Why Do Oaths Work?

Sorravich Kingsuwankul Chloe Tergiman Marie Claire Villeval

The Announcement Game

Game Structure:

- Nature draws product quality for a set of three cards, each has a probability 0.5 of displaying a star, which indicates a successful project.
- Advisor observes and sends unverifiable message (0–3 stars) to investor.
- Investor chooses whether to invest or not.

Payoffs:

- If no investment: both earn fixed payoff (30 for advisor and 100 for investor).
- If invest:
 - Advisor gets commission (total earnings = 230).
 - Investor's payoff depends on a draw from 3 cards.
 - If a star is drawn, earns 300.
 - If a blank card is drawn, earns 30.

Treatments

- Baseline: No-Oath
- Oath treatments: "I swear upon my honor that during this experiment I will behave honestly and I will always tell the truth."
 - Public-Oath: common knowledge
 - Private-Oath: known only to advisor
 - Private-Oath⁺⁺: impossible for the experimenter to link subjects to their decisions

Only investor treatments:

- Necessary condition: use empirical distribution of the advisor in the Public-Oath treatment but doesn't know about the oath
- Sufficient condition: know about oath and match with advisor in the Public-Oath treatment but choose distribution similar to the Private-Oath treatment

Main Results – Advisors

Table 1: Detectable and deniable lies in the No-Oath, Public-Oath, and Private-Oath treatments

	(1)	(2)	(3)	(1-2)	(2-3)	(1-3)
Treatments	No-Oath	Public-Oath	Private-Oath		p-value	
All A players						
% Player A who always tell the truth	9.2%	74.0%	39.7%	p<0.001	p<0.001	p<0.001
% Untrue announcements	52.3%	10.8%	27.7%	p<0.001	p<0.001	p<0.001
Relative frequency Detectable lies Deniable lies	25.2% 57.4%	3.9% 13.8%	9.6% 37.9%		p = 0.002 p < 0.001	p < 0.001 p = 0.001
Absolute frequency Detectable lies Deniable lies	71.1% 86.8%	11.7% 23.4%	32.9% 56.2%		p = 0.002 p < 0.001	p < 0.001 p < 0.001
Among A players who lie at least once						
% Untrue announcements	57.6%	41.4%	46.0%	p = 0.010	p = 0.397	p = 0.004
Relative frequency Detectable lies Deniable lies	27.8% 63.2%	15.0% 53.2%	15.9% 62.8%	•	p = 0.593 p = 0.316	p = 0.003 p = 0.884
Absolute frequency Detectable lies Deniable lies	78.3% 95.7%	45.0% 90.0%	54.5% 93.2%	•	•	•

Notes: Relative frequency statistics show the average frequency with which participants engage in any particular type of lie. Absolute frequency statistics show the proportion of A players who make any particular type of lie at least once. The relative frequency of detectable lies corresponds to how often A players who saw fewer than three stars announced three stars. The relative frequency of deniable lies corresponds to how frequently A players who saw fewer than two stars reported two stars or announced one star while seeing none. This table presents data both for all A players (top panel) and for the subset who make at least one lie (lower panel).

Suggestions

- Avoid requiring readers to read footnotes to decode key metrics.
 - "% of lies per opportunity (relative)"
 - "% of advisors who lied at least once (absolute)"
- Add number of subjects or observations
- More details of lying behavior (maybe in the appendix)

Observed \ Announced	0 Star	1 Star	2 Stars	3 Stars
0 Stars	√	Deniable	Deniable	Detectable
1 Star		√	Deniable	Detectable
2 Stars			✓	Detectable
3 Stars				\checkmark

Investor Behavior

- Investor decisions reflect advisor honesty across treatments.
- Investment rates given the same announced stars
 - Public-Oath > Private-Oath > No-Oath
 - Necessary condition ≈ Public-Oath
 - Sufficient condition ≈ Private-Oath

Concern

- Necessary and Sufficient treatments involve pre-selecting advisors based on behavior observed in earlier treatments.
- This introduces a gray area in experimental transparency:
- Necessary condition:
 - Investors are not fully informed about the oath or the matching procedure.
 - Typically seen as less problematic, but still not fully transparent.
- Sufficient condition:
 - Advisor behavior is real, but investor matching is engineered to fit the treatment logic.
 - May be viewed by some experimentalists as a form of deception.
- Implication: While this enables clear identification of mechanisms, it may conflict with norms against deception in experimental economics.

Suggestions & Open Questions

- Investigate individual heterogeneity (gender?)
- Would a voluntary oath affect behavior differently than a mandatory one?
- In real-world settings, commissions create strong monetary incentives.
 - If oaths are mandated, agents who are oath-sensitive may exit or underperform while agents who are oathinsensitive may lie more and succeed.
 - This creates a selection problem: oaths may not change average behavior, just who stays in the industry.