Macroeconomic Implications of Catastrophe Bond Adoption

Panit Wattanakoon and Wanissa Suanin Faculty of Economics, Thammasat University

PIER Research Workshop

July, 2025

Motivation

- Climate change is intensifying extreme weather, especially floods, which are increasingly frequent and damaging in developing economies
 - ► IPCC (2022): under high-emission scenarios, the risk of large-scale floods will rise significantly
- Floods cause widespread macroeconomic disruption:
 - Destroy capital and reduce output
 Weaken household and firm balance sheets
 - vveaken nousehold and intri balance sheets
 - Force governments into costly borrowing, raising debt and bond spreads
 - ► These shocks often reinforce each other, heightening default risk and causing financial instability
- CAT Bonds offer a solution:
 - Provide pre-arranged financing triggered by disaster events
 - Transfer risk to global investors
 - ▶ Help stabilize fiscal conditions and investor confidence when shocks hit

Key Takeaways

Objective

Assess how sovereign CAT bonds (Indemnity Loss Vs Parametric
 Triggers) reduce flood-related macroeconomic and welfare losses using
 a calibrated small open economy model of the Thai economy

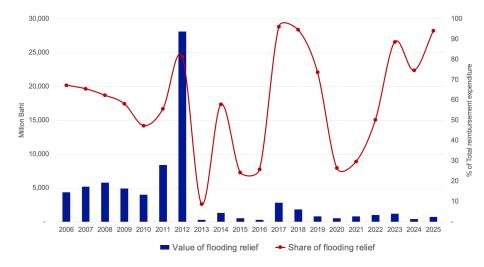
Key Findings

- Both triggers cushion capital, output, consumption, and gov. net worth
- \blacksquare Parametric CAT bonds dominate: faster payout \to lower spreads and lifetime welfare losses
- Trade-off: CAT bonds increase public debt, which crowds out capital inflows

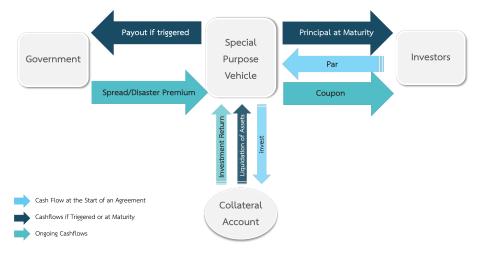
Why Thailand?

- High Flood Risk: Chronic exposure to flood events that are severe enough to cause economic disruptions but not large enough to cause humanitarian crisis.
- Fiscal Vulnerability: Limited fiscal space constrains post-disaster response, increasing reliance on debt and widening sovereign spreads
- Access to Capital Markets: Thailand has sufficient financial depth and creditworthiness to issue CAT bonds in global markets

High Flood Risk in Thailand



What is Catastrophe Bond?



Type of Triggers

Indemnity Trigger

- Payout based on actual losses exceeding a threshold
- Insurer compensates the issuer for the measured damage
- Advantage: High accuracy
- Drawback: Slow payout due to damage assessment

Parametric Trigger

- Payout based on physical indicators (e.g., rainfall, flood depth) exceeding a threshold
- Issuer receives a fixed amount regardless of actual losses
- Advantage: Rapid payout
- Drawback: Basis risk payout may not match actual loss

Baseline Model

Consider a small open economy with a representative sovereign government à la Phan and Schwartzman (2024):

lacksquare A single consumption goods produced from capital K_t and L_t from

$$Y_t = (e^{-x_t d_t} K_t)^{\alpha} (A_t)^{1-\alpha}$$

where

 $\alpha \in (0,1)$: capital share L_t : supplied inelastically

Shocks via TFP and weather:

 A_t : a TFP, a random walk with i.i.d. growth shock g_t $\log \frac{A_{t+1}}{A_t}$ from a distribution Φ_g . $x_t = 1$ if a flood hits, and 0 otherwise. $d_t \geq 0$: level of damage of flood toward the capital stock

Preferences

■ The representative government maximizes Epstein and Zin (1989) recursive preferences

$$V_{t} = \left(C_{t}^{1-\iota} + \beta E_{t} (V_{t+1}^{1-\gamma})^{\frac{1-\iota}{1-\gamma}}\right)^{\frac{1}{1-\iota}}$$

where

 ι : the inverse intertemporal elasticity of substitution, bounded within 1

 γ : the relative risk aversion coefficient

 β : the discount factor

 C_t : government consumption in the current period.

