Supply-Side Tightening and Credit Rationing in Post-COVID Thailand

Author: Varit Bhanijkasem, Thanapoom Nisamaneewong

Organization: Monetary Policy Department, Bank of Thailand

Email: varitb@bot.or.th, thanapon@bot.or.th

Key contributions:

- Bring together granular firm-bank matched data (firms' financial statements and loan-level credit registry) to structurally identify credit demand and supply, moving beyond survey-based evidence.
- Introduce a novel aggregate credit tightness indicator to capture macro-level credit frictions.

Key takeaway:

- Firms' fragility persists post-COVID, but firms with credit access recover faster.
- Observed credit rationing (post-COVID) is largely driven by macro-level credit frictions not just firm fundamentals highlighting the need for targeted policy support.

Motivation:

- In the wake of COVID-19, corporate credit growth, particularly among SMEs, remained weak despite economic reopening.
- This raises a key question: does the slowdown reflect lower credit demand, or are viable firms being rationed by cautious lenders?

Data: This study uses three datasets including:

Firm-level Financials (CPFS database, DBD) Loan-level Credit Registry (LARSMD database, BOT)

Bank Supervisory Data (BOT)

Firms are matched across datasets via masked firm's / bank's id. The sample spans 2012 to 2024 and covers ~ 15k firms per year, enabling analysis of both pre- and post-COVID dynamics.

Part 1: Firms' resiliency and credit access:

Key observations:

- Firms show persistently weaker solvency post-COVID.
- Profitability improved by 2023, but smaller firms still lag behind. Firms with credit access appear more resilient, with levels close to their pre-COVID baseline.

Figure 3: Firm Profitability by Revenue Decile

Figure 4: Firm Solvency by Revenue Decile

Note: Revenue decile (2 = smallest, 10 = largest, remove first decile to adjust for some data irregularities). Balanced sample with 321k, 37k, and 28k firms respectively

Part 2: Quantifying Credit Rationing with bank-firm level data

We apply a market disequilibrium framework (Maddala & Nelson, 1974) to separate latent credit demand and supply, using observed loan margins and quantity.

Loan Quantity

Model Setup: Let P and Q denotes the observed loan margin (effective rate minus policy rate) and loan quantity for each firm-bank relationship. Latent credit demand and supply are modeled as linear functions of observables:

$$Q_d = X_d' \beta_d$$
, $Q_S = X_S' \beta_S$ where $Q = \min(Q_d, Q_S)$ is observed.

We estimate both equations jointly via 2-step procedure.

- 1st: estimate loan margin using observables in $X = X_d \cup X_s$
- 2^{nd} : Use full-information MLE (Maddala & Nelson) to estimate β_d , β_s .

Baseline Result: (sample = 178k firm-bank data)

(Dependent variable)	Interest rate eq. (Loan margin)	Demand eq. (Loan quantity)	Supply eq. (Loan quantity)
Loan margin	-	-0.71 ***	0.24 ***
Short maturity	0.04 ***	0.14 ***	_
NPLSM	-0.02 ***	-	-0.02 ***
NPLSM*TFRS9	0.05 ***	_	0.08 ***
Tier-1 Capital Ratio	0.05 ***	_	-0.03 ***
Firm assets	-0.43 ***	0.46 ***	0.65 ***
Internal Financing (Cashflow / Sales, Trade Credit / Asset)	✓	✓	_
Firm's Vulnerability (Debt/Asset, EBIT Margin, Current Ratio, Interest Coverage Ratio)	√	-	
Collateralization	✓	-	✓
Fixed effects	Years, Sectors, Banks, Districts	Years, Sectors, Districts	Years, Sectors, Banks

Measuring degree of tightness / rationing:

Q: What is credit rationing?

A: 'Credit rationing refers to a situation in which, at prevailing market interest rate, **the quantity of credit demanded exceeds the quantity supplied**, and lenders are unwilling to extend additional credit even to borrowers who are willing to pay higher interest rates.' – Stiglitz & Weiss (1981)

We can calculate firm-level probability of rationing (π) with

$$\pi = P(Qd > Qs \mid X) = \mathbf{\Phi}\left(\frac{Q_d - Q_s}{\sqrt{(\sigma_d)^2 + (\sigma_s)^2}}\right)$$

Burlon et al (2016) proposed rationing indicator (I1) where

I1 = proportion of firms which π > 0.8

To isolate the drivers of rationing, we construct an aggregate tightness index (AT), defined as the difference between year fixed effects from the latent demand and supply equations. This captures macro-level credit market conditions that shift the entire distribution of firms in each year.

$$AT_t = \alpha_t^d - \alpha_t^s$$

We interpret I1 as a function of AT and other heterogeneity:

 $I1 = f(AT_t, other heterogeneity factor).$

Conclusion:

- Credit access remains essential for SME recovery, yet many viable firms continue to face constraints from system-wide frictions.
- These non-price rationing do not necessarily reflect broad-based credit tightening but can limit the effectiveness of traditional MP easing. Hence, targeted credit measures to improve access are especially important in this period.

References:

- Burlon, Lorenzo, Davide Fantino, Andrea Nobili, and Gabriele Sene. "The Quantity of Corporate Credit Rationing with Matched Bank-Firm Data." Bank of Italy working Paper No. 1097, 2016.
- Fair, Ray C., and Dwight M. Jaffee. "Methods of Estimation for Markets in Disequilibrium." *Econometrica* 40, no.3 (1972): 497-514.
- Maddala, G. S., and Forrest D. Nelson. "Maximum Likelihood Methods for Models of Markets in Disequilibrium." *Econometrica 42,* no. 6 (1974): 1013-30.
- Stiglitz, Joseph E., and Andrew Weiss. "Credit Rationing in Markets with Imperfect Information." *The American Economic Review* 71, no. 3 (1981): 393-410.
- Tangsawasdirat, Bhumjai, S. Tanpoonkiat, B. Tangsatchanan (2021): "Credit Risk Database: Credit Scoring Models for Thai SMEs." PIER Discussion Paper, No. 168.