Parsing the Pulse: Decomposing Macroeconomic Sentiment with LLMs

Macroeconomic indicators provide quantitative signals that must be pieced together and interpreted by economists. We propose a reversed approach of parsing press narratives directly using Large Language Models (LLM) to recover growth and inflation sentiment indices. A key advantage of this LLM-based approach is the ability to decompose aggregate sentiment into its drivers, readily enabling an interpretation of macroeconomic dynamics. Our sentiment indices track hard-data counterparts closely, providing an accurate, near real-time picture of the macroeconomy. Their components–demand, supply, and deeper structural forces–are intuitive and consistent with prior model-based studies. Incorporating sentiment indices improves the forecasting performance of simple statistical models, pointing to information unspanned by traditional data.