Sovereign Borrowing

- The government has access to one-period non-contingent bonds issued by risk-neutral international lenders with a promise to repay one unit of consumption good in the subsequent period.
- The country can decide either to repay the debt or default.
 - If default, bear deadweight loss of a fraction ℓ_t of the country's output
 - Immediately able to access the international credit market after default
 - ▶ The specification of a procyclical fractional loss $\ell_t = \ell(g_t)$ is defined as:

$$\ell(g') = \bar{\ell} e^{\psi g'}, \psi \ge 0, \bar{\ell} > 0,$$

where

g': next period growth shock

 ψ : the responsiveness of the default to the loss fraction.

Optimization Problem

- After growth and weather shocks, the government chooses
 - to repay or to default on its outstanding debt,
 - ▶ the value of new bonds issued (b_n) , and
 - ightharpoonup new capital investment (k_n) .
- All variables are detrended by the productivity A_t .
- The government's optimization problem with one state variable: the country's net worth m,

$$\nu(m)^{1-\iota} = \max_{k_n \ge 0, b_n} c^{1-\iota} + \beta E \left[\nu(\max\{m_R', m_D'\})^{1-\gamma} e^{(1-\gamma)g'} \right]^{\frac{1-\iota}{1-\gamma}}$$
(1)

subject to budget constraint:

$$c = m - k_n + q(b_n, k_n)b_n$$

where $q(b_n, k_n)$: bond price schedule.

Next-Period Variables after Realized Shocks

■ The detrended next-period debt (b') and capital stocks (k') after the realized subsequent-period shocks are as follows:

$$b' = e^{-g'}b_n$$

$$k' = e^{-x'd'-g'}k_n$$

- The next-period country's net worth is defined as $m' = \max\{m'_R, m'_D\}$
 - m_R if the government repays the debt,
 - $ightharpoonup m'_D$ if the government decides to default

$$m_R' = (k')^{\alpha} + (1 - \delta)k' - b'$$
 (2)

$$m_D' = (1 - \ell(g'))(k')^{\alpha} + (1 - \delta)k',$$
 (3)

where δ is depreciation rate.

Decisions to Default

- Default when
 - country's net worth if repayment is lower than that if default,
 - ightharpoonup its debt over GDP is greater than the output lost fraction $\ell(g')$, or
 - the weather-adjusted growth term $\tilde{g}' = g' \frac{\alpha}{1-\alpha+\psi} x' d'$ is less than an endogenous default threshold $\bar{g}(b_n,k_n) = \frac{\alpha}{1-\alpha+\psi} \ln \frac{b_n}{\bar{\ell} k_n^{\alpha}}$

$$m_{R}' < m_{D}' \Leftrightarrow \frac{\underline{b'}}{\underline{k'^{\alpha}}} > \ell(g') \Leftrightarrow \frac{\underline{b'}}{\underline{a'}} > \frac{\partial}{\partial x} = \frac{\alpha}{1 - \alpha + \psi} \ln \frac{b_{n}}{\overline{\ell} k_{n}^{\alpha}}$$

$$\underbrace{g' - \frac{\alpha}{1 - \alpha + \psi} x' d'}_{\tilde{g}'} < \underbrace{\frac{\alpha}{1 - \alpha + \psi} \ln \frac{b_{n}}{\overline{\ell} k_{n}^{\alpha}}}_{\bar{g}(b_{n}, k_{n})}$$
(4)

- Default threshold \bar{g} rises with b_n and falls with k_n
- When ψ increases, amplifying the responsiveness of default costs to the growth shock g', the sensitivity of the default threshold \bar{g} to changes in debt and capital stock diminishes

Equilibrium Bond Price

In a competitive credit market with risk-neutral lenders who account for the possibility of default, this schedule is determined by:

$$q(b_n, k_n) = \frac{1 - s(b_n, k_n)}{1 + r}, \forall b_n, k_n,$$
 (5)

where

r is the world risk-free interest rate

s is the sovereign default spread defined as the probability of default with repayment and default net worth (m_R') and m_D'

$$s(b_n, k_n) = \Pr[m'_R < m'_D]$$

$$= \Pr[\tilde{g}' < \bar{g}(b_n, k_n)]$$

$$= (1 - p)\Phi_g(\bar{g}) + pE_{d'} \left[\Phi_g\left(\bar{g} + \frac{\alpha}{1 - \alpha + \psi}d'\right)\right]$$
(6)

