Introduction 0000000 Theoretical Model

Experimental Design

Experimental Results

Augmented Theory

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • ○ ○ ○ 1/35</p>

Summary 0000

Income interdependence and informal risk sharing under the shadow of the future

Paan Jindapon¹ Pacharasut Sujarittanonta² Ajalavat Viriyavipart³

¹Department of Economics, University of Alabama
 ²Faculty of Economics, Chulalongkorn University
 ³Department of Economics, American University of Sharjah

PIER Research Workshop June 30, 2023 Introduction Theoretical Model

Experimental Design

Experimental Results

Augmented Theory

Summary 0000

Informal Risk Sharing

- Individuals may face income fluctuations.
- They may smooth consumption and protect themselves from bad times using insurance.
- In a society where market insurance is not available, an informal risk-sharing arrangement is crucial.
- Individuals facing adverse shocks may receive financial help in cash, in-kind transfers, or loans from those in better circumstances.

Introduction	Theoretical Model	Experimental Design	Experimental Results	Augmented Theory	Summary
000000		000000	000000000	000	0000
Literati	Ire				

Development Economics

- Theory
 - Coate and Ravallion (1993)
 - Townsend (1994)
 - Kocherlakota (1996)
- Evidence
 - India: Townsend (1994), Ligon et al (2002)
 - Nigeria: Udry (1994)
 - The Philippines: Fafchamps and Lund (2003)

< □ > < @ > < ≧ > < ≧ > ≧ - りへで 3/35

- Kenya: Jack and Suri (2014)
- China: Wu and Zhao (2020)

Experimental Results

Augmented Theory

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

Summary 0000

Literature

Experimental Economics

- In the field: Barr and Genicot (2008)
 - One-shot game
 - Social ties: Barr et al (2012), Attanasio et al (2012), Chandrasekhar et al (2018), Islam et al (2020)
- In the lab: Charness and Genicot (2009)
 - Infinitely repeated game

Introduction Theoretical Model Experimental Design Experimental Results Augmented Theory Summary

Infinitely-repeated risk-sharing game

 Subjects are randomly assigned to a group of two (fixed partners) for an uncertain number of periods in each segment.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- After a segment has ended, each subject will be randomly assigned a new partner for the next segment.
- The number of segments is also uncertain.

Introduction Theoretical Model Experimental Design Experimental Results Augmented Theory Summary 0000 Charness and Genicot (2009)

Two stages in each period:

- **Stage 1:** Each player receives an endowment and a 50% chance to receive additional income. Only one of the players receives the extra income.
- **Stage 2:** Each player privately and simultaneously chooses the transfer amount to the paired subject.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction Theoretical Model Experimental Design Experimental Results Augmented Theory Summary 0000 Charness and Genicot (2009)

< □ > < @ > < ≧ > < ≧ > ■ の < ♡ 7/35

Observe more transfer:

- with higher match continuation probability
- in treatments with equal endowment
- from more risk-averse subjects
- from men

Introduction 000000●	Theoretical Model	Experimental Design 000000	Experimental Results	Augmented Theory	Summary 0000
Motiva	tion				

- Charness and Genicot (2009) assume that there is always one (random) player that receives extra income.
 - Favorable for risk sharing since one player can always help the other.
- In many situations, individuals face similar shocks to their income, especially when they are neighbors or have similar characteristics.
 - The income correlation will not be -1, as assumed in Charness and Genicot (2009).
- This paper considers risk-sharing agreements under different income correlations.

- Infinitely repeated game with two risk-averse players
- In each period, each player is given an initial income of L and a random extra income Y_{i,t}.
- Suppose that the support of Y_{i,t} is {0, y}, with y > 0 and the joint PDF of Y_{1,t} and Y_{2,t} is given by

$$f(y_{1,t}, y_{2,t}) = \begin{cases} \frac{m-1}{2m} & \text{if } y_{1,t} = y_{2,t} \\ \frac{1}{2m} & \text{if } y_{1,t} \neq y_{2,t} \end{cases}$$

where $m \geq 1$.

