Research
Discussion Paper
PIERspectives
aBRIDGEd
PIER Blog
Events
Conferences
Research Workshops
Policy Forums
Seminars
Exchanges
Research Briefs
Community
PIER Research Network
Visiting Fellows
Funding and Grants
About Us
Our Organization
Announcements
PIER Board
Staff
Work with Us
Contact Us
TH
EN
Research
Research
Discussion Paper
PIERspectives
aBRIDGEd
PIER Blog
āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļŠāļ āļēāļžāļ āļđāļĄāļīāļ­āļēāļāļēāļĻāļāļąāļšāđ€āļĻāļĢāļĐāļāļāļīāļˆ: āļ•āļ­āļ™āļ—āļĩāđˆ 3 āļāļēāļĢāļ›āļĢāļąāļšāļ•āļąāļ§āļ•āđˆāļ­āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļŠāļ āļēāļžāļ āļđāļĄāļīāļ­āļēāļāļēāļĻ
PIERspectives āļĨāđˆāļēāļŠāļļāļ”
āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļŠāļ āļēāļžāļ āļđāļĄāļīāļ­āļēāļāļēāļĻāļāļąāļšāđ€āļĻāļĢāļĐāļāļāļīāļˆ: āļ•āļ­āļ™āļ—āļĩāđˆ 3 āļāļēāļĢāļ›āļĢāļąāļšāļ•āļąāļ§āļ•āđˆāļ­āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļŠāļ āļēāļžāļ āļđāļĄāļīāļ­āļēāļāļēāļĻ
āļĄāļēāļ•āļĢāļāļēāļĢ CBAM āļ™āđˆāļēāļāļąāļ‡āļ§āļĨāđāļ„āđˆāđ„āļŦāļ™āļŠāļģāļŦāļĢāļąāļšāļŠāļīāļ™āļ„āđ‰āļēāļŠāđˆāļ‡āļ­āļ­āļāļ‚āļ­āļ‡āđ„āļ—āļĒ? āđāļĨāļ°āđ€āļĢāļēāļ„āļ§āļĢāļĢāļąāļšāļĄāļ·āļ­āļāļąāļ™āļ­āļĒāđˆāļēāļ‡āđ„āļĢ?
PIER Blog āļĨāđˆāļēāļŠāļļāļ”
āļĄāļēāļ•āļĢāļāļēāļĢ CBAM āļ™āđˆāļēāļāļąāļ‡āļ§āļĨāđāļ„āđˆāđ„āļŦāļ™āļŠāļģāļŦāļĢāļąāļšāļŠāļīāļ™āļ„āđ‰āļēāļŠāđˆāļ‡āļ­āļ­āļāļ‚āļ­āļ‡āđ„āļ—āļĒ? āđāļĨāļ°āđ€āļĢāļēāļ„āļ§āļĢāļĢāļąāļšāļĄāļ·āļ­āļāļąāļ™āļ­āļĒāđˆāļēāļ‡āđ„āļĢ?
Events
Events
Conferences
Research Workshops
Policy Forums
Seminars
Exchanges
Research Briefs
āļ”āļĩāđ€āļ”āļĒāđŒāļĄāļēāļ•āļĢāļāļēāļĢ CBAM 1 āļĄ.āļ„. 69: āļœāļđāđ‰āļŠāđˆāļ‡āļ­āļ­āļāđ„āļ—āļĒāļžāļĢāđ‰āļ­āļĄāđāļ„āđˆāđ„āļŦāļ™āļāļąāļšāļāļēāļĢāļ„āļīāļ”āļĢāļēāļ„āļēāļ„āļēāļĢāđŒāļšāļ­āļ™āļāđˆāļ­āļ™āļ‚āđ‰āļēāļĄāļžāļĢāļĄāđāļ”āļ™āļ‚āļ­āļ‡āļĒāļļāđ‚āļĢāļ› āđāļĨāļ°āļ„āļ§āļĢāļĢāļąāļšāļĄāļ·āļ­āđ€āļŠāļīāļ‡āļĢāļļāļāļ­āļĒāđˆāļēāļ‡āđ„āļĢ
PIER Research Brief āļĨāđˆāļēāļŠāļļāļ”
āļ”āļĩāđ€āļ”āļĒāđŒāļĄāļēāļ•āļĢāļāļēāļĢ CBAM 1 āļĄ.āļ„. 69: āļœāļđāđ‰āļŠāđˆāļ‡āļ­āļ­āļāđ„āļ—āļĒāļžāļĢāđ‰āļ­āļĄāđāļ„āđˆāđ„āļŦāļ™āļāļąāļšāļāļēāļĢāļ„āļīāļ”āļĢāļēāļ„āļēāļ„āļēāļĢāđŒāļšāļ­āļ™āļāđˆāļ­āļ™āļ‚āđ‰āļēāļĄāļžāļĢāļĄāđāļ”āļ™āļ‚āļ­āļ‡āļĒāļļāđ‚āļĢāļ› āđāļĨāļ°āļ„āļ§āļĢāļĢāļąāļšāļĄāļ·āļ­āđ€āļŠāļīāļ‡āļĢāļļāļāļ­āļĒāđˆāļēāļ‡āđ„āļĢ
Age and Housing Returns
āļ‡āļēāļ™āļŠāļąāļĄāļĄāļ™āļēāļĨāđˆāļēāļŠāļļāļ”
Age and Housing Returns
āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ
āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆ
āļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ
Puey Ungphakorn Institute for Economic Research
Community
Community
PIER Research Network
Visiting Fellows
Funding and Grants
PIER Research Network
PIER Research Network
Funding & Grants
Funding & Grants
About Us
About Us
Our Organization
Announcements
PIER Board
Staff
Work with Us
Contact Us
Staff
Staff
āļ”āļĢ.āđ‚āļŠāļĄāļĢāļąāļĻāļĄāļīāđŒ āļˆāļąāļ™āļ—āļĢāļąāļ•āļ™āđŒ āļĢāđˆāļ§āļĄāđ€āļŠāļ§āļ™āļēāđƒāļ™āļāļēāļĢāļ›āļĢāļ°āļŠāļļāļĄāđ€āļœāļĒāđāļžāļĢāđˆāļĢāļēāļĒāļ‡āļēāļ™ Thailand’s Economic Survey 2025
āļ›āļĢāļ°āļāļēāļĻāļĨāđˆāļēāļŠāļļāļ”
āļ”āļĢ.āđ‚āļŠāļĄāļĢāļąāļĻāļĄāļīāđŒ āļˆāļąāļ™āļ—āļĢāļąāļ•āļ™āđŒ āļĢāđˆāļ§āļĄāđ€āļŠāļ§āļ™āļēāđƒāļ™āļāļēāļĢāļ›āļĢāļ°āļŠāļļāļĄāđ€āļœāļĒāđāļžāļĢāđˆāļĢāļēāļĒāļ‡āļēāļ™ Thailand’s Economic Survey 2025
Discussion Paperdp
QR code
Year
2025
2024
2023
2022
...
4 āļ•āļļāļĨāļēāļ„āļĄ 2564
20211633305600000
No. 165

Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data

āļĻāļĢāļąāļ“āļĒāđŒ āļāļĄāļĨāļ—āļīāļžāļĒāđŒ

Abstract

This paper investigates the potentials of the long short-term memory (LSTM) when applying with macroeconomic time series data sampled at different frequencies. We first present how the conventional LSTM model can be adapted to the time series observed at mixed frequencies when the same mismatch ratio is applied for all pairs of low-frequency output and higher-frequency variable. To generalize the LSTM to the case of multiple mismatch ratios, we adopt the unrestricted Mixed Data Sampling (U-MIDAS) scheme (Foroni et al., 2015) into the LSTM architecture. We assess via both Monte Carlo simulations and empirical application the out-of-sample predictive performance. Our proposed models outperform the restricted MIDAS model even in a set up favorable to the MIDAS estimator. For real world application, we study forecasting a quarterly growth rate of Thai real GDP using a vast array of macroeconomic indicators both quarterly and monthly. Our LSTM with U-MIDAS scheme easily beats the simple benchmark AR(1) model at all horizons, but outperforms the strong benchmark univariate LSTM only at one and six months ahead. Nonetheless, we find that our proposed model could be very helpful in the period of large economic downturns for short-term forecast. Simulation and empirical results seem to support the use of our proposed LSTM with U-MIDAS scheme to nowcasting application.