Vicious Feedback Loop

Spreads, Capital, and Disaster Risk

- ► The shape of the spread schedule *s* reflects how borrowing costs respond to disaster risk
- Equilibrium spreads:
 - Increase with higher debt issuance b_n
 - Decrease with more next-period capital k_n
 - Reason: More capital raises the default threshold b, shrinking the default region

Vicious Cycle of Capital and Spreads

- ► This feedback loop magnifies economic vulnerability
- ► Key channel in the transmission of weather shocks

Government with CAT Bond Adoption

- The representative government decides the composition of debt issuance between regular and CAT bonds.
 - ▶ $\theta \in [0,1]$ as a fraction of CAT bond in total debt portfolio.

$$\nu(m)^{1-\iota} = \max_{k_n \ge 0, b_n, \theta} c^{1-\iota} + \beta E \left[\nu(\max\{m_R', m_D'\})^{1-\gamma} e^{(1-\gamma)g'} \right]^{\frac{1-\iota}{1-\gamma}}$$

subject to

$$c = m - k_n + q(b_n, k_n, \theta)b_n$$

$$b' = (1 - T'\theta)e^{-g'}b_n$$

$$k' = e^{-x'd'-g'}k_n$$

$$m'_R = k'^{\alpha} + (1 - \delta)k' - b'$$

$$m'_D = (1 - \ell(g'))k'^{\alpha} + (1 - \delta)k'$$

q now represents the price of the entire bond portfolio as follows:

$$q(b_n,k_n)=\frac{1-s(\bar{g}(b_n,k_n),\theta)}{1+r}$$

Triggers

- Denote T' as the dummy for the CAT Bond trigger.
 - $ightharpoonup T'_d$ for indemnity loss trigger
 - $ightharpoonup T_p'$ for parametric trigger
- CAT bond is triggered (T' = 1) when the disaster hit (x' = 1), there are newly bond issued ($b_n > 0$) and
 - ▶ the damage is big enough $(d' > \bar{d})$ for indemnity loss trigger, or
 - lacktriangle the degree of disaster is large enough $(\omega'>ar{\omega})$ for parametric trigger

$$T'_d = x' 1_{d' > \bar{d}} 1_{b^n \ge 0} \tag{7}$$

$$T_p' = x' \mathbf{1}_{\omega' > \bar{\omega}} \mathbf{1}_{b^n \ge 0} \tag{8}$$

Spread for Indemnity Loss

$$s(\bar{g}, \theta, \bar{d}) = (1 - p) \Phi_{g}(\bar{g})$$

$$+ p \int_{0}^{\bar{d}} \Phi_{g}(\bar{g} + \frac{\alpha}{1 - \alpha + \psi} d') f_{d'}(d') dd'$$

$$+ p(1 - \theta) \int_{\bar{d}}^{\infty} \Phi_{g}(\bar{g} + \frac{\alpha}{1 - \alpha + \psi} d' + \underbrace{\frac{1}{1 - \alpha + \psi} \ln(1 - \theta)}_{<0, \text{ reduced default risks.}}) f_{d'}(d') dd'$$

$$+ \underbrace{p \theta \left[1 - \int_{\bar{d}}^{\infty} \Phi_{g}(\bar{g} + \frac{\alpha}{1 - \alpha + \psi} d' + \frac{1}{1 - \alpha + \psi} \ln(1 - \theta)\right) f_{d'}(d') dd'}_{>0, \text{ CAT bond premium}}$$
(9)

