Periphery Dealers in Over-the-counter Markets

Chutiorn Tontivanichanon

PIER Research Exchange

15 October 2019
Figure: Inter-dealer network for securitized product (Hollifield et al (2017)), corporate bonds (Di Maggio et al (2017)), and municipal bonds (Li & Schürhoff (2019))

Persistent core-periphery dealer network:
- core (supplier) → market-making (principal)
- periphery (distributor) → pre-arrange trades between central dealers and investors (riskless principal/agency)
Question: Why some buy-side investors prefer trading with periphery dealers (distributors) instead of core dealers (suppliers)? Why periphery dealers can co-exist with core dealers?

Objective:
1. construct a game-theoretic model to study strategic dealer choice of buy-side investors.
2. implications of vertical market fragmentation on market efficiency and stability.

Theoretical Framework:
- **Literature:** (random) search and matching model.
- **This paper:** long-term non-binding relationship formation model
This Paper

Question: Why some buy-side investors prefer trading with periphery dealers (distributors) instead of core dealers (suppliers)? Why periphery dealers can co-exist with core dealers?

Objective:

1. construct a game-theoretic model to study strategic dealer choice of buy-side investors.
2. implications of vertical market fragmentation on market efficiency and stability.

Theoretical Framework:

Literature: (random) search and matching model.

This paper: long-term non-binding relationship formation model
Outline

1. Basic model.
 ▶ Why/how do investors form long-term relationship with dealers?
2. The model with agency dealer.
 ▶ When will investors prefer trading with periphery dealers?
3. The model with heterogeneous investors (SKIP)
4. Discussion on allocative efficiency and market stability.
5. Conclusion
Basic Model – Primitives

- A market for indivisible goods – liquidity provision service.
- Infinite periods, discount factor δ.
- Players:
 - n number of homogeneous long-lived investors
 - a long-lived principal dealer P (supplier).
 - a non-strategic long-lived principal dealer P' (supplier).
Basic Model – Investors

Investor $i \in I$
- i.i.d. one-unit liquidity demand $l_{it} \in \{0, 1\}$ with $Pr(l_{it} = 1) = q$.
- Private valuation of liquidity service

 \[
 V_{it} = \begin{cases}
 0 & \text{if } l_{it} = 0 \\
 V & \text{if } l_{it} = 1.
 \end{cases}
 \]

- Cash endowment V_L
- Payoff = $\hat{1}(obtain\ liquidity)V_{it} +$ net cash holding
Basic Model – Principal Dealers

A principal dealer P (i.e core dealers)

- Can provide liquidity service at per-unit cost of

$$C_t = \begin{cases}
0 & \text{if } \theta_t = G \\
C & \text{if } \theta_t = B.
\end{cases}$$

where θ_t = random market state with $Pr(\theta_t = G) = p$

- Payoff = profits from providing liquidity service.

A non-strategic principal dealer P'

- Same cost function with P

- Always quote price = C_t (outside option of investors)
Trading Timeline – Take-it-or-leave-it Bargaining

For each period t,

1. θ_t realized and l_{it} observable to i.
2. Principal dealer P quotes a price $\beta_{it} \geq 0$ to every investor.
3. Each investor i decides $\gamma_{it} \in \{0, 1\}$.
4. P observes $l_t = \{l_{it}\}_i$.

- Equilibrium: P and I maximize their discounted sum of all future payoffs.
Basic Model – Trade Friction

Assumption: $V > C > V_L$

- Urgent asset demand with insufficient cash.
- Urgent needs to sell asset to meet high cash target.

Implication: no trade/asset fire-sale phenomenon during bad states
Result I: Trade Occurs With Long-term Relationship

Non-binding agreement between P and i

- P provides liquidity at price x_B in bad states.
- i pays x_G in good states.
- relationship continues as long as no one deviates...
Result II: But Investors Must Be **Frequent** Customers...

 Commitment problem \rightarrow relationship failure.

* Proposition: investors must have frequent liquidity shock for successful relationship.

What if investors rarely need liquidity...?
Result II: But Investors Must Be **Frequent** Customers...

- Commitment problem \rightarrow relationship failure.
- **Proposition:** investors must have frequent liquidity shock for successful relationship.

What if investors rarely need liquidity...?
Result II: But Investors Must Be **Frequent** Customers...

- Commitment problem \rightarrow relationship failure.
- **Proposition: investors must have frequent liquidity shock for successful relationship.**

What if investors rarely need liquidity...?
Rationale of Agency Dealers

(a) No relationship

(b) Coalition under full information

(C) A as facilitator under limited information

- No relationship when \(Q \) low.
- What if \(I \) forms coalition \(\rightarrow\) pool of liquidity demand \(\rightarrow\) \(Q \) high.
- BUT \(i \) must know what others did for collective punishment
Rationale of Agency Dealers

(a) No relationship

(b) Coalition under full information

(C) A as facilitator under limited information

- No relationship when Q low.
- What if I forms coalition \rightarrow pool of liquidity demand $\rightarrow Q$ high.
- BUT i must know what others did for collective punishment
Rationale of Agency Dealers

(a) No relationship

(b) Coalition under full information

(C) A as facilitator under limited information

- No relationship when \(Q \) low.
- What if \(I \) forms coalition \(\rightarrow \) pool of liquidity demand \(\rightarrow Q \) high.
- BUT \(i \) must know what others did for collective punishment.
Rationale of Agency Dealers

- **(a)** No relationship
- **(b)** Coalition under full information
- **(C)** A as facilitator under limited information

- Currently: post-trade information **without trader identity**.
- A third party A (i.e. periphery dealers) as an agent for P (i.e. core dealers) and I in partially-transparent market.
Rationale of Agency Dealers

(a) No relationship

(b) Coalition under full information

(C) A as facilitator under limited information

- Currently: post-trade information **without trader identity**.
- A third party A (i.e. periphery dealers) as an agent for P (i.e. core dealers) and I in partially-transparent market.
The Model with Agency Dealer

Add an agency dealer A (i.e. periphery dealers) to the model

- Intermediate trades between P and I
- No intermediation cost and can charge fees to investors.
- Payoff: profits from intermediation fees

Trading: Sequential take-it-or-leave-it bargaining.

