) (0.106) (0.0163) (0.0248) (0.0602***) (0.106) (0.0173) (0.0253) (0.0264) (0.103) (0.0172) (0.0173) (0.0254) 0.152 (0.0765) (0.0172) (0.0173) (0.0264) (0.175) 0.226** (0.0172) (0.0173) (0.208) (0.126) -0.288** (0.0151) (0.0299) (0.117) (0.112) -0.288** (0.0671) (0.0213) (0.2028) (0.126) -0.288** (0.0151) (0.9929) (0.138) (0.208) (0.126) Yes Yes</td></td<>	Full Sample A-group BBB-group NonIG 0.0902*** 0.0758* 0.0325 0.600*** (0.0309) (0.0416) (0.0404) (0.0596) -0.0998*** (0.0228) (0.0416) (0.0404) (0.0596) -0.183** -0.173** (0.0416) (0.0404) (0.0596) -0.020*** -0.200*** (0.016) (0.017) (0.028) (0.106) (0.106) (0.0163) (0.0248) (0.0602***) (0.106) (0.0173) (0.0253) (0.0264) (0.103) (0.0172) (0.0173) (0.0254) 0.152 (0.0765) (0.0172) (0.0173) (0.0264) (0.175) 0.226** (0.0172) (0.0173) (0.208) (0.126) -0.288** (0.0151) (0.0299) (0.117) (0.112) -0.288** (0.0671) (0.0213) (0.2028) (0.126) -0.288** (0.0151) (0.9929) (0.138) (0.208) (0.126) Yes Yes

Table 1: Impact of Monetary Policy on Bond Maturity

 $^{***}p < 0.01, \ ^{**}p < 0.05, \ ^{*}p < 0.1$

Takeaways

Regression specification:

$$spread_{i,k,t} = c + \sum_{s} \alpha^{s} rating_{i,k,t}^{s} + \beta r_{t} + \sum_{s} \rho^{s} (rating_{i,k,t}^{s} * r_{t}) + \theta bond_{i,k,t} + \delta issuer_{k,t-1} + \mu macro_{t} + \epsilon_{i,k,t},$$
(3)

- Estimated by OLS
- Include interaction terms between ratings and GDP growth
- Include issuer characteristics (bond_{k,t-1}) for robustness checks: firm size, profitability, leverage

Motivation 000	Data and Methodology 0000	Risky Bond Issuance	Pricing of Risk 0●0	Search for Yield	Takeaways 00
Pricing	of Risk Resu	lts			

We fail to find that riskier firms enjoy a coupon discount compared to safer firms when they issue bonds during periods of low interest rates.

Variable	1	2	3	4
Credit rating				
BBB group	1.269***	1.179***	1.118***	1.094***
	(0.0385)	(0.0733)	(0.0728)	(0.0745)
Non-investment grade	2.960***	1.510*	1.419*	1.377*
	(0.107)	(0.880)	(0.838)	(0.832)
Unrated	2.660***	2.214***	2.022***	1.960***
	(0.0883)	(0.297)	(0.308)	(0.321)
Monetary policy & in	teraction te	erm		
Low rate	0.229***	0.108***	0.0375	-0.0979
	(0.0409)	(0.0351)	(0.0340)	(0.100)
BBB X Low rate		0.259***	0.288***	0.328***
		(0.0716)	(0.0729)	(0.0773)
NonIG X Low rate		1.785**	1.839**	1.900**
		(0.880)	(0.841)	(0.838)
Unrated X Low rate		0.861***	1.258***	1.345***
		(0.292)	(0.300)	(0.323)
Maturity X Low rate				0.0869
				(0.0620)
Bond characteristics				
Maturity	0.106***	0.118***	0.128***	0.0657
	(0.0358)	(0.0358)	(0.0290)	(0.0533)
Other Bond Charac.	Yes	Yes	Yes	Yes
Issuer characteristics	No	No	Yes	Yes
Macro controls	Yes	Yes	Yes	Yes
Observations	2,526	2,526	2,046	2,046
R^2	0.742	0.753	0.790	0.790

Table 2: Pricing of Risk Estimation

EBP as a measure of investors' risk-bearing capacity over times

 $spread_{i,k,t} = c + \beta r_t + \theta bond_{i,k,t} + \delta issuer_{k,t-1} + \mu macro_t + \epsilon_{i,k,t}$ $\rightarrow EBP_t = \sum_{i,k} \epsilon_{i,k,t}.$

Figure 6: Excess Bond Premium

No evidence of risk underpricing during low-rate periods since 2015 16 / 23

Weighted-average Yield across Bond Investors

- Individuals obtain the highest yields, over 4 percent per annum.
- They remain the yield-chasing agent even within safe group of bonds.

Figure 7: Weighted-average Yields (%) by Bondholder Groups

Weighted-average Yield across Bond Investors (Cont.)

Individuals stand out with their ability to maintain similar yields across the two time periods.

Figure 8: Weighted-average Yields (%) over Time

Regression Specification:

$$holding_{i,t}^{j} = f(spread_{i,t}, bonds_{i,t}, macro_{t}),$$
(4)

where $holding_{i,t}^{j}$ represents the share of each bondholder j's holding amount of bond i to its total non-financial corporate bond portfolios during the issuance month t

Estimation Method

Zero-inflated Beta Regression (Cook et al, 2008)

- Logistic Regression for whether $holding_{i,t}^{j} = 0$
- Beta Regression for $0 < holding_{i,t}^j < 1$

Motivation	Data and Methodology	Risky Bond Issuance	Pricing of Risk	Search for Yield	Takeaways
000		00000	000	000●0	00
Result:	Full Sample				

Conditional on bond risk ratings, only two groups of bondholders appear to bias toward higher-yield bonds: individuals and other depository financial institutions (saving cooperatives and MMF).