Spread for Parametric Trigger

$$s(\bar{g}, \theta, \bar{\omega}) = (1 - p) \Phi_{g}(\bar{g})$$

$$+ p \int_{0}^{\bar{\omega}} \Phi_{g}(\bar{g} + \frac{\alpha}{1 - \alpha + \psi} \mu_{p} \omega') f_{\omega'}(\omega') d\omega'$$

$$+ p(1 - \theta) \int_{\bar{\omega}}^{\infty} \Phi_{g}(\bar{g} + \frac{\alpha}{1 - \alpha + \psi} \mu_{p} \omega' + \underbrace{\frac{1}{1 - \alpha + \psi} \ln(1 - \theta)}_{<0, \text{ reduced default risks.}}) f_{\omega'}(\omega') d\omega'$$

$$+ p \theta \left[1 - \int_{\bar{\omega}}^{\infty} \Phi_{g}(\bar{g} + \frac{\alpha}{1 - \alpha + \psi} \mu_{p} \omega' + \frac{1}{1 - \alpha + \psi} \ln(1 - \theta)) f_{\omega'}(\omega') d\omega'\right]$$

$$> 0, \text{ CAT bond premium}$$

$$(10)$$

19/25

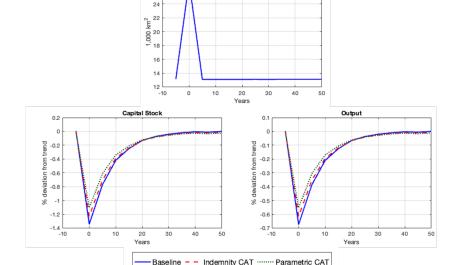
Calibrated Parameters

	Parameter	Value	Source
	period length	5 years	
α	capital share	1/2	Bank of Thailand
β	discount factor	0.96^{5}	Standard RBC values
δ	depreciation	$1 - 0.9^5$	
r	world interest rate	$1.01^5 - 1$	
ℓ	inverse elasticity of substitution	0.5	Courio (2012)
γ	risk aversion	4	Gourio (2012)
$\mu_{\sf g}$	mean TFP growth	$1.006^{20} - 1$	Aguiar&Gopinath (2007)
$\sigma_{\sf g}$	std of TFP growth	$0.0213\sqrt{20}$	
ℓ	default cost constant	0.07	Aguiar et al. (2016)
ψ	default cost curvature	7	
р	flood probability	0.30	Worawiwat et al. (2021)
μ	marginal output damage	0.0481	Tanoue et al. (2020)
Φ_d	shape of Gamma distribution	0.3391	S.&W. (2023)
	scale of Gamma distribution	148.7617	
ā	Indemnity Loss Trigger	90th percentile of d	Standard CAT Bond
$\bar{\omega}$	Parametric Trigger	90th percentile of ω	Standard CAT Bond

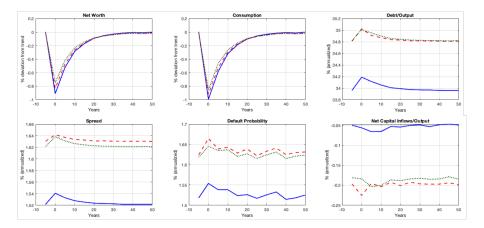
Flood Intensity

IRF on detrended capital and output

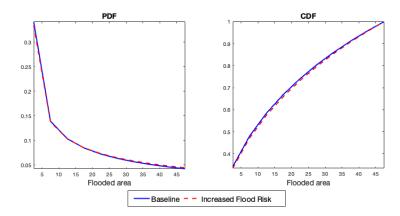
26



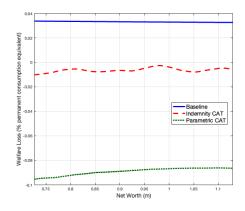
IRF on other detrended macro variables



Climate Shock: a rise in 30% of flood risk



Welfare Losses



- A change in welfare after the effect of climate change from $\Delta w = 1 \frac{E_+[\nu_+(m)]}{E[\nu_-(m)]}$
 - \triangleright E[v(m)] as the lifetime utility for a given net worth level m
 - \triangleright $E_{+}[v_{+}(m)]$ as those under the increased flood risk scenario

Conclusions

Key Findings

- Both indemnity and parametric CAT bonds cushion declines in capital, output, consumption, and gov. net worth after floods
- Parametric CAT bonds are more effective:
 - ▶ Provide immediate liquidity, reducing default risk
 - Lower sovereign spreads and lifetime welfare losses (via smoother consumption)
- Nonethelss, both increase public debt, temporarily crowding out capital inflows

Policy Takeaways

 Adopt a layered risk financing strategy: Parametric CAT bonds for extreme events, while budgetary buffers for moderate shocks

Future Plan

- Extend to mixed parametric&indemnity CAT bond, multi-period climate trends, household&firm heterogeneity, CAT Bond contract design
- Empirical data on CAT bond-capital flow dynamics