Relationship: informal agreement on wholesale price, fees, and maximum quantity to sell in bad times (quota).
The Model with Agency Dealer

Add an agency dealer A (i.e. periphery dealers) to the model
- Intermediate trades between P and I
- No intermediation cost and can charge fees to investors.
- Payoff: profits from intermediation fees

Trading: Sequential take-it-or-leave-it bargaining.
- Relationship: informal agreement on wholesale price, fees, and maximum quantity to sell in bad times (quota).
The Model with Agency Dealer

Add an agency dealer A (i.e. periphery dealers) to the model

- Intermediate trades between P and I
- No intermediation cost and can charge fees to investors.
- Payoff: profits from intermediation fees

Trading: Sequential take-it-or-leave-it bargaining.

Relationship: informal agreement on wholesale price, fees, and maximum quantity to sell in bad times (quota).
Result III: Agency Dealer Helps **Infrequent** Investors Obtain Liquidity in Bad Times...

How: liquidity shock aggregation + low quota
Result III: Agency Dealer Helps *Infrequent* Investors Obtain Liquidity in Bad Times...

How: liquidity shock aggregation + low quota

But:

1. must leave enough surplus (intermediation fees) to incentivize A (agency cost).
2. effective only when the investors rarely demand liquidity simultaneously – HERE.
Result III: Agency Dealer Helps Infrequent Investors Obtain Liquidity in Bad Times...

Corollary: Provided that the probability of liquidity shock is low enough, A can help excluded investors form relationship if \(\frac{\text{quota}}{n(\text{investors})} \) is sufficiently low.
Empirical Implication: Longer Intermediation Chain ≠ Higher Price

Let $x_G =$ minimum price that would induce P to form direct relationship.

Direct relationship

Indirect relationship via A

Provided that the investors cannot form direct relationship with P

- Finding: $X_G + F_G < x_G$
- Tradeoff between execution cost and trading speed.
- Infrequent investors can only commit to relationship contract offered by agency dealer.
Implications on Market Efficiency and Stability

Efficiency – improving!

Stability (likelihood of first-trigger event of systemic crisis) – ambiguous!
- ↑ as existing investors get liquidity during bad times.
- ↓ as ↑ participation of new investors facing liquidity shortage during extremely bad events.

Normal bad period

Extremely bad event
This paper: construct a game-theoretic model to study strategic dealer choice of buy-side investors in OTC secondary asset markets.

Key insight: Infrequent investors trade with periphery dealers to obtain the benefit of long-term relationship.

Takeaway point: periphery dealers can improve market efficiency but might create market instability.
THANK YOU VERY MUCH!
Appendix
The Model with Heterogeneous Investors

What we know so far...

- Low-liquidity-need investors choose agency dealer (i.e. periphery dealers) to obtain the benefit of long-term relationship (i.e. costly liquidity in future bad states).

- What about high-liquidity-need investors?

\[
\begin{array}{c}
P \\
A \\
\text{L L L L L} \\
\end{array} \quad \begin{array}{c}
P \\
A \\
\text{L L L L L H} \\
\end{array}
\]

Separating equilibrium
Pooling equilibrium

→ High-type investor: price & insurance coverage.
The Model with Heterogeneous Investors

What we know so far...

- Low-liquidity-need investors choose agency dealer (i.e. periphery dealers) to obtain the benefit of long-term relationship (i.e. costly liquidity in future bad states).

- What about high-liquidity-need investors?

\[\text{Separating equilibrium} \rightarrow \text{Pooling equilibrium} \]

→ High-type investor: price & insurance coverage.
The Model with Heterogeneous Investors

Setting:
- Investors \(\{H, L_1, L_2, \ldots, L_n\} \) with \(q_H, q_L \).
- \(q_L \in \mathcal{N}_\epsilon(0) \rightarrow \) (almost) full insurance with \(n^* = 1 \).
- \(n \) sufficiently high to sustain any equilibrium.
- Lowest possible payoff for \(\{P, A\} \).
- Investors pay \(F \) for only their trades \(\rightarrow \) no cross-subsidy.

Equilibrium:
- liquidity quota = 1 under separating equilibrium
Pooling Equilibrium: Existence

<table>
<thead>
<tr>
<th></th>
<th>n^* increases one unit</th>
<th>n^* unchanged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>pooling $>$ separating</td>
<td>separating $>$ pooling</td>
</tr>
<tr>
<td>Existence</td>
<td>$nQ_L \geq \frac{2+Q_H}{2p-1}$</td>
<td>q_H low & $nQ_L \in [Q, \bar{Q}]$</td>
</tr>
<tr>
<td>Payoff</td>
<td>$\bar{P}, L \downarrow$</td>
<td>$P \downarrow$, L unknown</td>
</tr>
</tbody>
</table>

- A and P are complementary if A not too big.
- A may have too much power on the low-type.

BACK
Extra: Probability of Liquidity Shock (q) Matters

Low prob of liquidity shock

High prob of liquidity shock