Introduction	Theoretical Model	Experimental Design	Experimental Results	Augmented Theory	Summary
0000000	0●000	000000	00000000		0000
The Mo	odel				

Two implications:

• $Prob(Y_{i,t} = y) = Prob(Y_{i,t} = 0) = \frac{1}{2}$ for i = 1, 2.

•
$$Corr(Y_{1,t}, Y_{2,t}) = \frac{m-2}{m}$$
 where $m \ge 1$.

т	Corr	$\begin{vmatrix} y_{1,t} = y \\ y_{2,t} = y \end{vmatrix}$	$y_{1,t} = y$ $y_{2,t} = 0$	$y_{1,t} = 0$ $y_{2,t} = y$	$y_{1,t} = 0$ $y_{2,t} = 0$
1	-1	0	$1/_{2}$	$1/_{2}$	0
2	0	1/4	1/4	1/4	1/4
3	1/3	1/3	$^{1}/_{6}$	1/6	1/3
÷	÷	÷	÷	÷	:
∞	1	1/2	0	0	$^{1/2}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○ 10/35

Define

- H = L + y
- $\delta = \text{discount factor}$
- V_{t+1} = sum of all discounted utilities beginning in period t+1
- *rsa* = risk sharing agreement: the player with income *H* to transfer *x* to the player with income *L*
- *aut* = autarky: no transfer between players

Implementability (or sustainability) constraint:

$$u(H-x) + V_{t+1}^{rsa} \ge u(H) + V_{t+1}^{aut}$$

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の へ C 11/35

Introduction	Theoretical Model	Experimental Design	Experimental Results	Augmented Theory	Summary
0000000	000●0	000000	000000000		0000
The Mo	odel				

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ■ のへで 12/35

Numerical examples:

- CARA: $u(w) = -e^{-\alpha w}$ where $\alpha > 0$
- CRRA: $u(w) = w^{1-\beta}$ where $\beta \in (0,1)$

- $H L = 150 \rightarrow \text{first-best transfer} = 75.$
- $\delta = 0.9$
- m = 1, 2, 3

Introduction 0000000	Theoretical Model 0000●	Experimental Design	Experimental Results	Augmented Theory	Summary 0000

Note: $m = 1 \rightarrow Corr = -1$, $m = 2 \rightarrow Corr = 0$, $m = 3 \rightarrow Corr = \frac{1}{3}$.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 13/35

Introduction Theoretical Model

Model Experi •000

Experimental Design

Experimental Results

Augmented Theory

Summary 0000

Experimental Design

- Subjects are randomly assigned to a group of two (with the same counterpart) for an uncertain number of periods in each segment.
- The probability that a period is the last period of the segment is 10%.
- After a segment has ended, each subject will be randomly assigned a new counterpart for the next segment.

Introduction Theoretical Model Experimental Design

Experimental Results

Augmented Theory

Summary 0000

Experimental Design

Two stages in each period.

- **Stage 1:** Each player receives 75 units and a 50% chance to receive additional 150 units.
 - with negative/zero/positive correlation coefficients
- **Stage 2:** Notify about the outcomes and privately and simultaneously chooses the transfer amount to the counterpart.

Introd	luction
0000	0000

Experimental Results

Augmented Theor

< □ > < @ > < ≧ > < ≧ > ≧ ⑦ < ♡ 16/35

Summary 0000

Treatments

Treatment		Probability	of ext	ra income g	jiven to
т	Corr	Both players	Self	The other	Neither
1	-1	0	1/2	1/2	0
2	0	1/4	1/4	1/4	1/4
3	1/3	1/3	$^{1}/_{6}$	1/6	1/3

Introduction Theoretical Model

Experimental Design

Experimental Results

Augmented Theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 17/35

Summary 0000

Experimental Procedures

- The University of Alabama's TIDE Lab
- 3 treatments \times 10 cohorts \times 6 subjects = 180 subjects.
- Number of segments, number of periods in each segment, and matching in each segment were randomly determined once and applied across all cohorts.

Introduction Theoretical Model Experimental Design Experimental Results Augmented Theory Summary 000 Experimental Procedures

Before the main experiment, we collect information about risk preference (Gneezy and Potters, 1997).

• Subject earns 50 points and chooses how much to invest in a risky option.

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の へ C 18/35

• Risky option: Either lose or receive 2.5 times the amount invested with the same probability.