Variable	Pension Fund	Mutual Fund	Insurance	Bank & SFI	Coop & MMF	Corporate	Individual	Others
Spread	-0.0729***	-0.0520***	-0.0240***	-0.0666***	0.0613***	0.00297	0.0268***	-0.0268**
	(0.0133)	(0.0125)	(0.00862)	(0.0207)	(0.0184)	(0.00750)	(0.00525)	(0.0134)
A group	0.00158***	-0.000368	-0.000553**	0.000733	0.000544	0.00100***	-0.00170***	0.000392
	(0.000492)	(0.000412)	(0.000265)	(0.000762)	(0.000755)	(0.000291)	(0.000241)	(0.000513)
BBB group	0.000645	0.000300	-0.000476*	-0.000104	0.000745	7.59e-05	7.82e-05	-0.000503
	(0.000480)	(0.000337)	(0.000261)	(0.000589)	(0.000608)	(0.000199)	(0.000153)	(0.000377)
Maturity	-0.00128***	-0.00141***	0.00127***	0.000126	0.00216***	-0.000135	0.000250***	0.000127
	(0.000151)	(0.000175)	(9.47e-05)	(0.000236)	(0.000181)	(9.23e-05)	(8.02e-05)	(0.000163)
Issue size	0.000826***	0.000939***	0.000409***	0.000818***	0.000813***	0.000922***	0.000901***	0.000933***
	(7.28e-05)	(8.14e-05)	(4.95e-05)	(0.000109)	(8.87e-05)	(5.53e-05)	(5.12e-05)	(9.13e-05)
GDP growth	0.0106***	0.0106***	0.00421***	0.0186***	0.0155***	0.0117***	0.00562***	0.0120***
-	(0.00291)	(0.00308)	(0.00158)	(0.00452)	(0.00301)	(0.00179)	(0.00151)	(0.00294)
SET volatility	0.0120***	0.00763***	0.00378***	0.0100***	0.00614***	0.00820***	0.00227**	0.0116***
	(0.00202)	(0.00219)	(0.00130)	(0.00315)	(0.00226)	(0.00127)	(0.00105)	(0.00231)
Observations	1,858	1,858	1,858	1,858	1,858	1,858	1,858	1,858

Table 3: Searching for Yield Estimation: Full Sample

 $^{***}\rho < 0.01, \, ^{**}\rho < 0.05, \, ^{*}
ho < 0.1$

Motivation 000 Risky Bond Issuance

Pricing of Risk

Search for Yield

Takeaways 00

Result: Samples of Investment Grade Bonds

Previous results still hold for the sample of investment-grade bonds, which are less prone to law and regulatory constraints.

Table 4: Searching for Yield Estimation: Only Investment-Grade Bonds

Variable	Pension Fund	Mutual Fund	Insurance	Bank & SFI	Coop & MMF	Corporate	Individual	Others
Spread	-0.156***	-0.112***	-0.0462***	-0.126***	0.122***	0.00253	0.0754***	-0.0604***
BBB group	(0.0248) -0.000306	(0.0228) 0.00139***	(0.0141) 0.000360	(0.0360) -0.000201	(0.0273) -0.000529	(0.0127) -0.00106***	(0.00957) 0.00101***	(0.0203) -0.000556
Maturity	(0.000388) -0.00134***	(0.000337) -0.00145***	(0.000248) 0.00159***	(0.000627) 0.000457	(0.000515) 0.00231***	(0.000251) -0.000133	(0.000207) 3.81e-05	(0.000392) 0.000273
indeancy	(0.000187)	(0.000199)	(0.000133)	(0.000297)	(0.000213)	(0.000126)	(0.000106)	(0.000205)
Issue Size	0.00104*** (8.87e-05)	0.00109*** (9.04e-05)	0.000486*** (5.96e-05)	0.000947*** (0.000133)	0.000971*** (0.000104)	0.00117*** (7.47e-05)	0.00102*** (7.09e-05)	0.00118*** (0.000115)
GDP growth	0.00925***	0.00940***	0.00436**	0.0206***	0.0202***	0.0155***	0.00880***	0.0144***
SET volatility	0.0144***	0.00928***	0.00477***	0.0120***	0.00688***	0.0109***	0.00323**	0.0155***
	(0.00241)	(0.00243)	(0.00156)	(0.00377)	(0.00263)	(0.00173)	(0.00139)	(0.00290)
Observations	1,430	1,430	1,430	1,430	1,430	1,430	1,430	1,430

 $^{***}\rho < 0.01, \, {}^{**}\rho < 0.05, \, {}^{*}\rho < 0.1$

Robustness Checks: alternative measures of bond holding & yields.

- Low interest rates are associated with greater issuance of bonds with worse risk ratings.
- However, we do not find evidence of compression of risk premium or underpricing of risks during these low-rate periods.

 \rightarrow Evidence of the risk-taking less clear-cut. Risky bond outstanding also low to begin with. \rightarrow Awareness may be placed on bonds from certain sectors.

- Individuals, rather than banks and institutional investors, are the prime holder of high-risk bonds.
- Conditional on bond risk ratings, individuals, and saving cooperatives and MMF reach for yields in their investment.

 \rightarrow Search for yield evidence among individuals requires improved market conduct. But, not much a concern due to investors being high net worth(?)

 \rightarrow In terms of financial-stability implications, need monitoring of investment from cooperatives.