āļĻāļĢāļąāļ“āļĒāđŒ āļāļĄāļĨāļ—āļīāļžāļĒāđŒ
āļĻāļĢāļąāļ“āļĒāđŒ āļāļĄāļĨāļ—āļīāļžāļĒāđŒ
āļ˜āļ™āļēāļ„āļēāļĢāđ„āļ—āļĒāļžāļēāļ“āļīāļ‚āļĒāđŒ
Download full text
JEL: E37C35
Tags: lstmmixed frequency datanowcastingtime seriesmacroeconomic indicators
āļ‚āđ‰āļ­āļ„āļīāļ”āđ€āļŦāđ‡āļ™āļ—āļĩāđˆāļ›āļĢāļēāļāļāđƒāļ™āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āļ„āļ§āļēāļĄāđ€āļŦāđ‡āļ™āļ‚āļ­āļ‡āļœāļđāđ‰āđ€āļ‚āļĩāļĒāļ™ āļ‹āļķāđˆāļ‡āđ„āļĄāđˆāļˆāļģāđ€āļ›āđ‡āļ™āļ•āđ‰āļ­āļ‡āļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāļ„āļ§āļēāļĄāđ€āļŦāđ‡āļ™āļ‚āļ­āļ‡āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ
āļĻāļĢāļąāļ“āļĒāđŒ āļāļĄāļĨāļ—āļīāļžāļĒāđŒ
āļĻāļĢāļąāļ“āļĒāđŒ āļāļĄāļĨāļ—āļīāļžāļĒāđŒ
āļ˜āļ™āļēāļ„āļēāļĢāđ„āļ—āļĒāļžāļēāļ“āļīāļ‚āļĒāđŒ

āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ

273 āļ–āļ™āļ™āļŠāļēāļĄāđ€āļŠāļ™ āđāļ‚āļ§āļ‡āļ§āļąāļ”āļŠāļēāļĄāļžāļĢāļ°āļĒāļē āđ€āļ‚āļ•āļžāļĢāļ°āļ™āļ„āļĢ āļāļĢāļļāļ‡āđ€āļ—āļžāļŊ 10200

āđ‚āļ—āļĢāļĻāļąāļžāļ—āđŒ: 0-2283-6066

Email: pier@bot.or.th

āđ€āļ‡āļ·āđˆāļ­āļ™āđ„āļ‚āļāļēāļĢāđƒāļŦāđ‰āļšāļĢāļīāļāļēāļĢ | āļ™āđ‚āļĒāļšāļēāļĒāļ„āļļāđ‰āļĄāļ„āļĢāļ­āļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨ

āļŠāļ‡āļ§āļ™āļĨāļīāļ‚āļŠāļīāļ—āļ˜āļīāđŒ āļž.āļĻ. 2569 āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ

āđ€āļ­āļāļŠāļēāļĢāđ€āļœāļĒāđāļžāļĢāđˆāļ—āļļāļāļŠāļīāđ‰āļ™āļŠāļ‡āļ§āļ™āļŠāļīāļ—āļ˜āļīāđŒāļ āļēāļĒāđƒāļ•āđ‰āļŠāļąāļāļāļēāļ­āļ™āļļāļāļēāļ• Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license

Creative Commons Attribution NonCommercial ShareAlike

āļĢāļąāļšāļˆāļ”āļŦāļĄāļēāļĒāļ‚āđˆāļēāļ§ PIER

Facebook
YouTube
Email