Introduction 0000000	Theoretical Model	Experimental Design ○○○○○●	Experimental Results 000000000	Augmented Theory	Summary 0000
Experim	nental Proc	redures			

- Each session lasted approximately 70 minutes.
- Earning = risk preference experiment + one random period from risk sharing experiment.
 - A conversion rate = 15 units for one dollar from both experiments.
 - Average earning = 22 (\$7.50 show-up fee included).
- Subjects are the University of Alabama undergraduate students. (Approx 40% are men)
- Survey includes questions about the game, descriptive characteristics, and CRT (average 2.2 out of 5).

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ ● ○ Q ○ 19/35

Introduction 0000000	Theoretical Model	Experimental Design 000000	Experimental Results	Augmented Theory	Summary 0000
Average	Transfer				

Treatment		Average transfer when extra income given to					
т	Corr	Both players	Self	The other	Neither	All cases	
1	-1	N/A	31.00 (37.50) [3,210]	7.17 (13.20) [3,210]	N/A	19.09 (30.53) [6,420]	
2	0	6.34 (19.51) [1,642]	18.71 (27.51) [1,566]	1.92 (5.69) [1,566]	2.04 (5.48) [1,646]	7.18 (18.53) [6,420]	
3	1/3	15.82 (32.17) [2,176]	34.37 (33.68) [1,042]	4.83 (10.94) [1,042]	4.57 (11.33) [2,160]	13.26 (26.62) [6,420]	

Notes: 1. Standard deviations are shown in parentheses.

2. Numbers of observations are shown in brackets.

Theoretical Model Experimental Results Augmented Theory 000000000

Average Transfer by Treatment

Introd	uction
0000	000

Zero Transfer

Treatment		Proportion of	f zero tran	sfers when e	extra incon	ne given to
т	Corr	Both players	Self	The other	Neither	All cases
1	-1	N/A	31.81% [3,210]	56.95% [3,210]	N/A	44.38% [6,420]
2	0	68.76% [1,642]	42.21% [1,566]	78.35% [1,566]	78.13% [1,646]	67.02% [6,420]
3	1/3	54.96% [2,176]	21.40% [1,042]	66.41% [1,042]	69.17% [2,160]	56.15% [6,420]

Note: Numbers of observations are shown in brackets.

 Introduction
 Theoretical Model
 Experimental Design
 Experimental Results
 Augmented Theory
 Sum

 Proportion of Zero
 Transfer by Treatment

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへで 23/3

Introduction 0000000 Theoretical Model

Experimental Design

Experimental Results

Augmented Theory

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Summary 0000

Distribution of Transfers

Figure: Distribution of transfer amounts from a player who is the only one receiving extra income

ntroduction Theoretical Model Experimental De

Experimental Results

Augmented Theory

Summary 0000

Average Transfer by Period

Figure: Average transfer by period from a player who is the only one receiving extra income

 Introduction
 Theoretical Model
 Experimental Design
 Experimental Results
 Augmented Theory
 Summary

 Regression Analysis (Tobit Models)

I. Determinants of transfers in all cases

	(1) Standard		(2) Clustered		(3) RE	
	Coef	S.E.	Coef	S.E.	Coef	S.E.
m = 1	20.12***	0.892	20.12***	0.940	21.03***	4.485
m = 3	8.581***	0.896	8.581***	0.913	12.61***	4.490
Invest	-0.173^{***}	0.031	-0.173^{***}	0.033	-0.254	0.157
Men	0.062	0.763	0.062	0.770	-0.567	3.995
CorrectCRT	-2.774***	0.251	-2.774***	0.256	-2.979**	1.292
Others1stTrans	1.665***	0.063	1.665***	0.085	0.943***	0.062
Others1stTrans $ imes$ H	-1.167^{***}	0.061	-1.167^{***}	0.082	-0.615^{***}	0.061
SegmentPeriod	-0.669***	0.071	-0.669***	0.072	-0.668***	0.067
Constant	-19.79^{***}	1.182	-19.79^{***}	1.229	-15.00***	5.245

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ℃ 26/35

Notes: 1. *, **, and *** indicate significance at the 10%, 5%, and 1% levels. 2. m = 2 is the base category. 3. N = 19,260.
 Introduction
 Theoretical Model
 Experimental Design
 Experimental Results
 Augmented Theory
 Summary

 Regression Analysis (Tobit Models)

II. Determinants of transfers from a player who is the only one receiving extra income

	(1) Standard		(2) Clustered		(3) RE	
	Coef	S.E.	Coef	S.E.	Coef	S.E.
m = 1	7.610***	1.347	7.610***	1.491	10.68*	5.485
m = 3	17.98***	1.670	17.98***	1.678	22.60***	5.548
Invest	-0.262***	0.047	-0.262***	0.051	-0.163	0.193
Men	4.436***	1.205	4.436***	1.222	3.154	4.915
CorrectCRT	0.716*	0.391	0.716*	0.397	0.993	1.588
Others1stTrans	1.833***	0.148	1.833***	0.197	1.053***	0.124
Others1stTrans $ imes$ H	-1.150^{***}	0.147	-1.150^{***}	0.194	-0.640***	0.122
SegmentPeriod	-0.662***	0.111	-0.662***	0.113	-0.665***	0.090
Constant	-2.011	1.863	-2.011	1.841	0.447	6.447

Notes: 1. *, **, and *** indicate significance at the 10%, 5%, and 1% levels. 2. m = 2 is the base category. 3. N = 5,818.

III. Determinants of first-time transfer from a player who is the only one receiving extra income

	(1) Standard		(2) Clus	tered	(3) RE	
	Coef	S.E.	Coef	S.E.	Coef	S.E.
m = 1	19.77***	2.769	19.77***	2.885	18.93***	6.118
<i>m</i> = 3	25.50***	2.915	25.50***	2.775	26.40***	6.160
Invest	0.011	0.099	0.011	0.107	0.020	0.215
Men	3.608	2.514	3.608	2.555	3.277	5.470
CorrectCRT	1.212	0.815	1.212	0.820	0.973	1.769
Constant	5.365	3.304	5.365*	3.128	5.331	7.139

Notes: 1. *, **, and *** indicate significance at the 10%, 5%, and 1% levels. 2. m = 2 is the base category. 3. N = 1,526.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 28/35

Introduction 0000000	Theoretical Model	Experimental Design 000000	Experimental Results	Augmented Theory ●00	Summary 0000
Altruist	ic players				

- $v(w_{i,t}, w_{-i,t}) = u(w_{i,t}) + \gamma u(w_{-i,t})$ where $\gamma \in [0, 1)$.
- V_{t+1}= sum of all discounted utilities v(w_{i,t}, w_{-i,t}) beginning in period t + 1

Implementability (or sustainability) constraint:

$$v(H-x, L+x) + V_{t+1}^{rsa} \ge v(H, L) + V_{t+1}^{aut}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 29/35

Introduction Theoretical Model Experimental Design Experimental Results Augmented Theory Summary

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 30/35

Numerical examples:

• Same parameters with m = 3 only

Introduction 0000000	Theoretical Model	Experimental Design	Experimental Results 000000000	Augmented Theory 00●	Summary 0000

Figure: Maximum transfer in equilibrium given m = 3

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り Q (~ 31/35)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 32/35

Summary

- Experimental results support the model of risk sharing without commitment.
 - Transfer more often & with a higher amount when they receive extra income and their counterparts do not.
 - Men, risk-averse subjects, and those with more correct CRT questions engage more in risk sharing.

Summa	00000				
Introduction 0000000	Theoretical Model	Experimental Design 000000	Experimental Results	Augmented Theory	Summary 0●00

- Theory predicts a negative relationship between the correlation of receiving the extra income and engagement in risk sharing.
- In contrast, we observe that subjects in the treatment with a positive correlation transfer the most often and with the highest amount.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 33/35

• To explain this result, we include directed altruism in the theoretical model.

Introduction Theoretical Model Experimental Design

Experimental Results

Augmented Theory

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ · ∽ Q @ 34/35

Summary 0000

Areas for future research

- Framing as a loss instead of gain
- Insurance vs. Risk sharing

Introduction Theoretical Model Experimental Design

Experimental Results 000000000 Augmented Theory

Summary 000●

Thank you!